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Abstract – Finite Element Analysis (FEA) is used to
determine the sensitivity of feed placement on a Luneb-
urg lens (LL) having large scale cubic discretization of
its permittivity distribution. This is of practical impor-
tance for lenses fabricated using additive manufacturing,
allowing accurate prediction of performance, and poten-
tially reducing overall print time. It is shown that the far-
field relative side lobe level (RSLL) is most sensitive to
this form of discretization, and the impact to multi-feed
and single-feed applications is considered. It is shown
that for single-feed applications, large cubic macro cells
are beneficial and provide a RSLL above that achieved
with the continuous and non-uniform shelled counter-
parts.

Index Terms – 3D printing, finite element analysis,
Luneburg lens, unit cells.

I. INTRODUCTION
While spatially graded dielectrics, also known as

graded-index (GRIN) structures, are popular devices in
optics and photonics, they have historically been used
less frequently at radio frequencies (RF). However, there
has been a recent surge of interest in using RF GRIN
antennas as low-cost alternatives to phased arrays. One
of the most popular RF GRIN structures is the well-
known LL [1-4]. The LL is a spherical device in which
every point on the surface is the focal point of a plane
wave incident from the opposing surface. This unique
property is leveraged to realize passive beam steering
antennas capable of directing a single or multiple beams
over wide scan angles.

While the LL concept has been known for nearly 80
years [1], our ability to reliably manufacture them has
been aided by recent advancements in additive manufac-
turing (AM) technologies and materials. Prior to AM,
fabricating a structure with spatially graded dielectric

properties was an expensive and challenging manufac-
turing problem.

Over the last eight years, a host of papers have been
published on the use of AM to fabricate the LL and
other GRIN devices [5-11]. While these previous studies
have demonstrated AM’s ability to fabricate functional
RF GRIN lenses, what has not been well characterized
is the impact of non-spherical discretization larger than a
small fraction of a wavelength.

In this paper, a full wave computational study is
presented that quantifies the effect of introducing a dis-
cretization beyond that of the unit cell scale, in other
words, at the macro cell scale. As illustrated in Fig. 1,
it considers a cubic macro cell that is comprised of an

Fig. 1. A macro cell being composed of an integral num-
ber of identical unit cells such as depicted in Fig. 2.

integral number of identical unit cells such as that shown
in Fig. 2. On the surface of the lens, the cells are allowed
to conform to the spherical surface, but otherwise the
lens is comprised of identically sized macro cells, each
with a permittivity equal to that of the underlying unit
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Fig. 2. A typical Unit cell. The effective permittivity
of the cell is controlled by manipulating the volume of
printed material ≈ a3, to the total volume of the cell Λ3.

cells. Visualizations resulting from this discretization are
shown in Fig. 3.

The ability to additively manufacture the sub-
wavelength unit cell lattice depicted in Fig. 1 has been
successfully demonstrated by the researchers in [7]
using the polymer jetting approach. In that research, the
authors designed and built a 60 mm radius LL for opera-
tion at 10 GHz.

The material used in [7] is a UV-curable acrylic
polymer of εr = 2.7 with a loss tangent of 0.02. For any
given polymer, the authors in [11] determine the maxi-
mum useful radius of an additively manufactured LL by
applying the constraint that the main beam of the radi-
ation pattern contain at least 50% of accepted power.
According to their results, a LL constructed with the
polymer used in [7] may only have a maximum use-
ful radius of ≈ 2.5λ . To take advantage of the RSLL
improvement that the macro cell quantization affords as
shown in Table 1, the AM technique known as Fused
Deposition Modeling (FDM) is required, due to the much
lower loss of engineering thermoplastics. According to
[11], FDM using Polycarbonate can produce a LL with a
maximum useful radius of 11λ . The structure in Fig. 1
does require a dual nozzle FDM printer to dispense
a support thermoplastic along with the Polycarbonate.
Once the heated thermoplastic cools and hardens, the
support plastic is flushed from the structure with water.

