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Abstract – In this work, a simple and straight-
forward method of moments solution (MOM) proce-
dure is presented to obtain the induced current dis-
tribution on an arbitrarily-shaped conducting body
illuminated by a Gaussian plane wave directly in the
time domain using a patch modeling approach. The
method presented in this work, besides being stable,
is also capable of handling multiple excitation pulses
of varying frequency content incident from different
directions in a trivial manner. The method utilizes
standard Rao-Wilton-Glisson (RWG) functions and
simple triangular functions for the space and time
variables, respectively, for both expansion and test-
ing. The method adopts conventional MOM and
requires no further manipulation invariably needed
in standard time-marching methods. The moment
matrix generated via this scheme is a block-wise
Toeplitz matrix and, hence, the solution is extremely
efficient. The method is validated by comparing the
results with the data obtained from the frequency
domain solution. Several simple and complex nu-
merical results are presented to validate the proce-
dure.

Index Terms – Electromagnetic fields, Integral equa-
tions, Method of moments, Numerical methods,
Time Domain.

I. INTRODUCTION
In recent times, the transient analysis of elec-

tromagnetic scattering has received a great deal of
attention. With the advent of faster computers and
an increase of memory space, many scattering prob-
lems of complex objects are being performed directly
in the time domain because of the generation of a
broad-band data in a single simulation. Further, the
direct time domain (TD) techniques provide an op-
portunity to observe and interpret electromagnetic
scattering behavior.

Some of the early analytical work in transient

electromagnetic problems were based on physical
optics to obtain the approximate impulse response
from conducting flat plates, spheres, and prolate
spheroids [1]. A time domain solution for an infinite
cylindrical antenna was performed by Wu in 1961
[2]. Next, Bennett derived an integro-differential
equation applicable to a perfectly conducting square
plate by enforcing the boundary condition on the
electric field and then solved directly in the time
domain [3]. Bennett labeled this technique as the
space-time integral-equation (STIE) technique. The
STIE method discretizes the scatterer into square
patches, the time axis divided into equal increments,
and the currents at each instant are determined by
the knowledge of the incident field and currents at
previous instants.

Next, we note that the STIE solution method-
ology has been applied to many different geometri-
cal shapes, simple as well as complex, and now is
known as the Marching-on-in-Time (MOT) method
[4]. Although MOT algorithm is popular, it is prone
to late-time instabilities with growing oscillations as
time progresses which makes the technique unreli-
able. Unfortunately, most of the proposed remedies
to either arrest these oscillations or eliminate them
completely, work only for simple problems, and in-
variably fail for complex objects. In the last 20 years,
there has been an explosion of proposed remedies
with limited success and only a few selected publi-
cations are cited here for completeness [5-19].

Recently, a new type of algorithm was applied
to wire-grid models of arbitrary bodies to solve the
time domain integral equation (TDIE) using the
method of moments (MOM) [20] and [21]. The nu-
merical procedure presented in [21] and [22] is not
a MOT scheme and there is no time marching in-
volved. We solve the integral equation over a space-
time grid, and hence no error accumulation as hap-
pens in MOT schemes. This procedure eliminates
marching-on-in-time altogether, remains stable and
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also ideally suited to handle a large number of exci-
tations in a trivial manner. In the present work, we
apply this procedure to perfectly electric conducting
(PEC) bodies via planar triangular patch modeling.

Next, we further note that the present method
is not either explicit or implicit methods commonly
available to solve the time-domain integral equation
[4]. In our view, both the explicit and the implicit
methods are related to Marching-on-in-Time (MOT)
method. The only difference being the length of the
time step. If the time step is smaller than the small-
est spatial distance between the spatial basis func-
tions, Rmin, then we have explicit scheme. Other-
wise we have implicit scheme. In both cases, the so-
lution is achieved by time marching method. In such
a scheme, currents are evaluated at the first time in-
stant, t1 = ∆t by solving the governing equation
and, using this knowledge, move to obtain currents
at the second time instant t2 = 2∆t. Next, pro-
ceed to obtain currents at 3rd, 4th, and later time
instants in a similar way. Obviously, these methods
are prone to error accumulation which is avoided in
the present work.

