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Abstract ─ A new practical approach is proposed 
to the response sensitivity analysis of high-
frequency structures modeled with the method of 
moments. The response sensitivities are calculated 
with the self-adjoint approach and discrete shape 
perturbations on the method of moments grids. 
The approach requires certain computational effort 
as a pre-process. This effort is due to building a 
global system matrix that covers all possible 
geometrical variations which may arise during 
design optimization. The technique is illustrated 
through the sensitivity analysis of the input 
impedance of a Yagi-Uda array and a printed 
patch antenna. The computed sensitivities are 
validated by comparing with the central finite-
difference estimates at the response level.  
  
Index Terms ─ Antenna analysis, frequency-
domain, response sensitivity analysis, self-adjoint. 
 

I. INTRODUCTION 
       The purpose of response sensitivity analysis is 
to evaluate the sensitivity of the responses of a 
system to its design parameters. The response 
sensitivity is represented by the response gradient 
in the design-parameter space. In high-frequency 
structure analysis, the design parameters typically 
describe the geometry and the electromagnetic 
(EM) properties of the involved materials.  
       The system response may be defined as: 1) a 
distributed response represented by the state 
variables such as current or field distributions; 2) a 
set of engineering parameters describing the 
structure’s performance such as S- or Z- 
parameters; and 3) a single scalar function, which 
represents a global performance measure, such as 
the objective function in an optimization problem. 

The sensitivity information is crucial in gradient 
based optimization. In this paper, we propose a 
new technique using method of moments (MoM) 
grids and the respective current solutions to 
perform the sensitivity analysis and to carry out 
gradient optimization. 
       Our technique is based on the adjoint variable 
method (AVM). The AVM offers an efficient 
approach to the design sensitivity analysis of 
problems of high complexity where the number of 
state variables is much greater than the number of 
the required response derivatives [1-10].  
       Approaches to the sensitivity analysis with the 
MoM have been developed before [11-13]. There, 
the analytical formulation of the system matrix 
derivatives is abandoned as it is impractical for a 
general sensitivity solver. Instead, the derivatives 
of the system matrix are estimated with finite 
differences or the Broyden update. With these 
approaches, however, the computational speed is 
still limited due to the following factors: (a) the 
need to actually compute the perturbed system 
matrices, and/or (b) the need to perform an 
adjoint-system analysis, which means one 
additional full-wave simulation.  
       A general self-adjoint approach to the 
sensitivity analysis of network parameters was 
formulated in [15, 16]. It requires neither an 
adjoint problem nor analytical system matrix 
derivatives. An application to the sensitivity 
analysis of S-parameters with the MoM is 
considered. However, the approach has three 
drawbacks. First, the computational overhead of 
the sensitivity is still significant due to the n 
additional matrix fills for the n perturbed 
structures. These n matrices are needed to carry 
out the forward finite differencing of the system 
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matrices. Second with commercial software, users 
can only have access to the system matrices after 
they are written on the disk. The time needed to 
export n+1 large dense system matrices in every 
iteration (one system matrix for the nominal 
structure and n system matrices for the perturbed 
structures) may be significant. Finally, a special 
mesh control has to be enforced when perturbing 
the design variables. This is difficult to implement 
with most existing commercial MoM solvers. 
       Here, we propose a new self-adjoint 
sensitivity analysis (SASA) technique with the 
MoM solutions. This technique uses discrete 
perturbations of the optimizable shape parameters 
on a pre-determined MoM grid. The purpose is to 
aid gradient-based optimization of antenna 
structures. A global system matrix is calculated 
only once at the beginning of the analysis. This 
system matrix covers the whole range of structures 
(in MoM, these are metallic surfaces), which could 
be considered during the design optimization. The 
system matrix of any particular structure arising 
during optimization is assembled by disabling the 
elements of the global system matrix 
corresponding to segments or surfaces which are 
not metalized.  
       Take a planar patch antenna as an example. 
The global system matrix is built for a sufficiently 
large area, which is discretized into a 
predetermined number of rectangular subsections. 
Every structure that is smaller than this large area 
can be represented by a proper selection of 
subsections. The patches of the small structure are 
simply a sub-set of the patches of the large area. 
       The advantage of the technique is that it 
accelerates not only the response sensitivity 
analysis but also the optimization procedure. This 
is due to the fact that the global matrix is used to 
assemble quickly not only the perturbed-structure 
system matrices needed in sensitivity analysis but 
also the system matrices for all iterates during the 
optimization. 
       In Section II, we state the basics of the self-
adjoint sensitivity analysis. In Section III, we 
introduce the discrete perturbation technique on 
MoM grids. The application of the approach to the 
sensitivity analysis of a wire array and a printed 
patch are presented in Section IV. An example of 
optimizing a printed patch is given in Section V 

together with comparisons with conventional 
optimization. The implications and significance of 
this work are briefly discussed in the conclusions. 
 

