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Abstract — A space-shared full-duplex antenna with high
isolation is proposed for universal serial bus (USB) don-
gles. A compact antenna with a compact size of 22 mm x
4 mm comprises a loop and dipole antennas, working as
a vertical monopole and a horizontal dipole, respectively.
The dipole-type is fed by a microstrip-slotline transition
with filtering characteristics of odd-mode bandpass and
even-mode bandstop, avoiding the even-mode excitation
for the loop antenna. The inherent isolation is caused by
the orthogonality of the modes and the even-mode sup-
pression (caused by the microstrip-slotline transition).
Thus, high port isolation, low envelope correlation coef-
ficients (ECC), and high efficiency are achieved across
the 5G band of 3.4-3.6 GHz.

Index Terms — even-mode suppression, full-duplex don-
gle antenna, high isolation.

L. INTRODUCTION

With the growing demands for mobile communi-
cation, the fifth-generation (5G) communication tech-
nology has become famous for its high capacity and
low latency [1]. The 5G antennas have been exten-
sively studied [2]]. A universal serial bus (USB) don-
gle is an Internet access module with a USB inter-
face that can provide a network connection for lap-
tops. Full-duplex antennas could effectively multiply
the spectrum efficiency by transmitting and receiv-
ing signals within the same frequency band and time
slot [3, 4] , making them a key enabler for beyond
5G (B5G) technology. Therefore, compact full-duplex
antennas are highly desirable for USB dongles. For
reliable full-duplex communications, a 100-dB isola-
tion between the transmitter and receiver is typically
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required. Such high isolation is usually achieved by
a combination of antenna isolation enhancement, ana-
log filtering, and digital interference cancellation [3].
Therefore, antennas with high isolations (> 25 db) are
desired to relieve the pressure on the sequential pro-
cessing and improve the dynamic range of the wireless
connectivity [6 [7].

Various isolation improvement methods have been
proposed for closely arranged antennas [8H26]. The
first type is the decoupling method based on partition,
such as electromagnetic bandgap structure [8, 9], decou-
pling resonators [10, [11]], and defected ground struc-
tures [[12}[13]. The second type is the decoupling method
based on neutralization, such as array decoupling sur-
face [14], decoupling ground [[15H17]], dielectric super-
strate [18} [19], and decoupling networks [20, 21]]. The
partition and neutralization based decoupling methods
are combined in [22] to enhance the decoupling band-
width. In these papers, the antenna elements are sepa-
rated, and the additional decoupling structures occupy
extra specified space, making them less suitable for USB
dongles. In [23]], good isolation is obtained by sharing
one common grounding branch for two adjacent anten-
nas. The orthogonal modes of the antenna pair are uti-
lized to improve the isolation in [24} 25]. Although the
self-decoupling is achieved within a compact space, spa-
tial reuse is still not well addressed, and, more impor-
tantly, the resulting isolations are insufficient for full-
duplex communications. The mode cancellation method
has been proposed to decouple the patch antenna pair
with the shared radiator [26]. However, the operating fre-
quency band is narrow. It is necessary to enhance the
port isolation further to meet the higher requirement of
full-duplex communication. Performance comparisons
of different terminal antennas are shown in Table [Tl
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Table 1: Performance comparison

Ref. | Freq. Ant. |Isolation Effi. ECC
(GHz) | Size
(mm?)
[23] [3.4-3.6] 20x7 17 db 58% 0.1
[25] |3.4-3.6| 12x7 20db | 51%/74% | 0.06
[26] [4.8-4.9| 15.4x 25 db 80% 0.02
15.5
This |3.4-3.6| 22x4 30db | 79%/64% | 0.003
work

For fairness, the size and isolation of the compact
arranged antenna pair are compared instead of MIMO
antennas.

The microstrip-slotline transition structures are usu-
ally employed for filtering antennas, whose inherent
characteristic of common-mode suppression can sim-
plify the design procedure of the filtering antennas (only
differential-mode passband performance needs to be
studied) [27, 28]. In this paper, and different from pre-
vious papers, the microstrip-slotline transition structure
is utilized to improve the isolation of the full-duplex
antenna pair.