II. MODELING AND ANALYSIS
A. Simulation and model parameters

The 3D FEA of this research is performed using the
COMSOL Multiphysics software [17] equipped with the
RF Module. A sketch identifying the components of the
physical model, is provided in Fig. 4. Depending upon
the stage of analysis, the lens may have a permittivity

Q = 0.25λ Q = 0.5λ

Q = 0.75λ Q = 1λ

Fig. 3. Visualizations of macro cell LL as the cell edge
length Q, is varied from 0.25λ to 1λ . Radius of lens is
held constant at 3λ . Below each 3D model is a 2D slice
through the center of the lens and colorized to reveal the
relative permittivity distribution.

distribution that is either continuous or discretized into
spherical layers or macro-cell cubes.

The waveguide feed is modeled as a circular port
that matches the EIA WC59 designation with an internal
diameter Dp of 0.594 inch. The port height Hp is fixed at
0.25 mm. The lowest order mode for a circular waveg-
uide is TE11 followed by TM01 [18]. To ensure operation
in the TE11 mode, the operating frequency fo is set as
follows:

f0 =

√
( fc)

T E
11 · ( fc)

T M
01 , (1)

where ( fc)
T E
11 ≈ 11.6 GHz and ( fc)

T M
01 ≈ 15.2 GHz. The

simulation uses f0 = 13.3 GHz yielding a free-space
wavelength λ of ≈ 22.5 mm.

A behavioral model is used to implement Left Hand
Circular (LHC) polarization for the waveguide feed. This
is accomplished by defining two linearly polarized ports
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Fig. 4. Sketch of model used for this research consist-
ing of a spherical LL, a circular waveguide feed, and a
spherical Perfectly Matched Layer (PML).

on a single circular boundary, each with a polarization
axis that is orthogonal to the other. An appropriate 90◦

phase difference is then applied to ensure counterclock-
wise field rotation when viewed along the direction of
wave travel. The resulting polarization vector is written
as:

~ELHC =
1

Em

[
Eθ

Eφ

]
=

1√
2

[
1
j

]
, (2)

and k̂ = θ̂ × φ̂ , where k̂ is the unit propagation vector.
A spherical coordinate system as depicted in Fig. 5

is used throughout. Note that when describing far-field
patterns, the radial distance r is irrelevant, and not pro-
vided.

B. Quantization of lens permittivity
The LL studied in this paper has a quantized per-

mittivity distribution using what is referred to herein as
macro cells. Other than conforming to the spherical lens
surface, macro cells are modeled as equal sized dielectric
cubes that are homogeneous, isotropic, and lossless. The
permittivity throughout a given macro cell is, therefore,

Fig. 5. Spherical coordinate system used throughout.

constant and is specified knowing the center point of the
representative cube.

As a matter of convenience, the quantized permit-
tivity distribution throughout the lens is generated indi-
rectly by first mapping the set of Finite Element mesh
vertices within the lens to the much smaller set of macro
cell center points. Allowing u to represent the x, y, and
z coordinates of a given mesh vertex, ū to represent
the corresponding coordinates associated with the cen-
ter point of the enclosing macro cell, and Q to represent
the macro cell edge length, then:

ū = Q · round(u/Q) , (3)
where round(·) is to be understood as the standard
“round to nearest integer” function. Once (3) is used
to perform the mapping from mesh vertices to macro
cell center points, i.e., (x,y,z) 7−→ (x̄, ȳ, z̄), the rela-
tive permittivity is computed using the standard Luneb-
urg equation. We first define the distance between the
lens center to any macro cell center point as being
r̄ =

√
x̄2 + ȳ2 + z̄2. Then, for a lens of radius rl that is

centered at the origin of the mesh coordinate system:

εr =

{
2− (r̄/rl)

2 if: r̄ ≤ rl ,

1.0 otherwise.
(4)

The sequential application of (3) then (4) achieve the
desired mapping (x,y,z) 7−→ εr. The if statement in (4)
is necessary since there are always macro cells that pro-
trude through the lens surface and have their center point
outside of the lens surface. For these cases, the otherwise
clause avoids inadvertently modeling an εr less than 1.0.

In Fig. 6, the relative permittivity distribution of
a continuous LL is presented along with that of the
discretized version. For the lens shown, rl = 3λ and
Q = 0.5λ , where λ is a specified free space wavelength.
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Fig. 6. LL relative permittivity distributions: (a) the con-
tinuous version, and in (b) the discrete counterpart.

