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Abstract – An aperture-loaded decoupling strategy for
1 × 8 circularly polarized (CP) patch antenna array is
presented in this article. By introducing an additional
coupling path, the mutual coupling between adjacent an-
tennas is cancelled. The result shows that more than 20-
dB isolation enhancement is obtained by applying this
strategy at the center frequency of 3.38 GHz. Mutual
coupling between both adjacent and non-adjacent ele-
ments are suppressed to less than -25 dB. Moreover, the
impedance bandwidth and axial ratio (AR) is also im-
proved with decoupling. Compared with conventional
CP antenna decoupling methods, the proposed approach
has the characteristics of low profile, compact size, and
low impact for the ground plane. It is shown that the AR
bandwidth can be enhanced using the proposed decou-
pling method.

Index Terms – array antenna, circular polarization, de-
coupling aperture, mutual coupling reduction.

I. INTRODUCTION
In the past few years, attributed to the advantages

of large system capacity and high spectral efficiency, 5G
communication systems are universally applied in wire-
less communication systems. It is generally recognized
that multiple-input multiple-output (MIMO) is a crucial
technology for 5G wireless communications since it can
significantly enhance channel capacity and spectrum ef-
ficiency [1, 2]. In a MIMO system, multiple antenna ele-
ments need to be packed in a restricted space, so that the
separations between adjacent antennas are quite limited.
However, mutual coupling effects between antenna el-
ements severely deteriorates the performance of system.
An inter-element spacing less than half a wavelength will
make the influence of mutual coupling more devastating
[3–5].

Recently, the suppression of mutual coupling in
MIMO antenna arrays has attracted great interest in
academia and industry. Typically, an in-band isolation
of -17 dB is normally sufficient for small-scale MIMO

transmission [6–9]. Nevertheless, a lower mutual cou-
pling level is critical since the efficiency of power am-
plifiers and active voltage standing wave ratio (VSWR)
of array elements would also be influenced by mutual
coupling in massive MIMO [3]. For instance, an active
VSWR of the MIMO antennas would be higher than 6
at 15 dB isolation, and if the isolation is improved to
more than 25 dB, the VSWR can be less than 2 [10–
12]. Moreover, strong coupling in communication sys-
tems impacts radiation patterns of antenna elements and
will cause nonlinear effects that decrease the amplifier
efficiency [13, 14]. Therefore, the isolation level among
massive MIMO elements is recommended to be better
than 25 dB [15–17].

In the past decade, plentiful accomplishments have
been published on the suppression of mutual coupling.
For instance, Wu et al. proposed the concept of an
antenna-array decoupling surface [12], which can intro-
duce additional reflected electromagnetic waves to coun-
teract the mutual coupling between adjacent elements.
A similar technique is the decoupling ground [18]. De-
coupling dielectric stubs can reduce mutual coupling of
dual-polarized by localizing the electromagnetic field
emitted by antenna elements, thus weakening the elec-
tromagnetic couplings to adjacent antenna elements [19].
Nevertheless, these methods inevitably increase the an-
tenna profile.

Inserting dummy elements between antenna ele-
ments is a prevalent decoupling method. Chiu et al. pro-
posed defective ground structures (DGS) to improve the
isolation between planar inverted F antennas, patches,
and monopoles [20]. However, conventional DGSs break
the ground plane, increasing backward radiation. Be-
sides, DGS is designed to be useful only for specific
coupling situations. To improve the applicability of DGS
design, Zhang et al. proposed a novel pixelated surface
ground structure which can be utilized to various antenna
designs [21]. Yang et al. introduced electromagnetic
bandgap (EBG) structures between two patch antennas
as a band-stop filter to reduce mutual coupling by 8 dB
[22]. Yu et al. proposed a 3-D meta-material structure
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(3DMMS), which prevents surface wave propagation
through negative permeability and achieves isolation en-
hancement of more than 18 dB [23]. Nevertheless, EBG
structures require large areas and therefore cannot be ap-
plied to compact arrays. Apropos of 3DMMS, its decou-
pling bandwidth is relatively limited. Neutralization lines
(NL), counteracting the original coupling wave by intro-
ducing an extra coupling path, is an efficient method for
decoupling dual-element antenna systems [24]. In [25],
Luo et al. reported a MIMO antenna array with both
metamaterial and neutralization line technology, which
achieves gain and isolation enhancement of about 3dB
and 30dB respectively. Otherwise, sparse MIMO arrays
designed with the strategy of uniform linear array fitting
principles can mitigate the mutual coupling [26]. Unfor-
tunately, their complexity increases drastically for large
antenna arrays.

