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Abstract ─ We develop a discontinuous Galerkin time 

domain (DGTD) algorithm with an experimentally 

validated modified Debye model (MDM) to take metal 

dispersion into consideration. The MDM equation is 

coupled with Maxwell’s equations and solved together 

through the auxiliary differential equation (ADE) method. 

A Runge-Kutta time-stepping scheme is proposed to 

update the semi-discrete transformed Maxwell’s 

equations and ADEs with high order accuracy. Then we 

employ the proposed algorithm to analyze an infinite 

doubly periodic frequency selective surface (FSS) 

operating in the optical regime that exhibits transmission 

enhancement due to the surface plasmatic effect. The 

accuracy and the efficiency enhancements are validated 

through a comparison with commercial simulation 

software. This work represents the first integration of 

MDM with DGTD, which enables the DGTD algorithm 

to efficiently analyze metallic structures in the optical 

regime. 

 

Index Terms ─ Auxiliary Differential Equation (ADE) 

method, Discontinuous Galerkin Time Domain (DGTD), 

Frequency Selective Surface (FSS), Modified Debye 

Model (MDM), prism elements.  
 

I. INTRODUCTION 
The necessity of handling dispersive media is 

important to several applications. For example, 

applications in optical electromagnetic wave therapy, 

imaging, and bio-electromagnetic hazards require the 

simulation of waves in biological tissues that are 

inherently dispersive. Similarly, undersea and 

underground penetrating radar applications assume 

geological media that are also inherently dispersive. 

Optical or terahertz frequency selective surfaces (FSS) 

[1]–[3], electromagnetic band gap (EBG) structures [4], 

and engineered materials (e.g., metamaterials) [5]–[9] 

are also inherently dispersive. These structures, which 

are comprised of a repeating metallic pattern, have a 

wide range of applications in electromagnetic and optical 

engineering. Several closed form mathematical models 

have been proposed to represent material dispersion 

properties. For example, researchers have used the 

Debye model to simulate the relaxation property, the 

Lorentz model to represent the resonance process, and 

the Drude model to take into consideration cold-plasma 

features. Moreover, the auxiliary differential equation 

method (ADE) was proposed to circumvent the time-

consuming convolution operation. It was originally 

introduced in conjunction with the finite difference time 

domain (FDTD) technique [10], [11], and then also 

implemented in FETD [12] and DGTD [13] methods. 

The DGTD technique has become the subject of much 

attention due to its high degree of accuracy, which stems 

from flexible meshing and high order basis functions. 

Moreover, it is efficient because of its suitability for 

element-wise parallelization. More recently, a 

combination of different models, namely the generalized 

dispersion model (GDM), was incorporated into DGTD 

to facilitate full wave simulation of dispersive materials 

[14]-[22]. 

The conventional Debye model is widely used to 

model dispersive dielectric materials in the microwave 

regime. However, it cannot accurately represent metals 

that are dispersive in the optical regime. By adding  

an extra conductivity term, the modified Debye model 

(MDM) has been used in the FDTD method to model 

dispersive metals in the optical regime [10], [11]. With 

the additional conductive term, the degree of freedom  

of MDM is the same as the Drude model. Therefore, 

research shows that these two models can be viewed as 

mathematically equivalent. The MDM model is capable 

of representing Drude-like metals in the optical regime, 

while keeping the simplicity of the Debye model. 

Therefore, it can be easily adapted by researchers 

familiar with microwave Debye materials to explore the 

dispersive properties in the optical regime. Many studies 

have been performed to determine the optimal parameter 

settings for MDM that accurately fit experimental data 

over a broad frequency band [23]–[25]. However, there 

has apparently been no prior work done to incorporate 

MDM with DGTD to facilitate the efficient modeling of  
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dispersive metals.   

This paper presents the first integration of the  

MDM and DGTD methods. It enables a prism-based 

DGTD algorithm to efficiently analyze dispersive planar 

metallic structures in the optical regime. A frequency 

selective surface (FSS) composed of a gold film with a 

periodic array of air holes was analyzed to validate the 

accuracy and efficiency of the proposed algorithm. In 

Section II, the prism-based DGTD method with the 

MDM is presented. A numerical example is shown in 

Section III to validate the accuracy and efficiency 

improvement of the proposed method.  