The effective radius of discrete version along the coordi-
nate axes is shorter than may be expected, and in fact, is
equal to rl−Q/2. This is a result of groupings of macro
cells having an εr equal to that of free space. These can
be thought of as virtual cells; thus, time nor material need
be expended to produce them. For the lens shown, there
are 30 out of 925 total cells that are virtual, i.e., have
an εr = 1. With reference to the separation between the
lens and the feed port in the detail of Fig. 4, Hp is always
measured relative to the virtual surface of the LL residing
at rl .

To relate the concept of the macro cell to a fabrica-
ble device, we discussed the use of a much smaller sub-
wavelength lattice structure as illustrated in Fig. 1 and
Fig. 2. There the dimensions of the lattice are depicted
by Λ, where Λ is much smaller than the wavelength, i.e.,
Λ� λ . A 3D array of these smaller structures represents
a single macro cell (see Fig. 1) with an effective homoge-
nous permittivity. This is a common approach when fab-
ricating a LL using additive manufacturing methods.

The relationship between the effective permittiv-
ity εr of the macro cell and the smaller array of
sub-wavelength geometries have been described in sev-

eral of the references including [7] and are determined
using effective media theory. Our full wave FEA model
and analysis is at the macro cell scale. By doing so
reduces the peak memory requirement by a factor of
≈ (λ/Λ)3 and enables meaningful 3D FEA on practical
engineering workstations. In fact, the largest LL studied
requires a peak memory requirement of ≈90 GB using
the COMSOL RF module.

C. Far-field parameters
The ideal feed for a continuous LL is a point source

placed on the surface of the lens. Furthermore, the radi-
ation pattern of the point source is required to have a
cosine shape with its peak oriented towards the center of
the lens [16]. When this is the case, the system is said to
have an aperture efficiency ηa equal to 1. In this context,
ηa is interpreted as:

ηa =
Ae

Al
, (5)

where Ae represents the effective or achieved aperture,
and Al is the physical area of the lens aperture, being
π r2

l [3]. In other words, for the ideal system:
Ae = Al = π r2

l . (6)
The system gain g is defined as the ratio of Ae to the
aperture of an isotropic reference Aiso, where:

Aiso =
λ 2

4π
. (7)

Thus [3]:

g =
Ae

Aiso
=

4π

λ 2 Ae. (8)

Combining (6) and (8), the boresight gain for a continu-
ous LL with an ideal point source feed is therefore:

g =
4π2r2

l
λ 2 . (9)

In the analysis conducted herein, however, the lens
feed is modeled as a circular waveguide. Under this feed
condition, the aperture efficiency is less than unity and is
dependent upon the effective aperture of the waveguide
[16]. We therefore use (5) to write:

Ae = ηaAl = ηaπ r2
l , (10)

and upon combining (8) and (10), we have:

g = ηa ·
4π2r2

l
λ 2 . (11)

A range of spherical Luneburg lenses with a con-
tinuous permittivity distribution having radii from 1.5λ

to 5λ in 0.5λ increments are evaluated. With each
near-field solution, the COMSOL RF module generates
the corresponding 3D far-field radiation pattern. After-
wards, the pattern is analyzed in MATLAB where gain is
extracted, and the Relative Side Lobe Level (RSLL) and
Half Power Beam Width (HPBW) are computed. In this
research, the RSLL is taken as the difference in decibels
between the gain of the main lobe and the highest side
lobe [2].
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The gain and aperture efficiency, ηa, are plotted ver-
sus lens radius in Fig. 7 (a), and the RSLL and HPBW
are plotted in Fig. 7 (b). Additionally, the respective gain,
RSLL, and HPBW for the ideal point source fed contin-
uous lens is provided in each case. For this purpose, (12)
provides the analytical expression of the far-field gain
[16], and MATLAB post-processing computes the corre-
sponding RSLL and HPBW. For these calculations, the
lens radius is sampled every 0.01λ to ensure the result-
ing curves are smooth. Moreover, when compared to the
ideal point source fed lens, the FEA results show lower
gain, a slightly wider beam width and a better RSLL.
Note that in (12), J1 (·) represents the Bessel function of
the first kind of order one, and k is the free-space phase
constant being equal to 2π/λ . With the feed point source
located at θ = 0◦, the boresight gain evaluated with (12)
is g(180◦,φ) = 4π2r2

l /λ 2, and this value is identical to
that provided earlier in (9).

g(θ ,φ) =
4π2r2

l
λ 2

[
2 J1 (krlsin(θ))

krlsin(θ)

