
Skeletonization Accelerated Solution of Crank-Nicolson Method for Solving 

Three-Dimensional Parabolic Equation 

Hafiz Faiz Rasool, Chen Jun, Xiao-Min Pan*, and Xin-Qing Sheng 

Center of Electromagnetic Simulation, School of Information and Electronics 

Beijing Institute of Technology, Beijing, 100081, People’s Republic of China 

hafiz@bit.edu.cn, chenjun_11@foxmail.com, xsheng@bit.edu.cn, *xmpan@bit.edu.cn 

Abstract ─ Parabolic equation models discretized with 

the finite difference method have been extensively 

studied for a long time. However, several explicit and 

implicit schemes exist in the literature. The advantage in 

explicit schemes is its simplicity, while its disadvantage 

is conditional stability. On the other hand, implicit 

schemes are unconditionally stable but require special 

treatment for a fast and accurate solution such as the 

Crank-Nicolson (CN) method. This method becomes 

computationally intensive for problems with dense 

meshes. The resulting matrix from the CN in two and 

three-dimensional cases requires high computational 

resources. This paper applies hierarchical interpolative 

factorization (HIF) to reduce the computational cost of 

the CN method. Numerical experiments are conducted to 

validate the proposed HIF acceleration. 

Index Terms ─ Alternating direction implicit method, 

Crank-Nicolson method, hierarchical interpolative 

factorization, interpolative decomposition, Shur 

complement. 

I. INTRODUCTION
The mathematical model of an electromagnetic 

problem is usually obtained in terms of partial 

differential equations (PDEs), integral equations, or 

integro-differential equations derived from Maxwell’s 

equations. Numerical methods apply a sort of 

discretization which yields a linear system of algebraic 

equations (i.e., a matrix equation). The development of 
powerful computers and fast solution methods for linear 

systems like the multi-grid/multi-level methods has 

made the numerical solution of electromagnetic (EM) 

problems viable [1-3]. The extensive use of wireless 

communication speeds up the research in EM wave 

propagation in outdoor and indoor environments. The 

methods that have been traditionally used to model EM 

wave propagation in indoor environments (i.e., tunnels) 

are modal analysis, geometrical optics, and the parabolic 

equation (PE) approximation. The modal analysis method 

and the geometrical optics method both have unacceptable 

limitations and their applicability is limited to specific 

geometries. The parabolic equation method has been 

shown to provide a better balance between accuracy and 

efficiency [2]. 

Several numerical techniques are available to solve 

parabolic type equations such as the split-step parabolic 

equation (SSPE) method [1, 2, 6], the finite element 

method (FEM) [3], and the finite difference method 

(FDM) [4, 7, 15-17]. Among these, the finite-difference 

approaches are more popular because of their simplicity, 

flexibility, and capability to handle complex boundary 

conditions (BCs) at short-range propagation problems [8]. 

The Crank-Nicolson method has been widely used 

to model wave propagation in tunnels [15], [16]. The 

high computational cost is a serious obstacle to use the 

CN scheme in practice. The alternating direction implicit 

(ADI) methods were developed to address the problem 

of computational efficiency, but the application of these 

methods to the problems that vary in time or space 

encounters serious problems due to the necessity of initial 

and boundary conditions evaluation at the intermediate 

steps [7], [9], [10], [11-14]. The trade-off is the loss of 

accuracy.  

In this paper, we improve the efficiency of the 

CN method by employing the HIF algorithm to make 

the methods based on 3DPE be potentially capable for 

problems that vary in time and space simultaneously. 

Several numerical experiments revealed substantial 

evidence that HIF can accurately approximate differential 

and integral operators in a variety of settings with high 

practical efficiency [18-22]. However, the performance 

of the HIF in accelerating the parabolic equation in our 

scenarios is still unclear. In order to answer the question 

and to find a remedy for the computational efficiency 

issue for the CN scheme, HIF fast solver has been 

employed. In order to establish a basis of comparison, 

the traditional rectangular waveguide model is chosen, 

as the analytical solution is available for this problem 

[16]. Secondly, a particular bended-waveguide model is 

considered to check the validity of the proposed method. 