More applicable for microstrip antenna than above
works, adding a decoupling structure at feeding layer has
preferences of low profile and small impact on antennas’
radiation performance. For closely coupled binary ar-
rays, lumped decoupling technologies have been investi-
gated in detail in [7] and [27]. However, LC components
may introduce parasitic effects, reducing the radiation
efficiency. Alternatively, transmission line-based decou-
pling methods are more attractive. For instance, Cheng et
al. designed a microstrip line-based decoupling network
for two strongly coupled, asymmetric and unmatched an-
tenna elements [8], where an analytical design formula
has been provided. Decoupling networks for patch an-
tenna arrays with single linear polarization were fabri-
cated in [28] and [29]. Zhang et al. first applied the trans-
mission line-based decoupling network to dual-polarized
MIMO antenna arrays, eliminating mutual coupling be-
tween the vertical, horizontal, and diagonal pairs of ele-
ments without degrading the isolation of cross-polarized
ports [10]. Furthermore, a decoupling method with filter-
ing response based on T-shaped transmission line is ap-
plied to 4 × 4 patch antenna array [30]. Despite that the
isolations in these designs are higher than 30 dB, their
network configurations are complex. Recently, a novel
aperture loading decoupling concept has been reported
in [31]. By introducing an additional coupling path be-
tween adjacent elements through the feeding line and
coupling aperture, the mutual coupling between two ad-
jacent antennas can be reduced to less than -25 dB. Since
no additional impedance matching network is required,
this method is more convenient for large-scale dual po-
larization microstrip antennas.

Circularly polarized (CP) antennas are widely ap-
plied in navigation and communication systems due
to their superior ability to suppress multipath fading
and polarization mismatch. However, studies on reduc-
ing coupling between large-scale circularly polarized

microstrip antennas are quite rare [32–34]. In general,
decoupling of CP arrays are more difficult than that for
dual-linear-polarized arrays because the former require
both linearly polarized components to be equally sup-
pressed by the decoupling technique [33].

In this paper, we apply the aperture-loaded decou-
pling concept to CP array antennas. By etching small
apertures at the ground plane, the feeding line of an el-
ement can generate additional coupling path with its ad-
jacent antenna element through an aperture. With appro-
priate dimensions, these coupling apertures will cancel
out the original coupling. Compared with existing decou-
pling methods of CP microstrip antennas, the proposed
scheme features simple structure, higher decoupling ef-
ficiency, and low profile.

II. ANALYSIS OF THE CIRCULARLY
POLARIZED DECOUPLING STRATEGY

In this section, the principle of decoupling approach
is illustrated analytically. Figure 1 indicates the proposed
CP patch antennas decoupling method, which consists
of three identical elements, labelled as Antennas 1, 2,
and 3. The operating frequency of patch antennas in this
work is 3.38 GHz. The centre distance between adjacent
patches is 0.5 λ 0, where λ 0 is the free-space wavelength
at the centre frequency. In particular, a chamfer length Lc
provides two slightly separated resonant frequencies to
achieve circular polarization with single-feed structure.
Below the edge of each antenna element, two coupling
apertures are etched into the ground layer. For compre-
hensive consideration, we take Antenna 2 as the refer-
ence antenna for analysis. The feeding line of Antenna
2 passes through the apertures loaded under Antennas 1
and 3 successively, generating extra coupling paths with
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Fig. 1. Geometries of the proposed CP patch antennas 

decoupling method. (a) Top view. (b) Lateral view. 

(Lc=2.4mm, θ3=470° and θ4=860°.) 
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antennas. By adjusting the size of the coupling aperture, 

the level of the new coupling path between two 

antennas can be optimized. When those two couplings 

have similar magnitudes and opposite phases, high 

isolation can be achieved. 

Fig. 1. Geometries of the proposed CP patch anten-
nas decoupling method. (a) Top view. (b) Lateral view.
(Lc=2.4mm, θ 3=470◦ and θ 4=860◦.)
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its adjacent antennas. By adjusting the size of the cou-
pling aperture, the level of the new coupling path be-
tween two antennas can be optimized. When those two
couplings have similar magnitudes and opposite phases,
high isolation can be achieved.

 

 
                (a)                                     (b) 

Fig. 2. Configuration of the decoupling between 

Antennas 1 and 2. (a) Signal flow diagram. (b) 

Simplified four-port model. (θ1=45°, θ2=90°, and La = 

6.8 mm, L1=4.6 mm, L3=4 mm, W1=W3=0.2 mm, 

Lp=22.7 mm.) 