In the following section, we present the detailed
mathematical steps describing the algorithm. In
Section III, we present numerical solution scheme
and several important guidelines to apply the pro-
cedure successfully. In Section IV, we present sev-
eral numerical results to test the validity of the tech-
nique. Finally, Section V discusses important con-
clusions along with possible improvements and fu-
ture work to be undertaken in this area.

II. INTEGRAL EQUATION
FORMULATION

Let S denote an open or closed perfectly con-
ducting arbitrarily-shaped body as shown in Fig. 1,
illuminated by a time-domain pulse. An electric field
Ei(r, t), defined in the absence of the scatterer, is
incident on and induces a surface current J(r, t) on
S. Using basic mathematical steps outlined in [4],
the scattered electric field Es(r, t) computed from
the surface current is given by:

Es(r, t) = −∂A(r, t)

∂t
−∇Φ(r, t), (1)

where the magnetic vector potential and the electric
scalar potentials are given by:

A(r, t) = µ

∫
S

J(r′, t− R
c )

4πR
dS′, (2)

and

Φ(r, t) =
1

ε

∫
S

qs(r
′, t− R

c )

4πR
dS′. (3)

x
y

z

J(     )r ,t

Incident
    Pulse
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Fig. 1. An arbitrary body illuminated by a Gaussian
plane wave.

In Eqs. (2) and (3), R = |r−r′|, µ and ε denote
the permeability and permittivity of the surrounding
medium, respectively, r and r′ are the locations of
the observation and source points on S and c is the
velocity of the electromagnetic wave. The surface
charge density qs is related to the induced current J
by the continuity equation given by,

∇s · J = −∂qs
∂t

. (4)

Differentiating Eq. (3) with respect to time and
using Eq. (4), we obtain the following expression for
the time derivative of the scalar potential as:

Ψ
∆
=
∂Φ

∂t
=
−1

ε

∫
`

∇s · J(r′, t−R/c)
4πR

dS′. (5)

Next, an integro-differential equation for J can
be derived using the boundary condition (Ei +
Es)tan = 0 on S as:[

∂A

∂t
+∇Φ

]
tan

= Ei
tan. (6)

The charge density appearing in the scalar po-
tential of Eq. (6) may be eliminated by differentiat-
ing Eq. (6) with respect to time and using Eq. (5).
Thus, the popular electric field integral equation
(EFIE) for an arbitrarily-shaped conducting body
in time domain is given by:[

∂2A

∂t2
+∇Ψ

]
tan

=

[
∂Ei

∂t

]
tan

, (7)

which needs to be solved for the unknown current
J(r, t).

III. NUMERICAL SOLUTION SCHEME

The first step in the numerical scheme is to de-
scribe adequately the given geometry to the digital
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computer. This task is most easily accomplished
by covering the body surface with planar triangular
patches to generate a “patch model” of the given
body. We choose the planar triangular patches to
model the body because they have the ability to
conform to any geometrical surface or boundary. In
fact, simple as well as complex bodies, can be easily
modeled by planar triangular patches and can be de-
scribed to the computer using automated schemes.
Further, for numerical purposes, it is very easy to
increase the patch density in areas where more res-
olution is required.

Next, we note that the triangular mesh con-
sists of several electrically short patches, mutually
attached to each other to approximate the given
body. The common edge where several patches are
attached is known as an interior edge. If only one
patch is attached to an edge, then that edge is re-
ferred to as a boundary edge and removed from the
solution scheme. When only two triangular patches
are attached to a given edge, that interior edge is
referred to as an ordinary edge and one unknown
is associated with this edge. Further, if more than
two triangular patches are attached to a given edge,
then we have a junction edge and the number of un-
knowns associated with this junction edge is one less
than the total number of patches connected to this
edge.

The next task in the numerical solution proce-
dure is to develop an algorithm to solve the integral
equation (7). We accomplish this task by selecting
the well-known method of moments [22].

