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Abstract – A wideband single-fed circularly polarized
(CP) stacked patch antenna with an L-shaped stub is pre-
sented. The CP antenna is made up of the bottom gradi-
ent microstrip transmission line, middle driven patch and
top square radiation patch. The driven patch with an L-
shaped stub and opening slot can achieve a wideband CP
radiation which is different from a conventional patch.
The presented CP stacked patch antenna maintains good
directional radiation, while featuring wideband CP radi-
ation. The final tested results indicate that the presented
CP antenna has significant performance with a −10-dB
impedance bandwidth of 42.1% (4.26-6.53 GHz), a 3-
dB AR bandwidth of 26.0% (4.36-5.66 GHz) and broad-
side peak gain of 8.6 dBic. Moreover, the fifth-generation
(5G) N79 band (4.4-5.0 GHz) and 5G wireless local area
network (WLAN) band (5.15-5.35 GHz) can be cov-
ered by the operating bandwidth of the presented CP
antenna.

Index Terms – circularly polarized (CP), L-shaped stub,
patch antenna, wideband antenna.

I. INTRODUCTION
Circularly polarized (CP) stacked patch antenna

have urgent application in modern wireless communica-
tion systems [1–3]. CP patch antennas, which are char-
acterized by their compactness, ease of fabrication and
resistance to multipath fading, have become the common
schemes [4]. But the single-layer CP patch antenna has
a high Q factor, which cannot meet the requirements of
broadband. So, the study of the wideband CP patch an-
tenna is an important topic.

Using parasitic patches in CP patch antenna is
promising and is a common method to expand the ax-
ial ratio (AR) bandwidth [5–7]. In [5], the CP patch an-

tenna with capacitively coupled feed and rotated four
parasitic strips achieve a wide AR bandwidth. In [6], the
antenna composed of eight parasitic patches and feed-
ing loop, which are placed on the same plane, is pre-
sented to yield a wide AR bandwidth. Compared with
complete ground plane in [6], the ground plane with four
crown slots in [7] is utilized to further expand AR band-
width. Using stacked patches on radiation patches can
also widen the AR bandwidth[8–13]. There are different
shaped stacked patches, such as notched circular patch
[8], hexagonal microstrip patch [9] and square patch
[10], which realize 3-dB AR bandwidth of 10%, 13%
and 11%. In [11], this CP antenna is fed by a corner-
truncated ring, which can simplify the feeder structure.
The CP patch antenna in [12] contains a stacked patch
with pin-load, which can realize high gain. In addition to
the above methods, many single-fed broadband CP an-
tennas have recently been proposed [14–23]. In [14, 15],
the L-shaped probe is employed to couple the patch and
realize wide AR bandwidth. The near-field resonant par-
asitic CP patch antenna for radio frequency identification
(RFID) reader applications yields an AR bandwidth of
9% [16]. In [17], three-dimensional split-ring resonators
are used to achieve compact wideband CP antenna for
fifth-generation (5G) new radio applications.

Multi-fed is command method to expand the AR
bandwidth [24–33]. In [24], the single circular patch ex-
cited by dual capacitively coupled feeds with 90◦ phase
shift features a wide AR bandwidth of 35%. This CP
antenna array in [25], which has three centrosymmet-
ric 120◦ phase shift feeds, can realize broadband CP ra-
diation. A novel CP antenna consisting of four probes
and parasitic patches is designed for the global position-
ing system [26]. Typically, four-port feed CP antenna ar-
ray consists of four sequential rotation antenna elements
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and four-port power divider, which provide the phases of
0◦, 90◦, 180◦, 270◦. In [27], a wideband Wang-shaped
CP patch antenna array, which has unidirectional radia-
tion, is introduced and final measured results show AR
bandwidth. As mentioned above, multi-feed antenna ar-
ray can realize the advantages of high gain while main-
taining wideband AR bandwidth and unidirectional ra-
diation, but the antenna array requires complicated feed
network, which reduces the final efficiency [34].