II. THE CN METHOD FOR 3DPE
A 3DPE can be obtained from the Helmholtz 
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equation in Cartesian coordinates ( , , )x y z as [15]: 
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where   is either the electric or magnetic field  

and 
0 2 /k    is the free space wavenumber (   is  

the wavelength). Assuming that, the direction of 

propagation is along the z-axis. A reduced function 

0( , , ) ( , , )
ik z

x y z e u x y z   is used to separate the rapidly 

varying phase term in Eq. (1) [15, 16]: 
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which physically corresponds to paraxial propagation, 

and substituting Eq. (2) into (1), a 3DPE can be obtained 

as [16]: 
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In the following, Eq. (3) is numerically discretized by the 

CN method using a square grid (xy-plane), forwarding  

in the z-direction [4]. The grid points in x, y, and  

z-directions are denoted by ( i x , j y , n z ), where, 

0,1,2... xi N , 1, 2,... yj N , and 1,2... zn N . The 

transverse and longitudinal discretization’s max ,
1x

x
x

N
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 are referred to as the 

incremental step sizes in x, y, and z directions, 

respectively. Consequently, the CN discretization of 

3DPE mentioned in Eq. (3) can be written as: 
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Fig. 1. The geometry of a three-dimensional rectangular 

waveguide model. 
 

The two-dimensional (2D) cuts of the transverse 

plane are obtained along the propagation axis inside  

a rectangular tunnel’s cross-section with perfectly 

conducting walls. The field is discretized at the plane of 

propagation into a mesh net and is evaluated at spatial 

steps along the direction of propagation, as illustrated in 

Fig. 1. 
 

III. THE HIF ALGORITHM 
Most recently, hierarchical interpolative factorization 

(HIF) has been proposed to efficiently and accurately 

solve a sparse matrix system of linear equations obtained 

by the discretization of finite difference or finite element 

methods in the form of A  u f  [18]. The HIF 

factorization is based on the approximate decomposition 

where a recursive reduction strategy is employed to 

reduce the computational cost. An approximate 

representation of the original matrix is firstly obtained 

and then is used to compute the inverse. A threshold 

control to the reduction scheme is employed to reach the 

balance between the accuracy and the efficiency of the 

factorization. HIF works both for symmetric and general 

sparse matrices. In this work, we only focus on the  

HIF in terms of a symmetric matrix as the matrix arising 

from the CN scheme is symmetric. The recursive 

implementation of HIF is based on the commonly used 

octree [19]. According to the geometric coordinates,  

the HIF groups unknown degrees of freedom (DOFs) 

into the blocks using an octree available at 

https://github.com/klho/FLAM/. The HIF uses well known 

Shur complement and interpolative decomposition (ID) 

numerical tools for elimination and sparsification [18]. 

The elimination process is based on skeletonization 

which is divided into volumetric, face, and edge 

elimination. As discussed in Section II, a 3DPE is 

transformed into a series of 2D transverse planes 

propagating in the z-direction. So, for simplicity, we can 

solve a series of 2D problems to obtain the solution of a 

3D problem. Consequently, the volumetric skeletonization 

is skipped in our discussion.  
 

A. Overview of geometric factorization 

In the solution process of partial differential 

equations (PDEs) and their application in a real problem, 

the partition of the domain is often necessary and 

convenient. Figures 2 (a)-(g) illustrate the idea of a 

domain partition, sparsification, and elimination processes 

based on Shur complement and skeletonization. Black 

dots correspond to the active DOFs for each level. The 

partition naturally induces a block representation of A 

proceeding in a hierarchical fashion. Figure 2 (a) shows 

the discretized domain transformation into a square grid 

and then splits the square domain into sixteen patches 

called “leaves” (they will be organized in a tree) [18]. 

During HIF factorization, the boundary points are 

selected as active points according to the skeletonization. 

As a result, the interior DOFs within all sixteen patches 

are eliminated, as shown in Fig. 2 (b). After the Shur 

complement sparsification, as discussed in [18], the 

interactions among the redundant interior DOFs are 
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represented by the active DOFs, namely, the boundary 

points on the edges of nearby patches. Figure 2 (c) shows 

the elimination of DOFs selected in Fig. 2 (b), placed on 

the edges of nearby cells. Merging cells and organizing 

the domain in a tree of patches, as shown in Fig. 2 (d). 

The alternative processes between Shur complement for 

cells and skeletonization for edges (Figs. 2 (e)-(f)), 

reduce the problem size into a reasonable size, as 

illustrated in Fig. 2 (g). This procedure is repeated for 

each cell up to the coarsest level based on hierarchical 

domain decomposition. 

The resulting factorization allows the rapid 

application of the matrix inverse, which provides a fast 

direct solver or preconditioner, depending on the accuracy 

and specified relative precision   of the ID. The relative 

precision of the ID is a specified positive real number 

used to control the accuracy of the HIF algorithm [18].  
 