Here, a high-isolated full-duplex antenna for USB
dongles is proposed, which consists of a tightly arranged
loop antenna (vertical monopole mode) and dipole
antenna (horizontal dipole mode). The dipole is fed by
a I'-shaped microstrip-slotline transition, avoiding the
even-mode excitation of the loop antenna and main-
taining the odd-mode feeding for the dipole. High
port isolation is obtained owing to the mode orthog-
onality of the elements and the even-mode suppres-
sion of the microstrip-slotline transition. Within the
operating frequency band of 3.4-3.6 GHz, high isola-
tion (> 30 db) and low envelope correlation coeffi-
cient (ECC) (< 0.003) are achieved, exhibiting superior
performances.

I1. HIGH-ISOLATED FULL-DUPLEX
DONGLE ANTENNA WITH
MICROSTRIP-SLOTLINE TRANSITION

A. Array configuration

The configuration of the proposed full-duplex
antenna is shown in Fig. [T] (a), which is composed of a
loop antenna (Antenna 1) and a dipole antenna (Antenna
2). The loop antenna and the I'-shaped microstrip feeding
line are printed on the top side of the F4B substrate (with
a relative permittivity of 4.4, a loss tangent of 0.002,
and a thickness of 1 mm), while the dipole-type antenna
and the ground plane are printed on the bottom side of
the F4B substrate. The arms of the dipole are bent to
reduce the antenna size. The two independent elements
are tightly arranged in a single board of 22 mmx 4 mm,
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simultaneously serving as the receiving and transmitting
antennas. As shown in Fig. (1| (b), one end of the loop
antenna is shorted to the ground plane, and a coaxial
cable directly feeds the other end (Port 1). A I'-shaped
microstrip-slotline transition feeds the dipole antenna.
The slotline on the ground plane of the FR4 substrate
intersects orthogonally with the I"-shaped microstrip line
on the opposite interface, forming a transition from the
microstrip feeding line to the slotline.

Bottom view

slotline  I'-shaped microstrip-

: " Top view
slotline transition

22 mm

'~
Portl | Port 2
T-shaped microstrip line ~ GND X

il
EIE

Fig. 1. Configurations of (a) Proposed full-duplex dongle
antenna, (b) Loop antenna (Antenna 1), and (c) Dipole
(Antenna 2). Optimized parameters are: Lp = 22, L =
18.8, wo = 0.5, gap1 =2, gapr = 1, Iby = 2.5, Ib, = 3.9,
lb3 = 2.6, lS] = 9, lS2 = 3, wsp = 0.2, wsy = 0.55, lf] =
35,lfr»=5,lf3=2,lfa=4,df1 =4, wf1 =05, wfr =1,
wf3 =2, dis = 1 (all dimensions in mm).
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The current distributions of Antennas 1 and 2 at the
center frequency (3.5 GHz) are shown in Figs. 2] (a) and
(b), respectively. On the dipole, the currents along the
dipole arms parallel to the ground plane edge are in the
same direction and at the feeding region are opposite



(@) (b)

Fig. 2. Surface current distributions at 3.5 GHz. (a) Loop
antenna excited by Port 1 (monopole mode). (b) Dipole
antenna excited by Port 2 (dipole mode).

to each other (circled), exhibiting odd-mode excitation,
while the currents flowing on the loop edges parallel to
the ground plane edge are opposite to each other and at
the feeding region are on the same direction exhibiting an
even-mode excitation. Thus, the loop antenna operates
as a vertical monopole. Therefore, the dipole antenna
works as a horizontal dipole. Due to the orthogonal cur-
rent mode of Antenna 1 (vertical monopole mode) and
Antenna 2 (horizontal dipole mode), the mutual cou-
pling between the two elements is reduced, thus, improv-
ing the port isolation of the full-duplex antenna. To fur-
ther enhance the port isolation, the I'-shaped microstrip-
slotline transition is utilized to feed the dipole antenna,
avoiding the even-mode excitation for the loop antenna
and maintaining the odd-mode feeding for the dipole
antenna.