II. SELF-ADJOINT SENSITIVITY 
ANALYSIS 

       Using the MoM notations, a linear EM system 
is represented by  
 
 ( ) =Z x I V . (1) 
 
Here, [ ]1

T
nx x=x … is the vector of design 

parameters; Z is the system matrix whose complex 
coefficients depend on the geometry and the 
materials; [ ]1

T
mI I=I … is the solution provided 

by the MoM solver at the nominal design; and V is 
the excitation vector. 
       We define a general response function 

( , ( ))f x I x  at the current solution I  of (1) with 
respect to the design parameter x . The objective 
of the sensitivity analysis is to obtain the gradient 
of the system response, i.e., 
 
 , subject tof∇ =x ZI V , (2) 
 
where f∇ x  is the row operator 
 
 [ ]1 2, , , nx x x∇ = ∂ ∂ ∂ ∂ ∂ ∂x " . (3) 
 
Assuming that the Z matrix is not singular, ∇ x I is 
obtained from (1) as  
 
               1 ( )− ⎡ ⎤∇ = ∇ − ∇⎣ ⎦x x xI Z V ZI .   (4) 
 
The response gradient f∇ x  of (2) can be written 
as 
 
                 ef f f∇ = ∇ + ∇ ⋅∇x x I x I ,   (5) 
 
where ∇ I  is a row operator analogous to ∇ x  in 
(3). The gradient e f∇x represents the explicit 
dependence of ( , ( ))f x I x  on x . Substituting (4) 
into (5) leads to  
 
         ( )ˆe Tf f ⎡ ⎤∇ = ∇ + ∇ − ∇⎣ ⎦x x x xI V ZI .  (6) 
 
The adjoint vector Î  is the solution to 
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(b) 
Fig. 1. Discretization of a wire antenna array: (a) 
the large library structure; (b) the new structure as 
a sub-set of the library structure. Segments shown 
with thick line correspond to metal and those 
shown with dash line correspond to air. 
 
                              ˆ ˆT =Z I V ,  (7) 
where  
                             [ ]ˆ Tf= ∇ IV   (8) 
 
is the adjoint excitation [11]. 
       To perform the computations in (6), we need 
the current solution I of (1), the solution Î  of (7), 

and the system matrix derivatives ix∂ ∂Z  
( 1, , )i n= … . 
       The matrix derivatives can be obtained by 
central finite differences (CFD) as  
 

   ( ) ( ) , 1, ,
2

i i i i

i i

x x x x i n
x x

+ Δ − − Δ∂ ≈ =
∂ Δ

Z ZZ …  .    (9) 

 
The shape parameter perturbations ixΔ  
( 1, , )i n= …  are equal to the respective segment 
size in the MoM discrete grid. This is explained in 
detail in Section III.  
       The adjoint current Î  is the solution to (7). 
With the self-adjoint approach, we do not need to 
solve (7), which would be as computationally 
demanding as solving (1). From (1) and (7), we 
see that if the system matrix is symmetric, 

T=Z Z ,1 and the excitation vectors V  and V̂  
fulfill  
 ˆ cV = V , (10) 
therefore  
 ˆ cI = I . (11) 
 
Here, c is a complex number called the self-adjoint 
constant. The adjoint simulation is thus avoided. 
In the case of an antenna input impedance (a 
response of interest here), the self adjoint constant 
is [15] 
 2

inc I −= −  (12) 
 
where inI  is the current at the feed point of the 
antenna. 
 
III. DISCRETE PERTURBATION WITH 

THE METHOD OF MOMENTS  
       Here, we propose a method for system 
analysis, which is particularly suitable for design 
optimization. It is based on deriving a complete set 
of mutual-coupling coefficients ,i jZ  (i, j = 1,…, 
Nmax), for all possible metallic segments of the 
antenna structure. This approach reduces the 
computational load associated with building the 
system matrices of the optimized structures during 
the iterative process. It is particularly 
advantageous in response sensitivity analysis as 
discussed next. 
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Fig. 2. Six-element Yagi-Uda antenna. 
 