]2

. (12)

Examination of Fig. 7 (b) reveals that the RSLL
derived from (12) appears to be constant and is therefore
independent of the lens radius rl . Although this result
may not be deduced easily from (12), it is explicitly

Fig. 7. Continuous LL performance vs lens radius. Solid
traces are FEA results and dashed traces are derived
from (12).

demonstrated for two values of rl in Fig. 8. The ratio
between the lens radius used in Fig. 8 (b) and Fig. 8 (a) is
10 : 1. From (9), we therefore expect a 20 dB difference
in boresight gains between the two, and this is indeed
observed in Fig. 8. However, the RSLL is seen to remain
constant at approximately 17.6 dB. Using inductive rea-
soning, we conclude that the RSLL of (12) is indepen-
dent of rl .

Fig. 8. RSLL measurement of radiation pattern specified
by (12). In (a) rl = 1λ and in (b) rl = 10λ .

D. Non-uniform shell
The prevalent method of fabricating the LL is to

use a layered approach as depicted in Fig. 9. Using this
construction method, a spherical dielectric core is sur-
rounded by a series of spherical dielectric shells. The
core and surrounding shells are homogeneous, with their
respective permittivity and radius chosen to mimic a con-
tinuously graded LL. The optimum selection of these
parameters proceeds once the number of layers is chosen
and includes both closed form expressions [12] and itera-
tive methods [13-15]. The equations of [12] are repeated
here as a point of reference. They are simple and yet opti-
mally approximate the continuous LL distribution for a
given number of layers.

We begin with the continuous LL permittivity dis-
tribution. Using r to represent the radial distance from
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Fig. 9. Example of a multiple layer spherical LL with
wedge cut out to expose interior construction. The cen-
tral core has radius R1, and the five surrounding shells
have outer radii of R2 through R6.

the lens center to any point within the lens, and rl to rep-
resent the LL radius, the relative permittivity εLL at that
point is given by:

εLL = 2−
(

r
rl

)2

. (13)

We now number the individual layers from 1 to N, where
n = 1 corresponds to the core, and n = N corresponds to
the outer most layer. From [12], the relative permittivity
εn of layer n is given by:

εn = 2(2N−2n+1)/(2N), (14)
and the outer radius rn of layer n is given by:

rn = rl ·
√

2−
√

εn · εn+1, (15)

= rl ·
√

2−2(N−n)/N .

The effectiveness of (14) and (15) in approximat-
ing (13) is demonstrated in Fig. 10 (a) for N = 6 and
in Fig. 10 (b) for N = 30. From these two plots, it is
observed that as the magnitude of slope of (13) increases,
the layers become thinner and the permittivity contrast
between layers decreases.

From Fig. 10, it is obvious that as the number of lay-
ers increases, the discrete permittivity profile becomes
a better approximation to the continuous LL. However,
large N is accompanied by stringent requirements in
terms of precision for both layer permittivity εn and cur-
vature. It is therefore necessary to select the minimum N
at which design goals are still met. As demonstrated by
the FEA results shown in Fig. 11, the radiation pattern
of a lossless six-layer LL accurately approximates that
of the continuous counterpart. In fact, the difference in

Fig. 10. Optimum layer relative permittivity εn versus
normalized radius r/rl for N = 6 in (a) and for N = 30
in (b). The layer radii R1 to R6 in (a) correspond to sim-
ilarly marked layers in Fig. 9.

gain, RSLL, and HPBW between the two are:

G6−GLL =−0.13 dB, (16)
RSLL6−RSLLLL =−0.66 dB,

HPBW6−HPBWLL = 0◦,

where G6, RSLL6, and HPBW6 refer to the metrics of the
six-layer lens, and GLL, RSLLLL, and HPBWLL to that of
the continuous version. It is not surprising that the per-
formance of N = 6 lens is slightly less than the contin-
uous prototype, and given reasonable manufacturing tol-
erances, increasing the layer count may not be beneficial.
Fig. 12 provides insight into why N = 6 is a good choice
for a layered LL that is designed using (14) and (15).
By substituting x for r/rl in (13) and integrating with
respect to x, we derive the area under the continuous LL
curve:

ALL =
∫ 1

0

(
2− x2) ·dx, (17)

= 2−1/3,
≈ 1.6667.
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Fig. 11. FEA results providing gain comparison between
a 6 layer LL and a continuous LL. Both lenses are mod-
eled with lossless dielectrics and have a lens radius of
rl = 5λ .