 

II. FORMULATION 
In order to take into account the material dispersion 

of metal in the optical spectrum, researchers have 

collected experimental data. In order to fit the measured 

data, and to conduct associated time-domain simulations, 

various methods have been proposed. Krug et al. have 

attempted to extract gold parameters in the near-infrared 

range. But their results deviate significantly from 

accepted experimental values [23]. Jin et al. have 

recently determined gold parameters applicable in the 

wavelength range 550–950 nm [24]. More recently,  

Gai et al proposed a series of modified Debye model 

parameters for metals that are applicable for broadband 

calculations [25]. The conventional Debye model was 

modified by adding an extra conductivity term to better 

represent metal’s dispersive performance at optical 

frequencies: 

 𝜀r = 𝜀∞ +
𝜀𝑠−𝜀∞

1+𝑖𝜔𝜏
+

𝜎

𝑖𝜔𝜀0
, (1) 

where 𝜀r is the complex relative permittivity, 𝜀𝑠 and 𝜀∞ 

are the zero-frequency (static) and infinite-frequency 

relative permittivity values, respectively. 𝜔  is the 

angular frequency, while the component 𝑖𝜔  in the 

frequency domain represents the engineering convention 

corresponding to time-varying fields as 𝑒𝑖𝜔𝑡. Here 𝜀0 is 

the permittivity of free space, 𝜏 is the relaxation time, 

and 𝜎  is the introduced conductivity. We should also 

note that Eq. (1) represents a purely mathematical model 

and, therefore, is not based on any physical description 

of separating bound charges and free charges or the 

associate currents [26].  

Figure 1 demonstrates the material dispersion of gold 

as determined from experimental measurements and 

from the modified Debye fitting model. The parameters 

of the model are set as: 𝜀𝑠 = −15789, 𝜀∞ = 11.575, 

𝜎 = 1.6062 × 107 𝑆/𝑚 , and 𝜏 = 8.71 × 10−15𝑠  [25]. 

As shown in Fig. 1, both the real and the imaginary parts 

of the modified Debye model permittivity agree well 

with those obtained from the measurements [27]. Hence, 

it can be concluded that the modified Debye model  

with the indicated parameters is accurate over a broad 

frequency band: 250 THz to 428 THz. The bandwidth of 

the model spectrum is limited physically by the existence 

of inter-band transitions, which are not accounted for in 

the MDM. 
 

 
 

Fig. 1. Comparison between the relative permittivity of 

gold from the modified Debye model (MDM) and from 

experimentally determined results (Exp) [27].  

 

Previously, the modified Debye model has been 

incorporated into the FDTD method [10]–[11], [25]. In 

this work, and for the first time, we integrated the 

modified Debye model with DGTD for accurate and 

efficient computation of dispersive material systems.   

By considering the displacement current 𝐽𝐷⃗⃗  ⃗ = 𝑖𝜔�⃗⃗� , 
the conductivity in (1) can be incorporated into Ampere’s 

equation with the MDM term: 

 ∇ × �⃗⃗⃗� = 𝜎�⃗⃗� + 𝑖𝜔𝜀0𝜀∞�⃗� + 𝑱𝒑⃗⃗  ⃗, (2) 

where �⃗⃗�  and �⃗⃗⃗�  represent the frequency domain (bold) 

electric and magnetic field vectors, respectively, while 

the introduced polarization current vector 𝑱𝒑⃗⃗  ⃗ is defined as: 

 𝑱𝒑⃗⃗  ⃗ = 𝑖𝜔𝜀0(
𝜀𝑠−𝜀∞

1+𝑖𝜔𝜏
)�⃗� . (3) 

Through application of an inverse Fourier 

transformation, (3) can be recast in the form of an 

auxiliary differential equation (ADE): 

 
𝑑𝐽𝑝⃗⃗⃗⃗ 

𝑑𝑡
=

𝜀0(𝜀𝑠−𝜀∞)

𝜏

𝑑�⃗� 

𝑑𝑡
−

𝐽𝑝⃗⃗⃗⃗ 

𝜏
 (4) 

Here, the ADE in (4) only contains a first-order time 

derivative term. Solving this is more efficient than for 

models with higher order time derivative terms. 