For single-feed CP antenna, each element needs to 

be decoupled from the adjacent antennas on the right 

and left sides through a single microstrip line. 

Subsequently, the decoupling process of the CP array 

can be divided into two similar and related steps, as 

shown in Figs. 2 and 3. The signal flow diagram for the 

decoupling between Antennas 1 and 2 is shown in Fig. 

2 (a), where two different coupling paths are indicated 

by green and blue arrows, respectively. The 

corresponding simplified four-port model is given in 

Fig. 2 (b). Define V3 as the input voltage of Node 3. At 

Node 1, the output voltage is determined by these two 

paths, which can be written separately as 
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Fig. 3. Decoupling configuration of multiple antenna 

elements. (a) Signal flow diagram of the decoupling 

between Antennas 2 and 3. (b) Simplified six-port 

model. (c) Configuration of a four-element array with 

the proposed decoupling method. (θ5=258.3°, 

θ6=662.2°, and L2=4 mm, L4=4.8 mm, W2=W4=0.2 

mm.) 
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Fig. 2. Configuration of the decoupling between Anten-
nas 1 and 2. (a) Signal flow diagram. (b) Simplified four-
port model. (θ 1=45◦, θ 2=90◦, and La = 6.8 mm, L1=4.6
mm, L3=4 mm, W1=W3=0.2 mm, Lp=22.7 mm.)

For single-feed CP antenna, each element needs to
be decoupled from the adjacent antennas on the right and
left sides through a single microstrip line. Subsequently,
the decoupling process of the CP array can be divided
into two similar and related steps, as shown in Figs. 2
and 3. The signal flow diagram for the decoupling be-
tween Antennas 1 and 2 is shown in Fig. 2 (a), where
two different coupling paths are indicated by green and
blue arrows, respectively. The corresponding simplified
four-port model is given in Fig. 2 (b). Define V3 as the
input voltage of Node 3. At Node 1, the output voltage
is determined by these two paths, which can be written
separately as:

V1,B = S1,3V3, (1.a)
V1,G = S4,3S2,4S1,2V3, (1.b)

where S1,3 indicates the coupling through the loaded
aperture, while the mutual coupling between radiation
elements is denoted as S1,2. According to transmission
line theory,

S2,4 =
2Z0Z1

2Z0Z1cosθ3 + j(Z 2
0 +Z2

1

)
sinθ3

. (2)

For Nodes 3 and 1, we can write the decoupling con-
dition as:

V1 =V1,G +V1,B = 0. (3)
Combining (1)-(3), the design condition can be ob-

tained as follows:

S1,3 +
2Z0Z1S4,3S1,2

2Z0Z1cosθ3 + j(Z 2
0 +Z2

1

)
sinθ3

= 0. (4)

As for S4,3, S1,3 and S1,2, it can be conveniently
obtained through full-wave simulations. Meanwhile, the
impedance matching from Node 3 to Node 2 should also
be properly considered.

Figure 3 (a) illustrates the decoupling signal flow di-
agram of Antennas 2 and 3, with the condition that An-

tennas 1 and 2 are already decoupled. The correspond-
ing simplified model is given in Fig. 3 (b). By repeating
the above derivation and analysis, the value of θ 4 and
the aperture parameters can be determined. Attributed to
non-centrosymmetric antenna elements, the decoupling
parameters of odd-positioned elements are different to
those of even-positioned. A four-element array decou-
pled by the proposed method is depicted in Fig. 3 (c).
After that, the xoz and yoz planes of each radiating el-
ement are decoupled with the xoz and yoz planes of its
adjacent elements, respectively. This indicates that after
decoupling, when a port is excited, its adjacent radiation
patch apertures are in the voltage null. The area around
the adjacent antenna elements can be considered as the
quasi-voltage-zero region, thus suppressing the electro-
magnetic propagation. For ease of analysis, the charac-
teristic impedance of all the transmission lines is chosen
to be 50 Ω.

Fig. 3. Decoupling configuration of multiple antenna el-
ements. (a) Signal flow diagram of the decoupling be-
tween Antennas 2 and 3. (b) Simplified six-port model.
(c) Configuration of a four-element array with the pro-
posed decoupling method. (θ 5=258.3◦, θ 6=662.2◦, and
L2=4 mm, L4=4.8 mm, W2=W4=0.2 mm.)