Conversely, the area under the discrete approxima-
tion for a given number of layers N, is obtained using:

AN =
1
rl

N

∑
n=1

εn · (rn− rn−1). (18)

A useful relative error metric between the continuous
version of (13) and the discrete N level approximation,
can then be defined [12] as:

ErrorN = 100%× (ALL−AN)

ALL
. (19)

In Fig. 12, both AN and ErrorN are plotted for
N = 2 . . .40 layers. The constant ALL is plotted as a
dashed red horizontal asymptote, and AN is a solid
orange trace that approaches ALL for large N. Referring
to the vertical marker at N = 6 layers, it is seen that the
error increases rapidly to the left and slowly to the right.
Depending upon tooling capabilities and material avail-
ability, the engineer would probably select a design hav-
ing N = 6 or 7 layers.

The results presented in Fig. 12 for discrete spheri-
cal shells agree with previously reported results given in
[12-15]. This analysis provides a good baseline to com-
pare results from the cubical macro-cell discretization
described in the subsequent sections.

E. Port location sweep
In multibeam applications, antenna feeds are dis-

tributed across the lens surface, and it is therefore neces-
sary to ascertain how feed location impacts the far-field
radiation pattern. For the case of the spherical shell dis-
cretization, presented in the previous section, the radi-
ation patterns are independent of feed location due to
symmetry. However, this is not true for the case of the
cubical macro-cells shown in Fig. 3.

Fig. 12. Area under discrete LL permittivity distribution
and the relative error versus the number of layers N.

Assuming feeds are facing the lens and radially
directed, feed location is given by the spherical coor-
dinate (rl +Hp,θa,φa), where the subscript a is used
to avoid confusion with far-field coordinates. The port
height Hp is fixed at 0.25 mm. The permittivity distri-
bution of a LL with a non-zero macro cell edge length
Q, does not contain a strict spherical symmetry. Thus,
performance should be expected to depend upon θa and
φa. To establish this dependence, FEA is performed on
lenses over a range of Q and rl , while the (θa,φa) of
a single waveguide feed is swept. Given the symmetry
of the lens, the sweep need only cover 0 ≤ θa ≤ 90◦

and 0 ≤ φa ≤ 45◦. An angular resolution of 11.25◦ is
selected, and therefore 9× 5 = 45 separate FEA runs
are required to complete a single (Q,rl) combination.
With each run, far-field data is saved to a unique file.
The files are post-processed in MATLAB, where bore-
sight gain and Axial Ratio (AR) are extracted, and the
RSLL, HPBW, and Polarization Loss Factor (PLF) are
computed.

An example RSLL computation over a (θa,φa)
sweep for the (Q = 1λ ,rl = 5λ ) lens is shown in Fig. 13.
Because of the relatively large value of Q, there is an
appreciable spread of values. It is also interesting to note
that for θa = 0◦, (θa = 90◦,φa = 0◦) and several other
feed locations, the lens outperforms the continuous coun-
terpart, i.e., the lens (Q = 0,rl = 5λ ). Using the value
read from the plot in Fig. 7 (b), this difference is as great
as 20.30−19.49 = 0.81 dB.

Lens radius rl varies from 1.5λ to 5λ in 0.5λ steps,
and cell size Q varies from 0.25λ to 1.0λ in 0.25λ steps.
In Fig. 14, the lens (Q = 1λ ,rl = 5λ ) is shown along
with an overlay of the port grid and the circular port
boundary; both drawn to scale. The feed location in this
example (78.75◦,22.5◦) yields the worst case RSLL for
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Fig. 13. RSLL matrix for the (θa,φa) sweep of lens
(Q = 1λ ,rl = 5λ ). The spread in RSLL is 3.36 dB, how-
ever, there are multiple values that are better than that of
the continuous reference.

this lens. The radiation pattern for the given port location
is also shown.

Fig. 14. Port placement is swept over a sector grid sus-
pended above the lens surface.