B. Microstrip-slotline transition

Figure [3] illustrates the electric field distributions of
the microstrip-slotline transition. Under the odd-mode
excitation, two ends of the microstrip line are excited
with equal amplitude and opposite phases. Thus, the
electric fields distributed on both sides of the slotline
are opposite, as shown in Fig. 3] (a). A virtual electric
wall is produced at the center of the slotline, and a ver-
tical electric field is generated through strong magnetic
coupling. Therefore, the odd-mode signal flowing along
the microstrip can be transformed into the slotline mode
(vertical electric field) and transmitted to the antenna
along the slot. Under the even-mode excitation, the two
ends of the microstrip line are excited with equal ampli-
tude and phase. Therefore, the directions of the elec-
tric fields on both sides of the slotline are the same,

slotline slotline

[ [
microstrip /[ microstrip
GND GND
(a) (b)

Fig. 3. Electric field distributions of the microstrip-
slotline transition with (a) odd-mode excitation and (b)
even-mode excitation.
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as shown in Fig. [3] (b). A virtual magnetic wall is pro-
duced at the center of the slotline, and the vertical electric
fields generated by the even-mode signals are canceled
by each other on the slotline. Thus, there is nearly no
vertical electric field passing through the slot, indicating
that the even-mode signals are difficult to pass through
the microstrip-slotline transition. It is concluded that the
microstrip-slotline transition has good properties of odd-
mode transmission and even-mode suppression.

To investigate the mechanism of the odd-mode
transmission, the arms of the bent dipole are excited
by odd-mode signals (Port-1), and Port-2 feeds the
I'-shaped microstrip-slotline transition, as shown in
Fig. @] (a). Figure [] (b) shows the simulated reflection
coefficients (S;1), and coupling (S»1) of the antenna as
the length of the slotline (Is;) varies. When the length
of the slotline is around a quarter wavelength, the odd-
mode transmission coefficient of S, will reach its maxi-
mum. Thus, the odd-mode transmission is optimal at this
point. To investigate the principle of even-mode suppres-
sion, the ends of the loop antenna are excited by even-
mode signals (Port-1), and the I'-shaped microstrip-
slotline transition is fed through Port-2, as illustrated in
Fig. 5] (a). Figure [5] (b) shows the simulated reflection
coefficients (S11) and coupling (S1) of the antenna with
varying Is;. When the slotline’s length is about a quarter
wavelength, the curve of even-mode transmission coeffi-
cient Sy» will produce a notch. Thus, the optimal even-
mode suppression is achieved at this point. Moreover,
the microstrip-slotline transition affects the reflection

e =

P2 =

optimal transmission
Is =8

— :'.\“:9

—a—I5,=10

50+
2628 303234363840
Frequency (GHz)

-501 -
2628303234363840
Frequency (GHz)

(b)

Fig. 4. Investigation of odd-mode transmission. (a) Odd-
mode excitation for the dipole antenna. (b) Simulated
reflection coefficients (S11) and coupling (S,;) with var-
ied Is1. (Unit: mm).
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Fig. 5. Investigation of even-mode suppression. (a) Even-
mode excitation for the loop antenna. (b) Simulated
reflection coefficients (S1) and coupling (S,;) with var-
ied Is;. (Unit: mm).

coefficient of the odd-mode excited antenna while not
affecting the matching performance of the even-mode
excited antenna.

Therefore, when the tightly arranged elements of the
full-duplex antenna are excited by even-mode and odd-
mode signals, respectively, the microstrip-slotline tran-
sition can be employed to achieve optimal odd-mode
transmission and even-mode suppression. This results in
a bandpass filtering characteristic for odd-mode excita-
tion and a bandstop filtering characteristic for even-mode
excitation, further improving the port isolation, which is
different from the traditional decoupling methods based
on mode cancellation method (MCM) [26, 29, 130].

II1. DESIGN PROCEDURE AND RESULTS
DISCUSSION

A. Design procedure

To obtain high isolation and good impedance match-
ing, the design parameters of the I'-shaped microstrip-
slotline transition of the proposed full-duplex antenna
are studied. The stepped slotline helps to miniatur-
ize the size, and the stepped microstrip feeding line
contributes to impedance matching. Figure [6] shows
the simulated reflection coefficient (S,;) of the dipole
and coupling (S»;) of the antenna with varied Is; and
wsy. Since the matching performance of the loop-type
antenna is not affected by the I'-shaped microstrip-
slotline transition, the simulated reflection coefficients
(S11) of the loop antenna are omitted here for clar-
ity. As observed, the resonant frequency of the dipole-
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Fig. 6. Simulated reflection coefficient (S»;) and cou-
pling (S>;) of the antenna with (a) varied Is; and (b) var-
ied wsy. (Units: mm).
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Fig. 7. Simulated reflection coefficient (S;;) and cou-
pling (S»1) of the antenna with varied L. (Unit: mm).