Table 1: Nominal design parameters of the 
Yagi-Uda antenna 
 

Design 
parameter Value 

0 /L λ  0.386 
/dL λ  0.426 
/rL λ  0.604 
/ds λ  0.340 
/rds λ  0.320 
/rs λ  0.050 
/a λ  0.003 

 
       A sufficiently large structure is built which 
covers all the possible metallic segments that may 
be used in the structures arising during the 
optimization or sensitivity analysis. Its system 
matrix is referred to as library matrix libZ . Any 
new structure can be viewed as a sub-set of the 
library structure. Also, each new system matrix Z  
can be obtained by switching off the 
corresponding elements of libZ  and filling the 
respective rows and columns with zeros. Take a K-
element Yagi-Uda array, as an example. We first 
choose a suitable segment length δ  and discretize 
each wire into M segments as shown in Fig. 1 (a). 
Thus, libZ  has the dimension of Nmax × Nmax (Nmax 
= K · M). The new structure has its segments with 
indices i1, i2 ,..., ik de-metalized. These segments 
are shown with a dash line in Fig. 1 (b). The new 
system matrix is obtained by switching off all the 

        (a) 

       (b) 
Fig. 3. Sensitivity of the input impedance of the 
Yagi-Uda antenna with respect to the normalized 
length of the driving element: (a) resistance 
derivative; (b) reactance derivative. 
 
corresponding matrix elements in libZ , i.e., all 
matrix elements with subscripts containing 

1 2, , , ki i i…  are set to zero.  
       In order to perform the sensitivity calculation 
in (9), we need to obtain ( )i ix x+ ΔZ  and 

( )i ix x− ΔZ . These are the system matrices of the 
perturbed antenna structures where the ith 
parameter is perturbed in the forward and 
backward directions. Each one of these perturbed-
structure Z  matrices is obtained from libZ  by 
switching off “air” segments. Note that all shape 
parameters are thus constrained to a large but 
finite set of segment combinations. A typical 
perturbation ixΔ  is equal to one segment length δ  
(on a uniform MoM grid). 
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     (a) 

     (b) 
Fig. 4. Sensitivity of the input impedance of the 
Yagi-Uda antenna with respect to the distance 
between the driving element and the reflector: 
(a) resistance derivative; (b) reactance 
derivative. 
 
IV. VALIDATION EXAMPLES FOR THE 

SENSITIVITY ANALYSIS WITH THE 
MOM 

       We use a six-element Yagi-Uda array and a 
printed patch to illustrate the SASA of the input 
impedance of the two antennas. 
 
A. Sensitivity analysis of a Yagi-Uda array 
       The size of the library structure in this 
example is determined by two factors. First, the 
length of each wire element in the library structure 
needs to be sufficiently long in order to cover the 
whole range of lengths allowed in the optimization  

 

Fig. 5. Library structure of a planar patch. 
 
and needed by the sensitivity analysis. We fix the 
lengths of all six wire elements to L λ= , with a 
radius a = 0.003λ. Each wire element is discretized 
into 101M =  segments. The segment length is 
thus / /101Mδ λ λ= = . Second in order to 
perform the sensitivity analysis and optimize with 
respect to the separation distance between the 
driving element and the reflector, we assign 

9pK =  positions at which the reflector can be 
positioned. These are shown in Fig. 2 with dash 
lines. The total number of wire elements in the 
library structure is thus 1 14lib pK K K= + − = . 
Therefore, the size of libZ  is Nlib × Nlib where Nlib = 
M × Klib = 101 × 14 = 1414. 
       After a nominal structure is built and analyzed, 
its sensitivity analysis is carried out. Its forward 
and backward perturbed structures with respect to 
the length of a wire are obtained by adding and 
subtracting one segment at each wire end. The 
forward and the backward perturbed structures 
with respect to the separation are obtained by 
selecting the neighbouring positions to that of the 
nominal reflector position. The nominal 
parameters of the Yagi-Uda array are shown in 
Table 1. Note that rs  is the fixed distance between 
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       (a) 

       (b) 
Fig. 6. Sensitivity of the input impedance with 
respect to nL  at nW  = 0.66: (a) resistance 
derivative; (b) reactance derivative. 
 