In this article, a wideband CP stacked patch an-
tenna is introduced. For achieving the circular polariza-
tion, the opening slot and L-shaped stub are adopted to
the conventional stacked patch antenna. In the final de-
sign, the proposed CP antenna has good directional ra-
diation with front-to-back ratio of 23.48 dB at 5 GHz,
while featuring wide AR bandwidth. The final tested re-
sults indicate that the final CP antenna has significant
performances with a −10-dB impedance bandwidth of
42.1% (4.26-6.53 GHz), a 3-dB AR bandwidth of 26.0%
(4.36-5.66 GHz) and peak broadside gain of 8.6 dBic.
Moreover, the measured AR bandwidth, which achieved
good agreement with simulation results, can cover 4.4-
5.0 GHz of the 5G N79 band and 5.15-5.35 GHz band
of 5G WLAN at the same time, which can be utilized for
different applications.

II. ANTENNA DESIGN AND
PERFORMANCE

A. Antenna geometry
As shown in Fig. 1, four-layer dielectric substrates

are adopted to fabricate the proposed wideband single-
fed CP patch antenna. Three different substrates are
adopted, in which Layer 1 and Layer 3 have a dielectric
permittivity εr 3, a loss tan δ of 0.0027, and a thickness
h1 of 1 mm, Layer 2 for the driven patch has a dielectric
permittivity εr of 3.5, a loss tan δ of 0.0027, and a thick-
ness h3 of 1.5 mm, Layer 4 for the ground plane and
feeding line has a dielectric permittivity εr of 4.4, a loss
tan δ of 0.025 and a thickness h4 of 0.8 mm. Figure 1 (a)
shows the radiation patch on the top of Layer 1. The
driven patch consists of rectangular patch with opening
slot and L-shaped stub on the Layer 2, which provides
the CP mode. Figure 1 (b) shows the air gap between
Layer 1 and Layer 2 with a thickness of 4 mm. The gra-
dient feeding line, which provides the good impedance
matching, is fabricated on the bottom of Layer 4. This
antenna was optimized by CST microwave software. The
optimized antenna parameters are: Lg = 60, W1 = 17, W2
= 17, W3 =0.2, W4 = 2.0, Slotw = 6, Cpw = 7, d = 1.2, r
= 1, L1 = 3, G1 = 6, G2 = 3, s = 1, W5 = 3, W6 = 1.5, L2
= 8, L3 = 8. Unit: mm.

B. Design process
With reference to Fig. 2, three prototypes are given

for exploring the mechanism of wideband CP, which

feed CP antenna array consists of four sequential 

rotation antenna 
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Fig. 1. Structure of the presented CP antenna. (a) three-

dimensional view. (b) Side view. (c) Top view of 
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Layer_4. (f) Bottom view of Layer_4. 
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have the same radiation patch. Ant. 1 is the conventional
stacked patch antenna, which enables wide impedanc
bandwidth and high gain. Some researchers have pro-
posed high-gain filtering antenna [35], ultra-wideband
microstrip patch antenna [36] and wideband CP antenna
[10] based on this stacked patch antenna. The L-shaped
stub is employed to realize the circular polarization in
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The driven patch is fed by a probe and has the same
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to Fig. 3, the Ant. 1 has two resonances near to 4.8 and
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of circularly polarized radiation. In Fig. 4, the surface
current contributions of the square radiation patch and
driven patch with L-shaped stub and opening slot are
provided. In Fig. 4 (a), the current of the radiation patch
flows in the direction of the black arrow at the phase of
0◦, whereas the current rotates 90◦ in a clockwise direc-
tion at the phase of 90◦. The direction of the surface cur-
rent in the driven patch is different from the direction
of the radiation because the radiation patch is fed by a
driven patch coupling. It is found that the direction of
surface current, which is represented by the black arrow,
is clockwise with a phase change. The left-hand CP radi-
ation is produced based on the direction of current rota-
tion.