A. Definition of space and time basis func-
tions

Assuming that the body is modeled with trian-
gular patches, we use the well-known Rao-Wilton-
Glisson (RWG) functions [23] for expansion and test-
ing of space variables. Referring to Fig. 2, the RWG
function for any edge m common to the two triangles
T±m is given by,

fm(r) =


lm

2A+
m
ρ+
m for r ∈ T+

m
lm

2A−m
ρ−m for r ∈ T−m

0 otherwise.

(8)

In Eq. (8), lm denotes the length of the mth edge
and A±m is the area of triangle T±m . Further, an ar-
bitrary point in T+

m may be located by the position
vector r, relative to the origin, O, or by ρ+

m, ref-
erenced at the free vertex of T+

m . For an arbitrary
point in T−m , the position vector ρ−m is similarly de-
fined except that it is directed toward the free vertex
of T−m . The “+” or “−” convention is determined by

O

r

T
m

+

T
m

_
edgemth

lm

ρ
m
+

_ ρ
m

__

Fig. 2. Triangle pair and geometrical parameters
associated with the mth interior edge.

choosing a reference direction for positive current
flow for the mth edge. This current is assumed to
flow from T+

m to T−m . Also, we follow the convention
where superscripts refer to the faces and subscripts
refer to the edges. For example, T+

m is the positive
triangle associated with edge m.

Now, let us define the triangle functions for the
time variable. In order to do so, let us first define
an upper limit on the time variable t = T , where T
represents the time when the incident pulse becomes
negligible. Then, we divide the time axis 0→ T into
Nt uniform time intervals given by ∆t and denote
tn = n∆t for n = 1, 2, ....Nt. We note that, initially,
the MOM scheme is applied to a finite interval 0→
T . We also note that extending the time interval
to later times is trivial and discussed later. The
mathematical description of the triangle function for
the time variable is given as,

gn(t) ≡
{

1− |t−tn|∆t t ∈ (tn−1, tn+1)
0 otherwise.

(9)

Next, we approximate the induced current J(r, t)
as:

J(r, t) ≈
NS∑
m=1

Nt∑
n=1

Im,n fm(r) gn(t), (10)

where NS and Nt represent the number of basis (ex-
pansion) functions in space and time, respectively.
Thus, for a complex body approximated by a trian-
gular mesh, we have NS space basis functions includ-
ing basis functions associated with junction edges,
Nt time functions. Thus, a straight forward MOM
application results in P = NS × Nt unknowns to
be evaluated. The MOM procedure to obtain each
unknown by solving Eq. (7) is described in the fol-
lowing:
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B. Testing procedure

Considering the Galerkin testing procedure, we
use the same functions defined in Eqs. (8) and (9)
for testing of space and time variables, respectively.
Defining

< fm(r)gn(t),F (r, t) > =∫
S

∫
T

fm(r)gn(t) • F (r, t) dS dt, (11)

we can write Eq. (7) as:

< fm(r)gn(t),

[
∂2A

∂t2
+∇Ψ

]
> =

< fm(r)gn(t),

[
∂Ei

∂t

]
> (12)

for m = 1, 2, · · ·NS and n = 1, 2, · · ·Nt. Further, we
can rewrite Eq. (12) as,∫

t

gn(t)
∂2

∂t2

∫
S

[fm(r) •A(r, t) dS ] dt

+

∫
t

gn(t)

∫
S

[fm(r) • ∇Ψ(r, t) dS] dt

=

∫
t

gn(t)

∫
S

[
fm(r) • ∂E

i(r, t)

∂t
dS

]
dt. (13)

Now, using the well-known integration by parts
scheme on the first integral of Eq. (13) and using
Eq. (9), we can re-write Eq. (13) as:∫

S

fm(r)•[
A(r, tn+1)− 2A(r, tn) +A(r, tn−1)

∆t2

]
dS

+

∫
S

fm(r) • [∇Ψ(r, tn)] dS

=

∫
S

fm(r) •
[
∂Ei(r, tn)

∂t

]
dS. (14)

Now let us look at each term in Eq. (14), as follows:

Using Eq. (8), we can write vector potential
term at any time instant as,∫

S

fm(r) •A(r, tn) dS

=

∫
T+
m

lm

2A+
m
ρ+
m •A(r, tn) dS

+

∫
T−m

lm

2A−m
ρ−m •A(r, tn) dS. (15)

