GENERAL PURPOSE AND SCOPE: The Applied Computational Electromagnetics Society (ACES) Journal hereinafter known as the ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state-of-the-art, and the promotion of related technical activities. The primary objective of the information exchange is to inform the scientific community on the development of new computational electromagnetics tools and their use in electrical engineering, physics, or related areas. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.

SUBMISSIONS: The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. Typical papers will represent the computational electromagnetics aspects of research in electrical engineering, physics, or related disciplines. However, papers which represent research in applied computational electromagnetics itself are equally acceptable.

Manuscripts are to be submitted through the upload system of ACES web site http://aces-society.org. See “Information for Authors” on inside of back cover and at ACES web site. For additional information contact the Editors-in-Chief: Dr. Atef Elsherbeni Colorado School of Mines 314C Brown Building 1610 Illinois Street Golden, CO 80401 Dr. Sami Barmada DESTEC Largo Lucio Lazzarino 56122 Pisa, Italy

APPLICATIONS TO ADVERTISING: For advertising, for which only camera-ready copies are accepted. Authors are responsible for information contained in their papers. If any material submitted for publication includes material which has already been published elsewhere, it is the author’s responsibility to obtain written permission to reproduce such material.

APPLICATIONS OF INTEREST: Include but are not limited to, antennas (and their electromagnetic environments), networks, static fields, radar cross section, inverse scattering, shielding, radiation hazards, biological effects, biomedical applications, electromagnetic pulse (EMP), electromagnetic interference (EMI), electromagnetic compatibility (EMC), power transmission, charge transport, dielectrics, magnetic and nonlinear materials, microwave components, MEMS, RFID, and MMIC technologies, remote sensing and geometrical and physical optics, radar and communications systems, sensors, fiber optics, plasma, particle accelerators, generators and motors, electromagnetic wave propagation, non-destructive evaluation, eddy currents, and inverse scattering.

Techniques of interest include but not limited to frequency-domain and time-domain techniques, integral equation and differential equation techniques, diffraction theories, physical, and parametric tradeoffs. However, it is also significant changes to existing codes, such as applicability domain and time-domain techniques, integral equation and differential equation techniques, diffraction theories, physical, and parameter tradeoffs.

Note: Code (or algorithm) capability descriptions are not acceptable, unless they contain sufficient technical material to justify consideration.

Publication: Requiring, quantitative accuracy statements to be provided in the “Discussion” section. Post-submission. The file size should not be larger than 10MB, otherwise permission from the Editor-in-Chief should be obtained first. Automated acknowledgment of the electronic submission, after the upload process is successfully completed, will be sent to the corresponding author. It is the responsibility of the corresponding author to keep the remaining authors informed. Email submission is not accepted and will not be processed.

EDITORIAL REVIEW: In order to ensure an appropriate level of quality control, papers are peer reviewed. They are reviewed both for technical correctness and for adherence to the listed guidelines regarding information content and format.

PAPER FORMAT: Only camera-ready electronic files are accepted for publication. The term “camera-ready” means that the material is neat, legible, reproducible, and in accordance with the final version format listed below.

"Camera-ready" means that the material is neat, legible, reproducible, and in accordance with the final version format listed below.

PUBLICATION CRITERIA: Each paper is required to manifest some relation to applied computational electromagnetics. Papers may address general issues in applied computational electromagnetics, or they may focus on specific applications, techniques, codes, or computational issues. While the following list is not exhaustive, each paper will generally relate to at least one of these areas:

1. Code validation. This is done using internal checks or experimental, analytical or other computational data. Measured data of potential utility to code validation efforts will also be considered for publication.

2. Code performance analysis. This usually involves identification of numerical accuracy or other limitations, solution convergence, numerical or physical modeling errors, and parameter tradeoffs. However, it is also significant changes to existing codes, such as applicability domain and time-domain techniques, integral equation and differential equation techniques, diffraction theories, physical, and parameter tradeoffs.

3. Computational studies of basic physics. This involves using a code, algorithm, or computational technique to simulate reality in such a way that better, or new physical insight or understanding, is achieved.

4. New computational techniques or new applications for existing computational techniques or codes.

5. “Tricks of the trade” in selecting and applying codes and techniques.

6. New codes, algorithms, code enhancement, and code fixes. This category is self-explanatory, but includes significant changes to existing codes, such as applicability domain and time-domain techniques, integral equation and differential equation techniques, diffraction theories, physical, and parameter tradeoffs. However, it is also significant changes to existing codes, such as applicability domain and time-domain techniques, integral equation and differential equation techniques, diffraction theories, physical, and parameter tradeoffs.

7. Code input/output issues. This normally involves innovations in input (such as input geometry standardization, automatic mesh generation, or computer-aided design) or in output (whether it be tabular, graphical, statistical, Fourier-transformed, or otherwise signal-processed). Material dealing with input/output database management, output interpretation, or other input/output issues will also be considered for publication.

8. Computer hardware issues. This is the category for analysis of hardware capabilities and limitations of various types of electromagnetics computational requirements. Vector and parallel computational techniques and implementation are of particular interest.