Considerable axial asymmetry exists in the far-field
radiation patterns for lenses with large Q. The RSLL
calculation requires that the peak side lobe be identi-
fied, and the method employed slices the 3D pattern
into a sequence of 2D cuts. In turn, each cut is ana-
lyzed in MATLAB using the standard findpeaks() func-
tion, with additional code to handle the circular nature
of g(θ ,φcut). The cut with the largest peak side lobe is
recorded and used for determination of the RSLL of the
pattern overall. A similar procedure is also used to deter-
mine the HPBW. An example pattern is shown in Fig. 15.

III. RESULTS
Results are presented as a series of contour plots that

describe how the edge length Q of a macro cell impacts
the far-field parameters, as the lens radius rl is varied.

Fig. 15. The RSLL is determined by examining individ-
ual 2D cuts through the full 3D radiation pattern. Cuts
are taken every 5◦ and are sampled with a θ resolution
of 0.25◦. This pattern is for the lens (Q = 1λ ,rl = 5λ )
with feed location of (θa = 78.75◦,φ = 22.5◦).

Best- and worst-case results are provided, representing
data taken only at the feed location (θa,φa) that produces
the respective extremum. Results are shown for the far-
field parameters of gain in Fig. 16, RSLL in Fig. 17, AR
in Fig. 18, and HPBW in Fig. 19.

For gain and RSLL, the impact of Q > 0 is
represented as a loss. The worst-case loss is equal to the

Fig. 16. Loss in gain due to quantization: (a) best case,
and in (b) worst case.
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Fig. 17. Loss in RSLL due to quantization: (a) best case,
and in (b) worst case. Best case includes areas where loss
is negative. This means that the best case RSLL in these
areas is better than the continuous counterpart lens.

Fig. 18. Worst case increase in AR due to quantization.
Best case increase in AR is ≈ 0 for all (Q,rl) modeled
and is not plotted.

gain or RSLL of the counterpart continuous lens, minus
the minimum value of the respective (θa,φa) matrix for
a given (Q,rl). The best-case loss is equal to the gain or
RSLL of the counterpart continuous lens, minus the max-

Fig. 19. Increase in HPBW due to quantization: (a) best
case, and in (b) worst case. Best case includes an area
where increase is slightly negative. This means that the
best case HPBW in this area is narrower than the contin-
uous counterpart lens.

imum value of the respective (θa,φa) matrix for a given
(Q,rl). The gain vs. rl for the continuous counterpart is
shown in Fig. 7 (a) and it’s RSLL in Fig. 7 (b).

For HPBW, the impact of Q > 0 is represented as an
increase in beam width. The worst-case increase is equal
to the maximum value of the HPBW (θa,φa) matrix for
a given (Q,rl), minus the HPBW of the counterpart con-
tinuous lens. The HPBW vs. rl for the continuous coun-
terpart is plotted in Fig. 7 (b). In the case if AR, the
impact is just a larger value of AR. It is equal to the
maximum value of the AR (θa,φa) matrix for a given
(Q,rl) less unity, since the AR of the continuous coun-
terpart is exactly 1 for LHC polarization. The best-case
increase in beam width is equal to the minimum value of
the HPBW (θa,φa) matrix for a given (Q,rl), minus the
HPBW of the counterpart continuous lens. The best-case
impact to AR is equal to the minimum value of the AR
(θa,φa) matrix for a given (Q,rl) less unity. However,
for the range of Q and rl modeled, the best-case impact
to AR ≈ 0, and is therefore not plotted in Fig. 18.

The contour plots in Figs. 16–19 appear to represent
the data as continuous values. However, the underlying
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(Q,rl) data is an m× n array, where m is the number of
Q values that have been modeled, and n is the number of
rl values modeled. For the results presented here, m = 5
and n = 8. To produce the intervening data, the MAT-
LAB curve fitting toolbox is used to smoothly fit a sur-
face to the m×n available data points. Out of numerous
possibilities, the thin-plate spline surface fitter is chosen
for this purpose, since it produces a smooth surface and
has favorable extrapolation properties [19]. The results
shown here do not include extrapolated data.

Moreover, the contour plots are relative to the FEA
results for a LL with Q = 0. Being relative to the contin-
uous counterpart, these results directly show the impact
due to quantization.