The integrals will be approximated by evaluating
A(r, tn) at the centroid of the T±m triangle. There-
fore,

∫
S

fm(r) •A(r, tn) dS

≈
[
A(ρc+m , tn) • lm

2A+
m

∫
T+
m

ρ+
m dS

+ A(ρc−m , tn) • lm

2A−m

∫
T−m

ρ−m dS

]
. (16)

The integrations in Eq. (16) are trivial and the result
is given by:∫

S

fm(r) •A(r, tn) dS

≈ lm
2

[
A(ρc+m , tn) • ρc+m +A(ρc−m , tn) • ρc−m

]
, (17)

where ρc+m is the vector from the free vertex to the
centroid of T+

m and ρc−m is the vector from the cen-
troid to the free vertex of T−m .

Next, let’s consider the scalar potential term in
Eq. (14). Using the vector identity ∇ • (ΨA) =
A • ∇Ψ + Ψ∇ • A and using the properties of the
RWG function fm, we have:∫

S

fm • ∇Ψ(r, tn) dS =

−
∫
S

Ψ(r, tn)∇ • fm(r)dS. (18)

By approximating the integrand at the centroids
of the triangles, Eq. (18) becomes.∫

S

fm • ∇Ψ(r, tn) dS =

−
[
lm

A+
m

∫
T+
m

Φ(r, tn) dS − lm

A−m

∫
T−m

Φ(r, tn) dS

]
≈ −lm[Φ(ρc+m , tn)− Φ(ρc−m , tn)]. (19)

Finally, consider incident field term in Eq. (14).
The evaluation of this term is identical to the vector
potential term and the result is given by,∫

S

fm •
∂Ei(r, tn)

∂t
dS =

lm
2

[
∂Ei(ρc+m , tn)

∂t
• ρc+m +

∂Ei(ρc−m , tn)

∂t
• ρc−m

]
. (20)

C. Expansion procedure

Let us first look at the determination of the vec-
tor potential at some observation point r = rm at
time t = tn. Substituting Eq. (10) into Eq. (2) gives:
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A(rm, tn)

= µ

NS∑
p=1

Nt∑
q=1

Ip,q

∫
S

fp(r
′)gq(tn − |rm−r′|

c )

4π|rm − r′|
dS′

≈
NS∑
p=1

Nt∑
q=1

Ip,q[
gq(tn −

R+
mp

c
)κ+
mp + gq(tn −

R−mp
c

)κ−mp

]
, (21)

with

κ±mp =

∫
T±p

µf±p
4πRm

dS′, (22)

R±mp = |rm − rc±p |, (23)

Rm = |rm − r′|, (24)

where T±p represent the triangles connected to pth-
basis function.

Now, we consider the evaluation of the deriva-
tive of the scalar potential at some observation point
r = rm and time t = tn. Following steps similar to
the evaluation of the vector potential, we combine
Eqs. (5) and (10) to get:

Ψ(rm, tn)

≈
NS∑
p=1

Nt∑
q=1

Ip,q

[
gq(tn −

R+
mp

c
)ψ+
mp

+gq(tn −
R−mp
c

)ψ−mp

]
, (25)

where

ψ±mp =
−lp
A±p

∫
T±k

dS′

4πεRm
. (26)

Using the expansion and testing procedures de-
scribed so far, let us generate a matrix equation
ZX = Y of dimension P = NS ×Nt. The elements
of the Z-matrix are formed by using Eqs. (17), (19),
(21) and (25). Note that Zj,i represents a matrix
element of the Z-matrix, where

j = (n− 1)NS +m, i = (q − 1)NS + p,

n, q = 1, 2, · · · , NS , and m, p = 1, 2, · · · , Nt.

Here, we note that the Z-matrix in this case is not
a full matrix, unlike in the frequency domain MOM
procedure. In fact, it is a lower triangular, block-
wise Toeplitz matrix and given by,

Z =


Z1,1 O · · · O
Z2,1 Z2,2 · · · O

...
...

...
...