neighbouring reflector positions [see Fig. 2]. 
       The derivatives of the antenna input 
impedance are calculated with the proposed 
approach for a sweep of the length of the driving 
element. The length of the driving element dL is 
swept from 0.1λ to 0.9λ while the separation 
distance between the driving element and the 
reflector is fixed at 0.32λ . The results for the 
derivatives with respect to the normalized lengths 
of the driver n dL L λ=  are plotted in Fig. 3. 
There, two derivative curves are shown. The 
curves marked with “SASA” are obtained using 
our approach. The curves marked with “CFD” 
(center finite difference) are obtained with the  

         (a) 

    (b) 
Fig. 7. Sensitivity of the input impedance with 
respect to nW  at nL  = 0.48: (a) resistance 
derivative; (b) reactance derivative. 
 
perturbation approach where finite differences at 
the response level are used. 
      The results plotted in Fig. 4 present the 
sensitivities with respect to the normalized 
separation distance n rds s λ=  between the 
reflector and the driving element. This distance is 
swept from 0.37λ to 0.67λ with a step of 0.05λ . 
The length of the driving element is fixed at 

0.426dL λ= . The agreement between the adjoint 
sensitivities and those obtained with finite 
differences at the response level is excellent as 
shown in both Fig. 3 and Fig. 4. 
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B. Sensitivity analysis of a printed patch 
       The library structure is shown in Fig. 5. Here, 
we set the edge length of the square subsection to 
be δ  = 5.0 mm. The length of the library structure 
is L  = 36 δ  = 180.0 mm and its width is W  = 
45 δ  = 225.0 mm. Sensitivity analysis is carried 
out with respect to the length and width of the 
patch antenna. The forward and backward 
perturbed structures with respect to the length of 
the patch are obtained by adding and subtracting 
one line of subsections at the patch edge opposite 
to the feeding-point edge. The forward and the 
backward perturbed structures with respect to the 
width of the patch are obtained by adding and 
subtracting one line of subsections at both sides of 
the patch. The nominal design parameters of the 
patch are shown in Fig. 5. 
       The analysis is carried out at the frequency 0f  
= 0.97 GHz. The derivatives of the antenna input 
impedance are calculated with the proposed 
approach for a sweep of the length of the patch. 
The length L  is swept from 0.27λ  to 0.55λ  
while the width of the patch is fixed at nW  = 

/W λ  = 0.66. Here, λ  is the wavelength in air. 
The results for the derivative with respect to the 
normalized length of the patch nL  = /L λ  are 
plotted in Fig. 6. The results shown in Fig. 7 
present the sensitivities with respect to the 
normalized width of the patch nW  = /W λ  which 
is swept from 0.42λ  to 0.69λ  while the length is 
fixed at nL  = /L λ  = 0.48. Again, excellent 
agreement is observed between the sensitivities 
calculated with the proposed approaches and those 
calculated with response-level finite differences. 
       Note that in calculating the CFD sensitivity, 
two additional EM simulations have to be 
performed per parameter. In obtaining the adjoint 
sensitivity, the calculation involves only two 
matrix subtractions and a vector-matrix-vector 
multiplication. Thus, our approach is much faster 
than the CFD method.  
 
V. DESIGN OPTIMIZATION EXAMPLE 
       We use the technique described above to 
optimize the input impedance of the planar patch 
antenna shown in Fig. 5. The objective function is 
defined as 

 ( ) inZ Zf
Z
−=x , (13) 

where 50Z = Ω  and inZ  is the input impedance 
of the antenna. The vector of design parameters is 

[ , ]TL W=x . The values of the rest of the design 
parameters are fixed at those given in Fig. 5. The 
objective function (13) depends on a single 
complex-valued current fI  at the feed-point. The 
input impedance is then calculated with 

in f fZ V I= , where 1fV =  V. The relation 
between f∇ x  and inZ∇ x  is given by 
 

 
*( )1Re

| |
in

in
in

Z Zf Z
Z Z Z
⎡ ⎤−∇ = ⋅ ⋅∇⎢ ⎥−⎣ ⎦

x x . (14) 

 
       The sensitivity inZ∇ x  is calculated by our 
proposed approach. The optimization is 
implemented by using the Matlab function 
fmincon, whose algorithm is based on the line-
search method with sequential quadratic 
programming (SQP). At each iteration, the SQP 
sub-problem is solved and its solution is used to 
define a search direction.  
       For comparison, the optimization is carried 
out in two separate procedures using two different 
methodologies: a) optimization with the sensitivity 
information offered by our self-adjoint method and 
using the library matrix Zlib; b) optimization 
without the sensitivity information and without 
using the Zlib matrix. 
 