Accordingly, the dispersive form of Maxwell’s curl 

equations can be transformed into the time domain as: 

 𝜇𝑟𝜇0
𝑑�⃗⃗� 

𝑑𝑡
= −∇ × �⃗� , (5) 

 𝜎�⃗� + 𝜀𝑟𝜀0
𝑑�⃗� 

𝑑𝑡
+ 𝐽𝑝⃗⃗  ⃗ = ∇ × �⃗⃗� , (6) 

where �⃗� , �⃗⃗� , and 𝐽𝑝⃗⃗  ⃗  are the electric, magnetic and 

polarization vectors in the time domain (unbold). 

Suppose that the computational domain is split into 

N non-overlapping prismatic elements Ω𝑚 , where the 

electric and magnetic fields, as well as the electric 
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polarization vector are expanded by the basis functions 

�⃗⃗� 𝑘
𝑖 (𝑟): 

 𝐸𝑚⃗⃗⃗⃗⃗⃗ (𝑟, 𝑡) = ∑ 𝑒𝑙
𝑚(𝑡)�⃗⃗� 𝑙

𝑚(𝑟)
𝑁𝑒
𝑚

𝑙=1 , (7) 

 𝐻𝑚⃗⃗ ⃗⃗ ⃗⃗  (𝑟, 𝑡) = ∑ ℎ𝑙
𝑚(𝑡)�⃗⃗� 𝑙

𝑚(𝑟)
𝑁ℎ
𝑚

𝑙=1 , (8) 

 𝐽𝑝
𝑚⃗⃗ ⃗⃗  (𝑟, 𝑡) = ∑ 𝑗𝑙

𝑚(𝑡)�⃗⃗� 𝑙
𝑚(𝑟)

𝑁𝑗
𝑖

𝑙=1
, (9) 

where 𝑁𝑒
𝑚, 𝑁ℎ

𝑚, and 𝑁𝑗
𝑚 represent the number of basis 

functions for �⃗� , �⃗⃗�  and 𝐽𝑝⃗⃗  ⃗ in element m, respectively.  

The integration of the DGTD method and the MDM 

outlined in the previous section is independent of the 

element type. But for planar structures such as FSS and 

metasurfaces, it is more optimal to discretize them into 

triangular prisms instead of conventional tetrahedrons. 

The prismatic discretization of space will not only reduce 

the element number, but also improve the mesh quality, 

which is often problematic for a tetrahedral-based mesh 

when dealing with very thin layer structures.  

To model the curl operator in Maxwell’s equations, 

we introduce a numerical upwind flux that is based  

on the Rankine Hugoniot jump relations. Then, by 

performing Galerkin testing over Maxwell equations, 

and taking into account the numerical flux and MDM 

term, we obtain the following DGTD semi-discretized 

matrix equations: 

𝑑𝑒𝑚

𝑑𝑡
=

1

𝜀0𝜀∞
{�̅�𝑒

𝑚−1 ∙ [𝑆�̅�
𝑚ℎ𝑚 + ∑ (�̅�𝑒𝑒

𝑚𝑚,𝑓
𝑒𝑓
𝑚 +

𝑁𝑚
𝑓

𝑓=1

�̅�𝑒𝑒
𝑚𝑛,𝑓

𝑒𝑓
𝑛 + �̅�𝑒ℎ

𝑚𝑚,𝑓
ℎ𝑓
𝑚 + �̅�𝑒ℎ

𝑚𝑛,𝑓
ℎ𝑓
𝑛) + 𝛽 ∙ �̅�𝑒

𝑚,𝑀𝑠] −

                       𝜎𝑒𝑚 − 𝜀0𝑗
𝑚},  (10) 