ZNS ,1 ZNS ,2 · · · ZNS ,NS

 , (27)

where each Zm,p, m = 1, 2, · · ·NS and p =
1, 2, · · · , NS is a matrix of dimension NS represent-
ing the mutual interaction between the spatial basis
functions for a given pair of testing time function
and source time function. The solution of such a
matrix equation is very efficient, involves inverting
only once a matrix of size NS ×NS , and solving the
matrix equation.

The right hand side of the matrix equation Y
is obtained by using the Eq. (20) and consists of Nt
blocks of matrices of dimension NS . At this stage,
we note that multiple incident pulses with varying
frequency content can be easily accommodated by
adding more column blocks to the Y -matrix. Also,
we note that obtaining currents for T to 2T and later
instants is similar to solving the equation for 0 to T
and presented in [20, 21].

Lastly, note that the numerical procedure pre-
sented so far allows to obtain the current distribu-
tion on the scattering structure as a function of time.
Once an accurate current distribution is obtained, it
is a simple process to obtain near-fields, far-fields,
and any other required parameters. The mathemat-
ical details to obtain such parameters are well-known
and available in [4] and hence not repeated here.

Before we present several numerical results ob-
tained using the procedure presented so far, a few
salient points must be noted as discussed in the fol-
lowing:

1. The first point to be noted is that the present
procedure is not the same as the conventional
MOT scheme although it might appear so for a
casual reader. It is because, in the conventional
MOT scheme, further mathematical manipula-
tions are carried out wherein a MOT equation
is developed to obtain the current at a present
instant as a function of incident field plus cur-
rents at previous instants [4]. Hence, the nu-
merical solution involves obtaining all the cur-
rents at a given instant before moving to the
next instant. One cannot proceed to the next
instant before completing the current calcula-
tions at the given instant because these cur-
rents are required for calculating the currents
at next instant. This may be the primary cause
for error accumulation and late-time instabili-
ties. However, in the procedure presented in
this work, we are actually solving the complete
problem in a way wherein all the currents at all
instants (i.e., from 0 to T ) are obtained at once.
There is no time marching involved and, hence,
no error propagation or accumulation.
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2. In this work, we have used triangular functions
to represent the time variable which is simple
and efficient. However, it is also possible to
use other functions such as Gaussian functions,
as done in [21], Lagurre Polynomials or spline
functions where the time-derivatives can be eas-
ily handled. The important points to be noted
for this procedure is: application of the MOM
procedure in space and time dimensions, solv-
ing for unknowns at all locations and all time
instants simultaneously, and efficient numerical
solution.

3. It may be noted that for time-domain calcula-
tions, it is customary to use a Gaussian pulse as
the incident pulse since a true impulse cannot
be generated numerically. Hence, it is always
a good idea to estimate the frequency content
in the selected time pulse for spatial discretiza-
tion. The normal guideline in the solution of
a time domain scattering problem is to obtain
λmin corresponding to the maximum frequency
component in the incident pulse. Obviously,
for a band-limited pulse λmin is easy to obtain.
For a Gaussian pulse, one needs to estimate the
maximum frequency limit in a judicious man-
ner. Then, it is necessary to make sure that all
the edge lengths are sufficiently smaller (i.e.,
less than one tenth of λmin).

4. It should be further noted that a sloppy dis-
cretization would appear as growing instabil-
ity even for the time period 0 to T . Fortu-
nately, such discretization in the frequency do-
main problem simply generates an inaccurate
result. However, in the time domain, one may
see a completely unacceptable, an even mis-
leading, solution. Hence, the spatial discretiza-
tion must confirm to the prescribed limit.

5. It appears that the time domain solution is very
sensitive to numerical processing and requires
accurate evaluation of required quantities such
as vector and scalar potentials. The numerical
integrations must be carried out to a high de-
gree of precision in each and every case.