A. Design optimization with sensitivity 
information and pre-calculated library matrix 
       The frequency of interest is f0 = 0.97 GHz. 
The initial design is set to [165,195]T=x  mm. The 
EM solver [17] is used to compute the library 
matrix Zlib. It is, also, called by the optimization 
algorithm to compute the input impedances of the 
antenna design iterates. The system matrices of 
these iterates are obtained by switching on and off 
the corresponding elements of the library matrix 
according to the geometry information provided 
by the optimizer. The optimization process 
converges after 4 iterations with an optimal design 

[175,205]T∗ =x  mm and objective function 
( ) 0.098f ∗ =x . The progress of the optimization is 

shown in Fig. 8. Only four optimization iterations 
are needed. During these iterations, the EM solver 
is called 14 times. The values of the design 
parameters as well as the values of the input 
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impedance, and the objective function are listed in 
Table 2. 
 
Table 2: Design parameters, input impedance, and 
objective function in the optimization with 
sensitivity information and using the Zlib matrix 

 L W Rin Xin f 
0 165 195 9.96 411.09 8.261 
1 175 210 7.24 190.88 3.912 
2 170 205 53.6 -16.60 0.340 
3 175 205 50.1 4.90 0.098 
4 175 205 50.1 4.90 0.098 

 

Fig. 8. Progress of the objective function and the 
input impedance during the optimization with 
sensitivity information. 
 
B. Design optimization without sensitivity 
information and pre-calculated library matrix  
       In order to illustrate the efficiency of the 
gradient-based design optimization with sensitivity 
information, we present a conventional 
optimization without the sensitivity information 
and without the use of Zlib. The conventional 
approach has the same settings, except that the 
gradient is not provided to the optimizer. The 
system matrices are built by the EM solver for 
each particular structure. Optimization starts with 
the same initial values. After 23 calls to the EM 
solver (6 iterations), the result converges to an 
optimal design [175,205]∗ =x  mm and objective 
function ( ) 0.098f ∗ =x . The progress is shown in 
Fig. 9 and the design parameters are given in 
Table 3. 
 

C. Comparison between the two optimization 
procedures 
       For the optimization with the proposed 
approach, the computational overhead is due to 
two calculations: 1) filling the system matrix Zlib at  
the beginning of the optimization; and 2) solving  

Fig. 9. Progress of the objective function and the 
input impedance during the optimization without 
sensitivity information. 

 
Table 3: Design parameters, input impedance, and 
objective function in the optimization without 
sensitivity information and without using the Zlib 
matrix 

 L W Rin Xin f
0 165 195 9.96 411.09 8.261 
1 175 215 3.33 237.69 4.845 
2 165 205 7.48 123.62 2.615 
3 165 210 7.71 45.94 1.324 
4 170 205 53.61 -16.60 0.340 
5 175 205 50.1 4.90 0.098 
6 175 205 50.1 4.90 0.098 

 
Table 4: Comparison between the computational 
overhead of the gradient-based optimization with 
and without sensitivity information / library matrix 

 Proposed 
approach 

Conventional 
approach 

Iterations 4 6 
Call for solver 14 23 

Matrix fill time (s) 3.9 66.8 
Solve system time (s) 52.0 80.6 

Total CPU time (s) 55.9 147.4 
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the linear system of the nominal structure at each  
simulation call. In the second approach, the 
computational overhead at each call to the 
simulator is due to: 1) matrix fill, and 2) solving 
the system of equations. The comparison between 
the two approaches is shown in Table 4 in terms of: 
1) the number of iterations, 2) the number of calls 
for EM simulations, 3) the CPU time for matrix 
fill, 4) the CPU overhead for solving the system, 
and 5) the total CPU overhead. It is evident that 
the optimization process with our approach 
converges faster and takes shorter time.  
 

VI. CONCLUSION 
       A new approach to self-adjoint sensitivity 
analysis with discrete perturbations on MoM grids 
is proposed. The technique aims at 
computationally efficient gradient-based 
optimization of antenna structures analyzed by the 
MoM. A large system matrix (the “library matrix”) 
is computed only once at the beginning. This 
matrix is then used for rapid sensitivity 
calculations as well as for quick matrix-building 
for the structures arising during the optimization. 
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