𝑑ℎ𝑚

𝑑𝑡
= �̅�ℎ

𝑚−1/𝜇0𝜇r ∙ [−𝑆ℎ̅
𝑚𝑒𝑚 + ∑ (�̅�ℎℎ

𝑚𝑚,𝑓
ℎ𝑓
𝑚 +

𝑁𝑚
𝑓

𝑓=1

   �̅�ℎℎ
𝑚𝑛,𝑓

ℎ𝑓
𝑛 + �̅�ℎ𝑒

𝑚𝑚,𝑓
𝑒𝑓
𝑚 + �̅�ℎ𝑒

𝑚𝑛,𝑓
𝑒𝑓
𝑛) + 𝛽 ∙ �̅�ℎ

𝑚,𝑀𝑠], (11) 

 
𝑑𝑝𝑚

𝑑𝑡
=

(𝜀𝑠−𝜀∞)

𝜏

𝑑𝑒𝑚

𝑑𝑡
−

𝑗𝑚

𝜏
, (12) 

where �̅�, 𝑆̅, and �̅� denote the mass matrix, the stiffness 

matrix and the flux matrix, respectively, whose detailed 

definitions can be found in [22]. The quantities 𝑒𝑚 and 

ℎ𝑚  are the electronic and magnetic column vectors 

containing the unknown coefficients in element m. The 

coefficients with a subscript f correspond to those on face 

f between element m and n. If the face f is on the 

excitation port, 𝛽 = 1; or else, 𝛽 = 0. Note here that the 

𝜎 and 𝐽𝑝⃗⃗  ⃗ terms introduced in (4) are incorporated into (12). 

Next, the fourth-order four-stage explicit Runge-

Kutta method (ERK) is adopted by setting the operator 

ℒ𝑖(𝑢𝑛
𝑖 , 𝑡𝑛) equal to the right-hand side of (10), (11), and  

(12): 

{
 
 
 

 
 
 

𝑘(1) = ℒ𝑖(𝑢𝑛
𝑚, 𝑡𝑛)

𝑘(2) = ℒ𝑖 (𝑢𝑛
𝑚 +

1

2
𝛿𝑡 ∙ 𝑘(1), 𝑡𝑛 +

1

2
𝛿𝑡)

𝑘(3) = ℒ𝑖 (𝑢𝑛
𝑚 +

1

2
𝛿𝑡 ∙ 𝑘(2), 𝑡𝑛 +

1

2
𝛿𝑡)

𝑘(4) = ℒ𝑖(𝑢𝑛
𝑚 + 𝛿𝑡 ∙ 𝑘(3), 𝑡𝑛 + 𝛿𝑡)

𝑢𝑡𝑛+1
𝑚 = 𝑢𝑡𝑛

𝑚 +
1

6
𝛿𝑡 ∙ (𝑘(1) + 2𝑘(2) + 2𝑘(3) + 𝑘(4))

, 

 (13) 

where 𝑘(1−4)  are the partial terms associated with the 

ERK method, while 𝑢𝑡𝑛
𝑚  represents the unknowns 𝑒𝑡𝑛

𝑚 , 

ℎ𝑡𝑛
𝑚 , or 𝑗𝑡𝑛

𝑚when solving for the electric field, magnetic 

field, or the polarization current vector at time step 𝑡𝑛, 

respectively. Also, 𝛿𝑡 is the maximum time-step size for 

the DGTD mesh, which is determined by the Courant-

Freidrichs-Lewy (CFL) condition [16]. The physical 

time is equal to 𝑡𝑛𝛿𝑡. 

It should be noted that (12) contains the term 
𝑑𝑒𝑚

𝑑𝑡
, 

which can be substituted with the right-hand side of (10). 

Therefore, it is efficient to arrange the iteration order to 

avoid redundant computation in the following way: 

Step 1: Calculate 𝑘𝑒
(1)

 and 𝑘ℎ
(1)

 using (10) and (11). 