B. Skeletonization 

Skeletonization figures out the redundant points 

according to the low-rank property of the matrix based 

on ID. To conduct skeletonization, the original symmetric 

matrix A  is written as: 

                     ,
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T
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               (5) 

where C collects the DOFs in a box at a given level  

and K denotes the rest of the DOFs. Generally, A
T

CK   

and ACK
 are numerically low-rank matrices. HIF then 

conducts the ID on ACK  and obtains, 
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where TC  is the interpolation matrix associated with  

the active unknowns, having indices C S R  . Here, S 
denote the skeleton point set, and R is the redundant 

point set [18]. 
 

 
 

Fig. 2. Illustration of active DOFs at each level of HIF in 

the factorization process in a hierarchical fashion. 

C. Schur complement sparsification 

After the skeletonization, HIF obtains ARR
 which 

represents self-interaction to the redundant point set R. 

By making use of the skeleton point set S, HIF eliminates 

the redundant points. Mathematically, ARR
 is eliminated 

from A and a size-reduced form of A is obtained. When 

moving to a next active cell, the size-reduction of A takes 

place for the original matrix A.  

The detailed deduction and implementation, 

including a comprehensive accuracy control of the HIF 

algorithm, can be found in [18,19]. 

 

IV. SIMULATION RESULTS 
Numerical simulations are performed on Intel (R) 

Core (TM) i3-4005U CPU @ 1.70 GHz, 8 GB RAM. First, 

the obtained results of the CN and ADI methods are 

verified via the analytical. The rectangular waveguide’s 

cross-section dimensions are  40 40   operating at  

3 GHz frequency, where 0.8x y     , and 1z   .    

A 2D Gaussian source is placed at the center of  

the waveguide at ( , , ) (20 ,20 ,0)s s sx y z    with a 

beamwidth of 4.34bw  , under Dirichlet boundary 

conditions applied on the walls of the rectangular 

waveguide.  

We begin with the validation of the proposed method. 

Figures 3 (a-c) and (d-f) show the field distributions of  

a source with un-tilted    , 0 ,0elv elvx y   and tilted 

 ,elv elvx y   0.5 ,0.5  patterns in the xy-plane as  

a function of width-height variations at z = 100 m. As 

observed, CN and ADI methods agree with the analytical 

solution, where the error difference generated by both 

methods is about 1%. Figures 4 (a)-(c) show the resources 

used by the HIF factorization including factorization 

time (tf), memory used in factorization (mf), and the 

solution time (ts), respectively. The overall solution time 

ts includes the factorization construction time tf and the 

time required for the HIF solver to evaluate the inverse 

of the given matrix. 

 

 
 

Fig. 3. The 2D field distribution as a function of width-

height variations at z = 100 m by the analytical, CN,  
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and ADI methods, 4.34bw  , 0.8x y     , and 

1z   ; TM polarization. (a-c):    , 0 ,0elv elvx y  ,  

(d-f):    , 0.5 ,0.5elv elvx y   . 

 

  

 
 

Fig. 4. Scaling results for the HIF-CN model for a PEC 

straight rectangular waveguide model. (a) Factorization 

construction time, (b) memory used in factorization, and 

(c) solution time of HIF-CN and ADI models, 910  , 
and occ = 64. The data used in these figures are 

summarized in Table 1. 

 

In this work, both the CN and ADI methods are 

designed to solve a matrix corresponding to the xy-plane. 

Hence, the overall matrix size corresponding to the  

xy-plane remains the same and can be compared for  

the given numerical tests. Here, mN  denotes the total 

number of DOFs solved by both models in the xy-plane 

corresponding to the tunnel’s cross-section, while ( )mO N  

and ( log( ))m mO N N  are the extrapolated values which 

represent the reference scaling to estimate the efficiency 

of the algorithm. As the factorization is taking place  

on the xy-transverse plane, hence, tf and mf are only 

depending on the grid size. Furthermore, the size of  

the errors introduced by finite difference approximation 

of 3DPE can be controlled by the selection of the 

discretization intervals x  and y . In order to avoid  

the aliasing effects, Nyquist’s theorem restricts the 

transverse discretization’s intervals  ,x y  , to be less 

than 1.9  [15]. The selection of the range increment z  

also depends on the accuracy requirements; it should be 

chosen as small as necessary to overcome numerical 

oscillation problems. It should be noted that the overall 

storage cost to store the field matrices by both models 

may also depend on the discretization points along the 

propagation axis, and similarly, the solution time ts is 

also depending on: (i) the discretization points along the 

z-axis (ii) the time required for applying factorization F 

or F-1 (iii) the time required for solving multiple right-

hand sides (iv) the time required for constructing octree, 

hence, s ft t [18]. The data used in these figures are 

summarized in Table 1.  