III. MEASUREMENT RESULTS AND
DISCUSSION

To demonstrate the decoupling performance of the
proposed prototype, an 8-element CP microstrip antenna
array was fabricated and measured, as shown in Fig. 4.
Both the ground plane, microstrip patch and feeding line
are printed on F4B with a loss tangent of 0.002 and
a dielectric constant of 3.5. The array antenna is fixed
with some screws, of which metal screws are used at the
outmost sides and nylon screws are used for the parts
close to the patch. All screws have been taken into ac-
count during electromagnetic simulations. The overall
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size of this antenna array is 440 × 90 mm2. The radiation
performance and S-parameters of the proposed array are
measured.

 

 
Fig. 4. Photograph of the fabricated 1 × 8 antenna array. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Measured scattering parameters of the fabricated 

1 × 8 array. 
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Fig. 6. Measured and simulated S-parameters of 

representative ports. (a) Port 1. (b) Port 2. (c) Port 3. (d) 

Port 4. 
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Fig. 6. Measured and simulated S-parameters of 

representative ports. (a) Port 1. (b) Port 2. (c) Port 3. (d) 
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The measured reflection coefficients of the 

fabricated patch antenna array are depicted in Fig. 5. 

One can immediately see that the reflection coefficients 

of the 8 ports are better than -10 dB in the frequency 

range of 3.31-3.45 GHz. The reflection coefficients and 

ports isolations of some representative ports are plotted 

in Fig. 6. It demonstrates that the maximum mutual 

coupling level occurs between adjacent ports, and ports 

isolation are remarkably enhanced after decoupling, 

increasing from 18.7 dB to more than 30 dB at around 

3.38 GHz (where the axial ratio is below than 3 dB). It 

is worth mentioning that the measured impedance 

bandwidth is wider than the simulated one. This may be 

caused by air gaps due to assembly tolerances and non-

ideal contacts. 

Figure 7 depicts the comparison of axial ratio (AR) 

of the CP antenna array with and without decoupling of 

Ports 1-4. It is observed that the AR of all ports 

improves after decoupling. A 3-dB AR bandwidth from 

3.36 to 3.4 GHz is achieved for all four ports, which is 

slightly better than the simulation one. It suggests that 

the antenna array has excellent CP characteristics, and 

the reduction of coupling can significantly improve the 

AR of the patch antenna elements. 
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Fig. 5. Measured scattering parameters of the fabricated
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lations of some representative ports are plotted in Fig. 6.
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remarkably enhanced after decoupling, increasing from
18.7 dB to more than 30 dB at around 3.38 GHz (where
the axial ratio is below than 3 dB). It is worth mentioning
that the measured impedance bandwidth is wider than the
simulated one. This may be caused by air gaps due to as-
sembly tolerances and non-ideal contacts.

Figure 7 depicts the comparison of axial ratio (AR)
of the CP antenna array with and without decoupling of
Ports 1-4. It is observed that the AR of all ports improves
after decoupling. A 3-dB AR bandwidth from 3.36 to
3.4 GHz is achieved for all four ports, which is slightly
better than the simulation one. It suggests that the an-
tenna array has excellent CP characteristics, and the re-
duction of coupling can significantly improve the AR of
the patch antenna elements.
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GHz is achieved for all four ports, which is slightly better 

than the simulation one. It suggests that the antenna array 
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Fig. 7. Measured and simulated AR of representative 

ports. (a) Port 1. (b) Port 2. (c) Port 3. (d) Port 4. 

 

Fig. 8 plots the simulated and measured radiation 

patterns of LHCP and RHCP of Ports 2-4 at 3.38 GHz 

with and without decoupling. It can be found that the 

radiation patterns of three elements are almost the same 

as the ones before decoupling. This demonstrates that the 

proposed decoupling strategy has faint effect on the 

radiation patterns of array antenna. As for measurement 

results, they are marginally deteriorating than simulation 

results. The discrepancy is mainly caused by 

measurement error and manufacturing tolerance. 

Fig. 6. Measured and simulated S-parameters of repre-
sentative ports. (a) Port 1. (b) Port 2. (c) Port 3. (d) Port 4.

Figure 8 plots the simulated and measured radi-
ation patterns of LHCP and RHCP of Ports 2-4 at
3.38 GHz with and without decoupling. It can be found
that the radiation patterns of three elements are al-
most the same as the ones before decoupling. This



1253 ACES JOURNAL, Vol. 37, No. 12, December 2022

Fig. 7. Measured and simulated AR of representative
ports. (a) Port 1. (b) Port 2. (c) Port 3. (d) Port 4.
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Fig. 7. Measured and simulated AR of representative 

ports. (a) Port 1. (b) Port 2. (c) Port 3. (d) Port 4. 
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Fig. 8. Measured and simulated radiation patterns of 

representative ports. (a) Port 2. (b) Port 3. (c) Port 4. 