Step 2: Calculate 𝑘𝑗
(1)

 from (12) by setting  
𝑑𝑒𝑚

𝑑𝑡
= 𝑘𝑒

(1)
 

in Step 1. 

Similarly, always calculate 𝑘𝑒
(𝑚)

 before 𝑘𝑗
(𝑚)

, and then 

calculate 𝑘𝑗
(𝑚)

 by setting 
𝑑�⃗� 

𝑑𝑡
= 𝑘𝑒

(𝑚)
, where m=1, 2, 3, 4.  

 

III. NUMERICAL EXAMPLES 

A. Reflection and transmission of a thin gold film 

To validate the accuracy and convergence of  

the proposed DGTD + MDM method, we first studied  

a simple example in which a planewave propagates 

through a thin gold film upon normal incidence. The 

analytical results of the transmission and reflection can 

be derived from closed-formed Fresnel equations. 

The gold film has a thickness of 5 nm. It is 

illuminated by a sinusoidally modulated Gaussian pulse. 

The transient response of the reflection and transmission 

coefficients is shown in Fig. 2 (a) with a mesh 

configuration consisting of prismatic elements. Through 

Fourier transformation, both the reflection and 

transmission coefficients can be recovered as shown in 

Fig. 2 (b). The results of the proposed DGTD + GDM 

algorithm match very well with the analytical data. As 

can be seen, a thin gold film becomes more transparent 

as the frequency increases, within the targeted spectral 

range. 
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     (a) 

 

    (b) 

 

     (c) 

 

Fig. 2. Simulated results of the plane wave passing 

through a thin gold film. (a) The amplitude of the 

transient S-parameters. (b) Comparison of the frequency 

domain S-parameters from the prism-based DGTD  

with the modified Debye model and from the Fresnel 

equations. (c) Convergence plot showing accuracy 

improvement along with the refined mesh size. 

 
 

Fig. 3. Geometry of the unit cell of a gold nano-hole 

array frequency selective surface and its prismatic spatial 

discretization. 

 

In order to investigate the accuracy of the proposed 

DGTD + GDM method, the relative errors of the 

numerical and analytical results are depicted as a function 

of the mesh size. Fig. 2 (c) shows the convergence plot 

which provides a means for quantifying the degree of 

accuracy improvement against refinements in the mesh. 

The algorithm was tested for different mesh sizes, where 

a measure of the accuracy was determined from the root 

mean square error (RMSE), which here is defined as:  

 𝑅𝑀𝑆𝐸 = √
∑ (𝑅/𝑇
𝑁𝑓
1

𝐷𝐺𝑇𝐷+𝐺𝐷𝑀

−𝑅/𝑇𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙)2

𝑁𝑓
, (14) 

such that the performance was compared at 𝑁𝑓 sampling 

frequencies. The convergence test was done with center 

frequency of 360 THz. 
 

B. Illumination on a thin gold hole array 
At this point we apply the prism-based DGTD 

method with the MDM to compute the S-parameters of  

a representative FSS structure for validation. Fig. 3 

illustrates a single unit cell of the doubly periodic infinite 

FSS. The unit cell of the FSS under consideration 

contains a thin layer of a nano-hole array, where the gold 

film has a thickness of 50 nm. The 150 nm radius holes 

are spaced with a 600 nm lattice period [15]. Prismatic 

mesh cells represent the optimal discretization for such 

thin planar structures. The excitation of the normally 

incident field is modeled by a magnetic current with an 

amplitude corresponding to a sinusoidally modulated 

Gaussian pulse in order to generate a wideband response.  

Figure 3 also depicts the prismatic spatial 

discretization utilized by the proposed algorithm. The 

minimum element length is about 34 nm, while the  

time step 𝛿𝑡 is set to 9.5 atto seconds. As can be seen, 

compared with a conventional tetrahedral mesh, the 

prismatic mesh represents the optimal choice for 
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discretizing such planar structures.  