6. The number of time functions to be used in the
solution is not very critical, at least, for the ex-
citation pulse used in this work. Here we em-
phasize that the time functions are used to rep-
resent the time variation in the interval 0 to T ,
where T represents the time instant at which
time the incident field goes to zero. Note that
the parameter T depends upon the pulse width

of the excitation pulse as discussed in the fol-
lowing:

IV. NUMERICAL RESULTS

In this section, we present numerical results for
several conducting objects modeled by triangular
patches. For all the examples presented in this sec-
tion, the incident field given by,

Ei(t, r) = Eo
4

TP
√
π

e−γ
2

, (28)

where
γ =

4

TP
(ct− cto − r · ak). (29)

In Eqs. (28) and (29), ak is the unit vector in the
direction of propagation of the incident wave, TP is
the pulse width of the Gaussian impulse, Eo ·ak = 0,
r is a position vector relative to the origin, c is the
velocity of propagation in the external medium, and
to is a time delay which represents the time at which
the pulse peaks at the origin.

Initially, we present several examples showing
the current density at a given location on the scat-
terer as a function of time and compare with the fre-
quency domain MOM using the same spatial patch
scheme and an inverse discrete Fourier transform
(FD-IDFT). For these examples we have, referring
to Eqs. (28) and (29), Eo = 120πax, TP = 4.0 LM,
k = −az, ct0 = 1.5Tp LM, and T = 2 ∗ ct0. Note
that 1 LM = 3.333 nSecs. The FD-IDFT solution
is obtained by using 512 frequency samples in the 0
to 512 MHz range. We also note that sharper pulse
can be used by adjusting the pulse width Tp.

As a first example, consider a square plate of
2.0×2.0 m, located in the XY -plane. There are 153

X

Y

Fig. 3. Current induced at the center of a square
plate (L=2.0 m) illuminated by a Gaussian plane
wave.

and 108 basis functions for space and time variables,
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respectively, for the time-domain solution. Note
that, although 30 to 60 basis functions are sufficient
for the time variable, we have deliberately used a
higher number to show that the actual number of
functions is not critical. For illustration purposes,
the induced current density at the center of the plate
is shown in Fig. 3. We note that the TD and FD-
IDFT solutions compare very well for this case.

Next, we consider a sphere of radius 1.0 m, lo-
cated with the center coinciding with the coordinate
origin. The sphere is modeled with 722 triangular
patches with 1083 spatial basis functions and 60 ba-
sis functions for time variable. For illustration pur-

X

Y

Z

Fig. 4. Current induced at the equator, shown by
a red dot, of a conducting sphere (a=1.0 m) illumi-
nated by a Gaussian plane wave.

poses, the induced current density at the equator is
shown in Fig. 4 and note that TD and FD-IDFT
solutions compare very well.

Next, we consider a conducting cube of side
length 1.0 m, located with the center coinciding with
the coordinate origin. The cube is modeled with 224
triangular patches with 336 spatial basis functions
and 60 basis functions in time. For illustration pur-
poses, the induced current density at the center of
the top face is shown in Fig. 5 and both solutions
compare very well.

Next, we consider a combination of two square
plates, each of side length a = 1.0 m and separated
by a distance d = 0.1 m, located with the center
of the bottom plate coinciding with the coordinate
origin. Each plate is modeled with 112 triangular
patches resulting in 366 spatial basis functions. The
time-domain solution is obtained by employing 60
basis functions for the time variable. For illustration
purposes, the induced current density at the center
of the top plate is shown in Fig. 6 and note that
the solutions compare very well. We note that the
induced current oscillates for a long time because of

X

Y

Z

Fig. 5. Current induced at the center of the top face
of a conducting cube (a=1.0 m) illuminated by a
Gaussian plane wave.

Fig. 6. Current induced at the center of the top plate
of a parallel plate configuration (a=1.0 m, d=0.1 m)
illuminated by a Gaussian plane wave.

the close proximity of the plates and the TD solution
captures this phenomenon very well.

Now, we consider a combination of three square
plates, each of side length a = 1.0 m and separated
by a distance d = 0.2 m, located with the center
of the center plate coinciding with the coordinate
origin. Each plate is modeled with 180 triangular
patches resulting in 753 spatial basis functions. The
time variable is approximated with 60 functions. For
illustration purposes, the induced current density at
the center of the middle plate is shown in Fig. 7
and note that the solutions compare very well. It
is obvious that this configuration represents a com-
plex scattering structure from the scattering point of
view. The electromagnetic wave bounces back and
forth between the plates and takes a very long time
to decay to a negligible value.
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Fig. 7. Current induced at the center of the center
plate of a 3-parallel plate configuration (a=1.0 m,
d=0.2 m) illuminated by a Gaussian plane wave.