 

Table 1: Performance comparison with published 

decoupling methods 

Ref. 
No. of 

antennas 
Polarization Isolation Profile 

[10] 16 Dual-linear ≥25 dB 0.09 λ0 

[31] 16 Dual-linear ≥25 dB 0.08 λ0 

[19] 16 Dual-linear ≥25 dB 0.47 λ0 

[32] 4 Circular ≥19 dB 0.09 λ0 

[34] 2 Circular ≥50 dB 
0.012 

λ0 

This 

work 
8 Circular ≥25 dB 0.02 λ0 

 

A detailed comparison of recently published 

decoupling works for linearly polarized and circularly 

polarized patch antenna array is summarized in Table 1. 

We are concerned with the polarization mode, antenna 

profile, and isolation between two ports. Compared to 

[10], our proposed decoupling scheme is of low 

complexity and superior in design simplicity. The 

proposed decoupling methods in [10] and [19] are only 

validated for antenna arrays with dual-linear-

polarizations. The mutual coupling between antennas in 

[32] does not decrease below -20 dB, thus its 

applications in massive MIMO are limited. Moreover, 

the profile of the proposed prototype in this work is 

only 0.02 λ0, which is far less than those in [10]. In 

[34], on account of appreciable damage to the ground 

plane, the backward radiation is deteriorated distinctly. 

The decoupling bandwidth of the antenna proposed in 

this work is comparable to its 3-dB AR bandwidth, 

which is usually small for single-feed CP antennas. In 

general, the presented decoupling strategy shows 

overall superiority to the previous works. 

 

IV. CONCLUSION 
CP antennas have been heavily employed in 

satellite communications and navigation systems, yet 

there are few papers about the decoupling of CP patch 

antennas. Focusing on the status quo, a compact and 

low-profile decoupling strategy to enhance the isolation 

within 1 × 8 CP microstrip antenna array has been 

proposed in this paper. An additional coupling path 

could be generated through a coupling aperture to 

counteract the mutual coupling, which considerably 

enhances the isolation between antenna elements. 

Furthermore, both impedance bandwidth and AR could 

be improved using the proposed scheme.  
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demonstrates that the proposed decoupling strategy has
faint effect on the radiation patterns of array antenna. As
for the measurement results, they are marginally deteri-
orating than the simulation results. The discrepancy is
mainly caused by measurement error and manufacturing
tolerance.

Table 1: Performance comparison with published decou-
pling methods

Ref. No. of
Antennas

Polarization Isolation Profile

[10] 16 Dual-linear ≥25 dB 0.09
λ 0

[31] 16 Dual-linear ≥25 dB 0.08
λ 0

[19] 16 Dual-linear ≥25 dB 0.47
λ 0

[32] 4 Circular ≥19 dB 0.09
λ 0

[34] 2 Circular ≥50 dB 0.012
λ 0

This
work

8 Circular ≥25 dB 0.02
λ 0

A detailed comparison of recently published de-
coupling works for linearly polarized and circularly
polarized patch antenna array is summarized in Table 1.
We are concerned with the polarization mode, antenna
profile, and isolation between two ports. Compared
to [10], our proposed decoupling scheme is of low
complexity and superior in design simplicity. The pro-
posed decoupling methods in [10] and [19] are only val-
idated for antenna arrays with dual-linear-polarizations.
The mutual coupling between antennas in [32] does not
decrease below −20 dB, thus its applications in massive
MIMO are limited. Moreover, the profile of the proposed
prototype in this work is only 0.02 λ 0, which is far less
than those in [10, 19, 31, 32]. In [34], on account of
appreciable damage to the ground plane, the backward
radiation is deteriorated distinctly. The decoupling band-
width of the antenna proposed in this work is comparable
to its 3-dB AR bandwidth, which is usually small for
single-feed CP antennas. In general, the presented decou-
pling strategy shows overall superiority to the previous
works.

IV. CONCLUSION
CP antennas have been heavily employed in satellite

communications and navigation systems, yet there are
few papers about the decoupling of CP patch antennas.
Focusing on the status quo, a compact and low-profile
decoupling strategy to enhance the isolation within 1 × 8
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CP microstrip antenna array has been proposed in this
paper. An additional coupling path could be generated
through a coupling aperture to counteract the mutual
coupling, which considerably enhances the isolation be-
tween antenna elements. Furthermore, both impedance
bandwidth and AR could be improved using the pro-
posed scheme.
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