type antenna decreases by increasing [s; and decreas-
ing wsy, and the port isolation also changes accord-
ingly. When the slotline’s length is about a quarter wave-
length, good impedance matching, and high isolation can
be achieved. The impedance of the microstrip line is
mainly determined by its width, and the length of the
I"-shaped microstrip line (L = If| + df + If>) is studied
in Fig. [7} It can be seen that the length of the I'-shaped
microstrip line mainly affects the impedance bandwidth,
but has little effect on the resonant frequency of the
dipole and the port isolation of the antenna. According
to the parametric studies, L = 12.5 mm (about a quar-
ter wavelength) is selected to obtain a wider impedance
bandwidth.

In conclusion, the matching performance (such
as the resonant frequency and the impedance band-
width) of the dipole antenna mainly depends on the
sizes of the slotline and the microstrip line. The port
isolation is determined by the even-mode suppression
of the I'-shaped microstrip-slotline transition, which
mainly depends on the length and width of the slotline.



The optimized dimensions of the proposed full-duplex
antenna are listed in the caption of Fig. [T}

B. Results discussion

Figure[§]shows the top and bottom views of the fab-
ricated antenna. Two 50Q coaxial cables are used to feed
the two ports of the full-duplex antenna. The simulated
and measured S-parameters of the antenna are shown in
Fig. El (a). It can be seen that, across the desired fre-
quency band of 3.4 to 3.6 GHz, the reflection coefficients

(a) (b)

Fig. 8. Photographs of the prototype. (a) Top view. (b)
Bottom view.
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(S11 and Sp;) of the loop (Antenna 1) and the dipole
(Antenna 2) are maintained below -6 db, and the port
isolation of the antenna is above 30 db over the entire
good agreement. Figure [9| (b) illustrates the simulated
and bandwidth. The simulation and measurement results
are in measured envelope correlation coefficients (ECCs)
from the simulated and measured radiation patterns [31].
The ECCs are less than 0.003 within the operating band,
showing an excellent diversity performance. The nor-
malized simulated and measured radiation patterns of
Antenna 1 and Antenna 2 at the frequency of 3.5 GHz
are shown in Fig. [0} The measured radiation patterns
are consistent with the simulation results. In addition,
the simulated and measured efficiencies at different fre-
quencies are listed in Table [2 The simulation and mea-
surement results are about the same, and the small dis-
crepancies between them are mainly caused by manufac-
turing tolerance, imperfect soldering, and measurement
errors. As observed, good efficiencies of 79% ~ 91% are
achieved when fed through Port 1, and decent efficien-
cies of 64% ~ 83% are achieved when fed through Port
2, indicating satisfactory radiation performances of the
proposed antenna.
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Fig. 9. Simulated and measured (a) S-parameters and (b)
ECC of the antenna.

Fig. 10. Simulated and measured radiation patterns at
3.5 GHz of (a) Antenna 1 and (b) Antenna 2.

Table 2: Measured and simulated efficiencies of the
antenna at different frequencies

Freq. (GHz)| 3.40 | 345 | 3.50 | 3.55 | 3.60
Sim. Effi. | 85% | 92% | 95% | 91% | 88%
()
Mea. Effi. | 80% | 87% | 91% | 85% | 79%
(2
Sim. Effi. | 70% | 82% | 87% | 84% | 75%
P2)
Mea. Effi. | 64% | 80% | 83% | 81% | 69%
P2)
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IV. CONCLUSION

This article presents a full-duplex dongle antenna
composed of a tightly arranged loop antenna and dipole
antenna. High port isolation has been obtained thanks
to the orthogonal modes of the elements and the even-
mode suppression of the microstrip-slotline transition.
The working mechanism and the design procedure of the
I'-shaped microstrip-slotline transition were well stud-
ied. The proposed antenna has been manufactured for
experimental verification. The simulation and measure-
ment results were in reasonable agreement. High isola-
tion (>30 db), low ECC (<0.003), and high efficiency
(>79%/64%) were observed over the desired 5G fre-
quency band from 3.4 to 3.6 GHz. Therefore, the pro-
posed full-duplex dongle antenna with high isolation and
compact size is suitable for BSG communications.
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