Next, we consider an almond-shaped structure
described in the inset of Fig. 8. The almond is mod-
eled with 432 triangular patches resulting in 648 spa-
tial basis functions. The time variable is approxi-
mated with 60 functions. For illustration purposes,
the induced current density at the center of the equa-
tor is shown in Fig. 8 and note that the solutions
compare very well. It is well-known that the almond-
shaped body represents a body with low radar cross
section and the time domain solution performs very
well for this case.

Fig. 8. Current induced at the center of the equa-
tor of an almond-shaped structure illuminated by a
Gaussian plane wave.

Next, we consider an aircraft-like object, as
shown in Fig. 9. The object is symmetrically placed
in the XY-plane such that the center of the lower-
side (belly) approximately coincides with the coor-
dinate origin. The object dimensions are: 0.97 m,
0.86 m, and 0.25 m along the X, Y , and Z axes, re-

Fig. 9. An aircraft-like body modeled by triangular
patches.

spectively. We have used 1000 and 48 basis functions
for space and time variables, respectively. The cur-
rent is sampled at the middle of an edge shown by a
dot in the Fig. 9. The results obtained by FD-IDFT,
and the present method are shown in Fig. 10. Again,
we note good comparison between the two solutions.

Fig. 10. Current induced on an aircraft-like struc-
ture illuminated by a Gaussian plane wave.

Next, we consider a more complex aircraft-like
object, as shown in Fig. 11. The object dimensions
are: 5.85 m, 3.5 m, and 1.46 m along the X, Y , and
Z axes, respectively. We have used 2673 and 40 basis
functions for space and time variables, respectively.
The current is sampled on a wing, shown by a red
dot, in the Fig. 11. The IDFT solution is obtained in
a similar manner as in the previous example. The re-
sults obtained by FD-IDFT, and the present method
are shown in Fig. 12. Again, we note good com-
parison between the two solutions. The negligible
discrepancies in both solutions may be attributed
insufficient number of unknowns at the higher end
of the frequency.
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Fig. 11. Triangulated model of an aircraft-like body.

Fig. 12. Current induced on the wing of a model
aircraft illuminated by a Gaussian plane wave.

Next, we consider a deep cavity as shown in the
inset of Fig. 13. The depth of the cavity is 2.0 m.
The inner and outer radii of cavity are 0.267 m and
0.4 m, respectively. The object is symmetrically
placed in the XY-plane such that the center of the
bottom surface coincides with the coordinate origin.
We have used 552 and 40 basis functions for space
and time variables, respectively. The current is sam-
pled at an edge located in the inner surface at the
bottom of the cavity. The results obtained by FD-
IDFT, and the present method are shown in Fig. 13.
Although we see a reasonable comparison, consider-
ing the complexity of the problem, it is speculated
that neither solution is converged to the correct so-
lution because of the coarse spatial sampling. The
currents inside the deep zone are difficult to obtain
and may require much higher number of unknowns.

Next, we consider a ship-like object, shown in

2.0m

0.4m

Fig. 13. Current induced on the bottom surface of a
deep cavity illuminated by a Gaussian plane wave.

Fig. 14. Triangular patch model of a ship-like object.

Fig. 14. The ship is 5.56 m long, 0.716 m wide,
and 0.387 m height and placed such that the origin
is approximately coinciding with center of the top
deck. There are 13,395 and 40 basis functions for
space and time variables, respectively, for the time
domain solution. The current is sampled at the mid-
dle of the upper-deck approximately coinciding with
x = y = 0. The numerical results obtained by the
method presented in this work is shown in Fig. 15.
Also, note that IDFT solution for this example is
prohibitively expensive and hence not attempted.