Parametric studies are implemented for determining
the final dimensions. The proposed antenna performance
including the reflection coefficient and AR is influenced
by the numerous parameters. Here, two key parameters
Cpw (the L-shaped stub length) and Slotw (the open-
ing slot length) have been selected for study. Figure 5
demonstrates the effect of the L-shaped stub Cpw on the
reflection coefficient and AR. Two resonant frequency
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points are generated on the reflection coefficient curve
and two minimum points in the AR curve. The high res-
onant frequency shifts to higher frequencies as Cpw in-
creases, but when Cpw equals 9 mm the reflection coef-
ficient of 5.46 to 5.92 GHz between the two resonance
points is higher than −10 dB in Fig. 5 (a). AR is sig-
nificantly influenced by Cpw and a 3-dB AR bandwidth
of 27% is exhibited, when Cpw equals 7 mm. Figure 6
demonstrates the influence of the opening slot length
Slotw on reflection coefficient and AR. It is found that the
resonance frequencies change significantly and the min-
imum value of AR decreases and then rises with Slotw
increasing from 4 to 8 mm. So, a Slotw value of 6 mm is
chosen as the final dimension.
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Ant. 3 decreases compared to Ant. 2. In Fig. 3, the Ant. 
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III. EXPERIMENTAL VERIFICATION
The prototype has been fabricated for achieving val-

idation of the presented antenna. Agilent N5062A Net-
work Analyzer was adopted to measure the reflection
coefficient. With reference to Fig. 7, an anechoic cham-
ber was utilized to test the radiation characteristics in-
cluding the gains and ARs. Figure 8 demonstrates the
simulated and measured results including reflection co-
efficient, AR, and gain. A −10-dB simulated impedance
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bandwidth of 37.0% (4.23-6.15 GHz) is obtained, while
the measured impedance bandwidth is 42.1% (4.26-
6.53 GHz). A 3-dB simulated AR bandwidth is 26.0%
covering 4.36 to 5.66 GHz. The measured broadside gain
at 5 GHz is 8.6 dBic and the measured gain is a little
lower than the simulated gain from 4 to 6 GHz. This is
because substrate material suffers from instability in di-
electric constant and loss.

slot, which can extend the AR bandwidth, is etched on 
the driven patch in Ant. 3. It is obvious that the AR of 
Ant. 3 decreases compared to Ant. 2. In Fig. 3, the Ant. 
3 has a simulated 3-dB AR bandwidth of 27% (4.29-
5.63 GHz) and -10-dB impedance bandwidth of 37% 
(4.23–6.15 GHz). 

Figure 4 shows the simulated surface current 
contributions at 5 GHz, which can achieve the 
verification 
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 of circularly polarized radiation. In Fig. 4, the surface 
current contributions of the square radiation patch and 
driven patch with L-shaped stub and opening slot are 
provided. In Fig. 4 (a), the current of the radiation patch 
flows in the direction of the black arrow at the phase of 
0º, whereas the current rotates 90º in a clockwise 
direction at the phase of 90º. The direction of the 
surface current in the driven patch is different from the 
direction of the radiation because the radiation patch is 
fed by a driven patch coupling. It is found that the 
direction of surface current, which is represented by the 

black arrow, is clockwise with a phase change. The left-
hand CP radiation is produced based on the direction of 
current rotation. 

Parametric studies are implemented for 
determining the final dimensions. The proposed 
antenna performance including the reflection 
coefficient and AR is influenced by the numerous 
parameters. Here, two key parameters Cpw (the L-
shaped stub length) and Slotw (the opening slot length) 
have been selected for study. Figure 5 demonstrates the 
effect of the L-shaped stub Cpw on the reflection 
coefficient 
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Fig. 8. Simulated and measured results of the presented
CP patch antenna. (a) Reflection coefficient. (b) AR and
peak gain.