 

Table 1: Factorization and matrix application results  

for the HIF-CN application in a straight rectangular 

waveguide model 

ɛ Nm Nr tf  (s) ts (s) 
mf  

(GB) 
Error 

10-6 

252 141 0.05 0.27 9.7e-4 1.3e-16 

502 651 0.30 1.21 4.3e-3 9.9e-8 

1002 2775 2.1 3.91 1.8e-2 8.8e-7 

2002 11439 10.4 18.4 7.9e-2 7.7e-7 

10-9 

252 141 0.06 0.2 9.7e-4 4.6e-16 

502 651 0.40 1.24 4.3e-3 1.3e-10 

1002 2775 2.2 4.8 1.9e-2 4.1e-10 

2002 11439 11.8 20.0 8.2e-2 7.7e-10 

10-12 

252 141 0.06 0.38 9.7e-4 5.4e-16 

502 651 0.46 1.58 4.4e-3 4.3e-14 

1002 2775 2.6 6.2 1.9e-2 1.2e-12 

2002 11439 18.6 21.2 8.6e-2 5.5e-13 

 

The total cost of mf, tf, and ts is very close to

( ).mO N  As can be seen in Table 1, the error generated 

by the HIF algorithm and the computational resources 

depends on the relative precision of ID (ɛ), as well as at 

the total number of DOFs. The remaining number of 

active DOFs (Nr) at the highest level are also shown for 

different Nm at tree occupancy parameter (occ = 64). The 

tree occupancy parameter (occ) shows the maximum 

number of points at each leaf node in a hyper-octree, as 

each nonempty node in hyper-octree is recursively 

subdivided until it contains at most occ points. As 

discussed in Section III, the HIF algorithm using a matrix 

sparsification technique called skeletonization, which 

facilitates the efficient inversion of the discretized 

operator obtained by the CN method and thus reduces the 

overall computational cost for the CN resulting matrix. 

It can be seen that for the given numerical example, the 

solution time of HIF-CN is sufficiently reduced when 

compared with the ADI method for the same problem 

size, as shown in Fig. 4 (c). The ADI methods are suitable 

for smooth and straight geometries, the application of 

theses method would result in the introduction of errors 

if the boundary conditions are varying rapidly, as 

significant energy coupling on the sloping terrain 

boundary between the two transverse directions can 
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occur within a single marching step. Thus, the marching 

of the vertical and horizontal field planes must be done 

simultaneously [7]. 

  

 
 
Fig. 5. The geometry of a typical bended-waveguide 

model. 

 

 
 

Fig. 6. The two-dimensional cross-sectional field 

distribution of the (a) CN and (b) ADI methods inside the 

bended-waveguide model as a function of width-height 

variation at z = 100 m. 

 

The second test is related to the numerical solution 

of a bended-waveguide model, as illustrated in Fig. 5. 

Figures 6 (a) and (b) show the 2D field plots obtained  

at z = 100 m with un-tilted and tilted patterns of the 

radiating field. The 2D cuts of field plots are mostly good 

for visualization purposes. For precise validation, one-

dimensional field plots are also obtained along the 

direction of propagation to check the accuracy of both 

models against the analytical solution, as shown in Fig. 

7. The operational parameters are listed in Fig. 7 inset. 
The simulation results obtained from the proposed 

method for a bended-waveguide model are validated 

with the ADI method, as the analytical solution is not 

available for this problem in the available literature. A 

good agreement is observed between the two methods as 

most of the energy propagating through the simple 

geometries is contained inside the parabolic margin, the 

repeated application of the boundary condition at the 

inner fields converges the correct solution for the ADI 

method also. However, the overall accuracy would be 

reduced for the ADI method for modeling complex 

geometries or in the presence of an obstacle [9], [10]. 

 

 
 

Fig. 7. The longitudinal field variations along the center 

of the bended-waveguide model according to the 

geometry shown in Fig. 5. 

 

V. CONCLUSION 
In this paper, the HIF based Crank-Nicolson (CN) 

method is proposed for the solution of a three-

dimensional parabolic equation (3DPE). The traditional 

straight rectangular and particular bended-waveguide 

models are used for numerical tests. The simulation 

results are compared with the ADI method as well as 

against the analytical solution. The proposed work 

would help in reducing the computational cost of the CN 

method. 
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