Now, we present radar cross section (RCS) of
a few selected objects at a selected frequency using
the time domain solution. Although, we can cal-
culate RCS at any frequency within the pass band
of the incident pulse, we choose a single frequency
for illustration purposes. We note that once the in-
duced current at all locations on a given object is
obtained as a function of time, it is easy to use the
straight-forward Fourier Transform method to ob-
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Fig. 15. Current at the selected point on the ship-
like object modeled by triangular patches.

tain the currents at a given frequency. The Fourier
transform for a time domain data may be defined as:

Ik(f) =

∫ ∞
t=0

ik(t)e−j2π f t dt, (30)

where ik(t) is the current induced at kth-basis func-
tion and f is the given frequency. Here, we note that
the induced current is zero for t < 0.

Since the current data is obtained at equal time
intervals, the integral in Eq. (30) may be easily ap-
proximated by:

Ik(f) =
∑
j

ik(j∆t)e−j2π f j∆t ∆t, (31)

where ∆t is the time interval. Next, the far-scattered
electric field is obtained by the expression, given by:

Es(r) = −jωµ e−jkr

4πr

∫
S

fk(r′) ejak·r′ dS′, (32)

where fk represents the kth-basis function, ω = 2πf ,
k = ω

c is the wave number, ak represents the unit
vector from the origin to the observation point, and
c is the velocity of the electromagnetic wave.

Lastly, the radar cross section (σ) is given by,

σ(θ, φ) = lim
r→∞

4πr2 |E
s|2

|Einc|2
(33)

which can be easily computed from Eq. (32) and the
incident field given in Eq. (28).

In the following, we present normalized RCS (σ)
at 900 MHz for four objects, i.e., a) square plate,
b) conducting sphere, c) a deep cavity and d) an air-
craft=like body shown Fig. 9. We present two cases
viz. a) Elevation cut (E-cut) where σ is obtained
as a function of θ at φ = 00 and b) Horizontal cut
(H-cut) where σ is obtained as a function of φ at

θ = 900. The time domain solution is obtained with
a much sharper pulse with pulse width Tp = 0.5 LM
providing a bandwidth from 0 to 1000 MHz. We
also note that, the square plate, conducting sphere,
deep cavity, and aircraft-like body have been approx-
imated by 2628, 2160, 2208 and 4025 basis functions,
respectively. The RCS plots are shown in Figs. 16,
17, 18 and 19. Although both solution compare well,
the minor deviations may be attributed to the se-
lected incident pulse in the time domain because at
the selected frequency the amplitude of the incident
pulse is quite low and hence, the normalization am-
plified the deviation even more.

V. CONCLUSIONS
In this work, a simple and efficient method of

moments (MOM) solution procedure is developed
to determine the transient scattering from arbitrar-
ily shaped, conducting scatterers by a Gaussian
incident pulse directly in the time domain. The
scatterer may either be an opened or closed, finite
three-dimensional object and described to the com-
puter via planar triangular patch modeling scheme.
The numerical solution scheme involves a straight-
forward method of moments application and requires
no further mathematical manipulation. The MOM
matrix thus generated is a lower triangular matrix
which can be very efficiently filled because the ma-
trix elements are also block-wise Toeplitz. As a
result, the matrix equation can be very efficiently
solved. Presently, work is in progress to apply the
new method to material bodies.

FD Solution TD Solution

E-cut (900 MHz) H-cut (900 MHz)

Fig. 16. Normalized bistatic RCS of a square plate
(0.5 × 0.5 m) located in the XY -plane with center
coinciding with the origin at 900 MHz. NS = 2628.
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FD Solution TD Solution

E-cut (900 MHz) H-cut (900 MHz)

Fig. 17. Normalized bistatic RCS of a conducting
sphere, radius=0.5 m, located with center coinciding
with the origin at 900 MHz. NS = 2160.

FD Solution TD Solution

E-cut (900 MHz) H-cut (900 MHz)

Fig. 18. Normalized bistatic RCS of a conducting
cavity, length=0.25 m, inner and outer radii of cavity
0.08 m and 0.1 m, respectively, located with center
coinciding with the origin, at 900 MHz. NS = 2208.

FD Solution TD Solution

E-cut (900 MHz) H-cut (900 MHz)

Fig. 19. Normalized bistatic RCS of an aircraft-like
body, NS = 4025.
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