III. EXPERIMENTAL VERIFICATION 
The prototype has been fabricated for achieving 

validation of the presented antenna. Agilent N5062A 

Network Analyzer was adopted to measure the 

reflection coefficient. With reference to Fig. 7, an 

anechoic chamber was utilized to test the radiation 

characteristics including the gains and ARs. Figure 8 

demonstrates the simulated and measured results 

including reflection coefficient, AR, and gain. A -10-dB 

simulated impedance bandwidth of 37.0% (4.23-6.15 

GHz) is obtained, while the measured impedance 

bandwidth is 42.1% (4.26-6.53 GHz). A 3-dB simulated 

AR bandwidth is 26.0% covering 
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Ref. [16] 0.45×0.45×0.074 0.83~0.96 32.4 9.0 7.3 

Ref. [17] 0.277×0.277×0.03 3.3~3.8 14.1 14.2 5.1 

Proposed design 1×1×0.122 4.26~6.53 42.1 26.0 8.6 
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Fig. 9. Simulated and measured radiation patterns of the
final tested antenna. (a) At 4.5 GHz, (b) at 5 GHz, (c) at
5.5 GHz.

Figure 9 demonstrates the normalized radiation pat-
terns at the significant frequencies of 4.5, 5, and 5.5 GHz.
The normalized left-hand CP has a value of 0 dB, which
is clearly greater than the normalized right-hand CP in z-
axis direction. The measured radiation patterns maintain
a high degree of similarity to the simulated patterns. The
proposed antenna records half-power beamwidths of 53◦

and 52◦ in the two principal planes, and a front-to-back
ratio of 23.48 dB.

IV. PERFORMANCE COMPARISON
Table 1 illustrates a comparison of various param-

eters including numerous key parameters. The compact
CP patch antenna in [6] with feeding loop produced a
high gain of about 9.8 dBic, but have the narrow AR
bandwidth of 12.9. Incomplete ground plane is utilized
in [7] to expand the AR bandwidth but the radiation of
this CP patch antenna is non-directional radiation. In
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Table 1: Comparison to the performance of other CP antennas
References Size (λ 0

3) Freq (GHz) −10-dB
Impedance

Bandwidth (%)

3-dB AR
Bandwidth

(%)

Peak Gain
(dBic)

Ref. [6] 0.92×0.92×0.028 5.13∼6.24 19.5 12.9 9.8
Ref. [7] 1.02×1.02×0.028 5.20∼6.40 25.9 20.6 8.0
Ref. [8] /×/×0.15 3.3∼6.4 63.9 10.0 <8.0
Ref. [11] 0.65×0.65×0.066 3.6∼6.0 20.6 6.9 7.0
Ref. [13] 0.8×0.8×0.09 2.08∼2.62 22.9 17.9 8.5
Ref. [16] 0.45×0.45×0.074 0.83∼0.96 32.4 9.0 7.3
Ref. [17] 0.277×0.277×0.03 3.3∼3.8 14.1 14.2 5.1
Proposed

design
1×1×0.122 4.26∼6.53 42.1 26.0 8.6

[8, 11, 16] and [17], the peak gain of the antennas is
lower than 8 dBic. The antenna in [13] with a horizontal
L-shaped strip exhibits the peak gain of 8.5 dBic and a
3-dB AR bandwidth of 17.9%. The proposed CP stacked
patch antenna with an L-shaped stub produces a wide
operation bandwidth 26% (4.36-5.66 GHz) and a high
broadside gain of 8.6 dBic.

V. CONCLUSION
A wideband CP patch antenna with an L-shaped stub

is presented. Based on conventional stacked antenna, the
opening slot and L-shaped stub are added to expand the
AR bandwidth. The effect of length of the L-shaped stub
and the opening slot on the reflection coefficient and AR
is studied. The final measured results exhibit a −10-dB
impedance bandwidth of 42.1% (4.26-6.53 GHz), a 3-
dB AR bandwidth of 26% (4.36-5.66 GHz) and a peak
broadside gain of 8.6 dBic. This wideband CP patch
antenna has significant directional radiation with front-
to-back ratio of 23.48 dB at 5 GHz. Owing to the ad-
vantage of broadband CP radiation and high gain, the
presented CP patch antennas have a wide range of 5G
applications.
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