S-parameters are a typically used metric to 

demonstrate the frequency dependent performance of an 

FSS. To extract the S-parameters, we expand the electric 

coefficient corresponding to the mode distribution at  

the input and output wave port j. The transient results 

generated by the prism-based DGTD with the modified 

Debye model are shown in Fig. 4 (a). A total of 6,000 

time steps were computed, corresponding to nearly 58 

femto-seconds. In order to demonstrate the frequency 

selective property, the transient S-parameters shown  

in Fig. 4 (a) are Fourier transformed to the frequency 

domain and plotted in Fig. 4 (b). For comparison, Fig.  

4 (b) also contains the simulated result obtained from  

the commercial CST software package [28]. Since most 

commercial software packages, including CST, are not 

able to simulate MDM materials, the comparison was 

made with simulation results from CST’s frequency 

domain solver (FEM) using imported experimental 

dispersion data [27]. Figure 4 (b) shows that the result  

of the proposed algorithm yields good agreement with 

CST. Some minor disagreement exists because of the 

difference between the frequency- and time-domain 

methods, as well as the discrepancy between the 

experimental material dispersion and the modified 

Debye fitting model. Moreover, the prism-based DGTD 

with the MDM algorithm requires only 45 seconds to 

perform the computations, while the CST software with 

default settings consumes 93 seconds, as shown in Table 

1. This computational efficiency enhancement comes 

from the optimal spatial discretization enabled by 

prismatic elements, the first-order derivative modified 

Debye model, and the ease by which parallel computing 

can be utilized within the DGTD framework.  

The gold nano-hole array demonstrates band- 

pass performance, with a remarkable transmission 

enhancement observed at 390 THz. As presented in [29], 

this type of extraordinary transmission behavior can be 

primarily attributed to the excitation of a surface plasmon 

at the metallic hole array structure interface. Concisely, 

the incident light couples into electromagnetic surface 

waves (i.e., surface plasmon polaritons (SPPs) at the 

metal-dielectric interface), which then radiate through 

reciprocal interactions with the structure. This, in  

turn, produces unique features in the transmission and 

reflection spectra. The numerical simulations were 

performed on a laptop with a 2.6 GHz Intel i6700HQ 

CPU, 4 cores, 8 threads, and 16 GB of memory. The 

algorithm has been fully parallelized with all 8 threads 

using OpenMP.  

 

Table 1: Comparison of the number of elements, number 

of unknowns, CPU time, and memory consumption for 

different methods 

Method 
Tetra CST 

FEM + Exp 

Prism DGTD 

 + MDM 

Number of Elements* 12,105 7,168 

Number of Unknowns 79,344 193,536 

CPU Times (s) 93 45 

Memory (MB) 923 1,978 
* For better comparison, the tetrahedral and prism meshes in this 
table have the same upper bound of mesh size (element length). 

 

 
    (a) 

 
    (b) 

 

Fig. 4. Simulated results of the gold nano-hole array 

frequency selective surface. (a) The amplitude of the 

transient S-parameters. (b) Comparison of the frequency 

domain S-parameters from the prism-based DGTD  

with the modified Debye model (MDM) and from the 

CST FEM solver with imported experimental dispersive 

permittivity (Exp) [27]. 
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IV. CONCLUSION 
A prism-based DGTD algorithm together with a 

modified Debye model was proposed for simulating 

electromagnetic fields of planar metal structures (e.g., 

FSS and metasurfaces) that are dispersive in the optical 

spectrum. The ADE method and a high-order Runge-

Kutta scheme were introduced as effective methodologies 

for integrating the modified Debye model into DGTD. 

The proposed algorithm was then used to simulate an 

FSS consisting of a gold film with a patterned nano-hole 

array, which was shown to exhibit enhanced 

transmission at a specific frequency in the optical regime 

due to the surface plasmatic effect. The extracted S-

parameters agree well with the results produced by 

commercial software packages. Moreover, the DGTG 

formulation was found to be more efficient than the 

commercial solvers due to the prismatic elements, the 

first-order derivative modified Debye model, and the 

ability to readily exploit parallel computing architectures. 
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