IV. DISCUSSION
The results presented in Section III are in terms of

best- and worst-case impacts. Both cases are necessary,
since the radiation pattern is dependent upon feed posi-
tion for a LL with Q > 0. For multi-feed designs, the
results provide the maximum spread in performance met-
rics over the set of feeds. If a feed pattern is sparse, it may
be possible to optimize performance by avoiding certain
feed locations. For single-feed designs, the worst-case
impacts are ignored, and the feed should be located at
an optimum position. In many instances, optimizing the
dynamic range is paramount, which implies that the feed
placement should optimize the RSLL. As you can see in
Fig. 17 (a), this can result in a dynamic range improve-
ment of over 1 dB for a 4.5λ radius lens with Q = 1λ ,
relative to the continuous LL.

The best-case feed position (θa,φa), varies with cell
size Q and lens radius rl . A histogram that simply counts
the number of times a particular grid position (θa,φa) is
the best location modeled is provided in Fig. 20. This his-
togram only considers the 32 lenses that have a non-zero
cell size. Placement at θa = 0◦ includes 18 occurrences,

Fig. 20. Histogram of best feed placements.

and thus accounts for approximately 56% the lenses
modeled.

Table 1 summarizes the quantization impact for a
LL having a radius of 5λ . For further context, it includes
the 6-layer optimal shell design of Section II.D. Also,

Table 1: Summary of discretization impact for a LL with
a radius of 5λ . All values are relative to FEA results for a
continuous LL. Negative loss or growth indicates that the
impact is beneficial. For each edge length Q, the impacts
are shown in two rows: top row is best case, bottom row
is worst case

Lens
Gain RSLL HPBW AR

Loss (dB) Loss (dB) Growth Growth
6 Layer

0.13 0.66 0.03◦ 0
Shell

Q = 0.25λ
0 0.01 0◦ 0

0.01 0.05 0.01◦ 0

Q = 0.5λ
0.04 -0.12 0◦ 0
0.11 0.34 0.02◦ 0.02

Q = 0.75λ
0.05 -0.10 0.02◦ 0
0.38 1.83 0.13◦ 0.03

Q = 1λ
0.40 -0.81 −0.03◦ 0
0.91 2.55 0.40◦ 0.06

6 Layer Shell

Q = 0.25λ Q = 0.5λ

Q = 0.75λ Q = 1λ

Fig. 21. Discrete versions of LL: non-uniform layered
shell and cubic macro cell. Radius of lenses shown is
5λ . Performance of this set of five lenses is summarized
in Table 1.
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Fig. 22. Comparison of radiation patterns between best
case Q = 1λ and 6-layer shell LLs. Both lenses have a
radius of 5λ . The difference in the RSLL between the
two is 1.47 dB.

the five lenses included in this summary are shown in
Fig. 21. From Table 1, it is seen that the shell design
has similar performance to that of the worst-case Q =
0.5λ lens. Thus, for multi-feed applications, the macro
cell lens would at worse perform the same as the 6-layer
design. For single feed applications, however, the Q =
1λ lens provides 1.47 dB increased dynamic range over
the 6-layer design. This is demonstrated in Fig. 22, where
the radiation pattern of each is juxtaposed.

V. CONCLUSION
The far-field parameters of gain, RSLL, HPBW, and

AR are not equally sensitive to the cubic macro cell
quantization of the LL permittivity distribution. Observ-
ing the worst-case results in Figs. 16–19, a reasonable
conclusion is that the ordering from least to greatest sen-
sitivity is: AR, HPBW, gain, then RSLL.

RSLL sensitivity to feed location increases as the
macro cell edge length Q is increased. Over the range of
rl investigated, this may limit Q ≤ 0.5λ for multi-feed
applications. In this regard, it is shown that a lens with
rl = 5λ and Q = 0.5λ has a worst case RSLL that is
0.32 dB better than a similarly sized 6-layer non-uniform
shell design. For single-feed use, and depending upon the
lens radius, larger macro cells are beneficial and increase
RSLL further. It is found that a lens with rl = 5λ and Q=
1λ has an RSLL that is 0.81 dB better than a continuous
LL and 1.47 dB better than the 6-layer non-uniform shell
design.

Moreover, the results presented in Figs. 16–19 con-
dense the effect of feed location on far-field parame-
ter sensitivity into best- and worst-case contour plots.
Over the range of Q and rl investigated, the plots allow
for determination as to the severity of performance

impact and, therefore, inform decisions regarding the
maximum macro cell size that can be tolerated for a
given rl .
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