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Abstract – With the continuous development of science
and technology, the requirement of signal source is
higher and higher. Single port signal source is difficult to
meet experimental requirements of radiation spatial field
distribution. In this paper, a dual port radiation device
for changing the field distribution is proposed. The dual
port radiation device is mainly composed of the DC to
6 GHz experimental radiation device, amplifier, attenu-
ator, and the phase shifter. After adding two different
excitation signals to the dual port, the field distribution
of the radiation device is calculated by improved differ-
ential algorithm and simulated by CST software. The
simulated results are in good agreement with the calcu-
lated results. The innovation of this research lies in the
dual port and controlling the field distribution of the radi-
ation space freely.

Index Terms – Field distribution, dual port, signal
source, differential algorithm.

I. INTRODUCTION
With the increasing use of electronic chips and

devices, electromagnetic radiation effect and its protec-
tion have become the focus of attention [1]. Signal
source plays an important role in the detection and exper-
iment of communications as well as in the biological
field of studying the effect of electromagnetic radiation
on cells. Field distribution is a highly important factor
to ensure the validity of test results for electromagnetic
field facilities [1]. Field uniformity is also addressed
and required in some standards and works [2–4]. At
present, there are many kinds of signal sources designed
by existing technology, but there are still some prob-
lems, such as small frequency range adjustment, high
noise, power and phase adjustment, and so on. Most
of them are single port signal transmission rather than
dual port signal sources, which are not suitable for ana-
lyzing the internal field distribution and controlling the
field pattern. Most existing sources can provide a fre-
quency range of 30 MHz to 3 GHz and higher frequency
[5–7]. In [6], a radio frequency (RF) signal source with

40–160 MHz output frequency range is designed based
on direct digital frequency synthesizer (DDS). In [7], a
143.4–151.5 GHz high DC-RF efficiency signal source
in CMOS is introduced. In [8], a measurement of reflec-
tion coefficient of an 8.2–12.4 GHz RF signal source is
introduced. In [9], a 0.01–70 GHz ultra-wideband and
high output power signal source module is applied to
RF and microwave test instruments. Some studies have
shown that multi-port can provide better performance
and meet requirements than single port [9–11]. In [10],
a dual control and dual output current source from 0 to
12 A is designed for semi-conductor laser diode to meet
the high power and high stability requirements. In [11], a
dual-port intermodulation generator is introduced, which
can be worked at 710 and 2550 MHz. In [12], a four-port
high-frequency system for a 0.14-THz dual-sheet-beam
hole-grating backward-wave oscillator is presented. The
published paper [13] proposed a cylindrical coaxial radi-
ation device with single port excitation in a small size.
And the field distribution is not uniform in the frequency
range. In recent years, based on the research of DC to
6 GHz broadband electromagnetic radiation experimen-
tal device, the field distribution in the radiation device is
studied.

Because the field distribution in the single port radi-
ation device is not very uniform, and it is not easy
to control the internal field distribution, in order to
solve the above technical problems and better control
the distribution and uniformity of the electromagnetic
field in the DC to 6 GHz radiation device, a dual port
radiation device is proposed in the article. The pro-
posed dual port radiation device is mainly composed
of the DC to 6 GHz broadband experimental radia-
tion device, amplifier, attenuator, and the phase shifter.
The dual port radiation device uses the DC to 6 GHz
experimental radiation device as the carrier of electro-
magnetic wave. By adding two signals with different
amplitude and phase to the dual port radiation device,
electromagnetic fields with different power and phase
can be generated in the radiation space. In this way,
the electromagnetic field in the radiation space can be
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freely controlled and changed to provide uniform elec-
tromagnetic field with good broadband characteristics.
We use the CST Microwave Studio software to make
the simulation [12–21]. Due to the large number of fre-
quency points to be simulated, the simulation time of
CST software is longer, and the memory space occu-
pied is larger, which is not conducive to the research.
Therefore, we propose an improved differential algo-
rithm to calculate it, which saves simulation time and
reduces memory space. Details of the analysis of field
distribution are given and the related key parameters are
discussed.

II. PRINCIPLES OF THE PROPOSED
DEVICE

The configuration of the proposed dual port radia-
tion device is shown in Figure 1. It consists of a DC
to 6 GHz broadband electromagnetic radiation device, a
broadband signal source, two adjustable amplifier mod-
ules, attenuators, and phase shifters. They are all con-
trolled by a micro-controller and powered by a power
supply module. It can be seen in Figure 1 that the broad-
band signal source generates two signals and passes
through the amplifiers, attenuators, and phase shifters
into signals with different power P1,P2 and phase ϕ1,ϕ2.
The cell dish is 35 mm in diameter and 10 mm in height
and it is used to place cells. The cell dishes are placed
in the inner conductor of the electromagnetic radiation
device. These two different signals are added to the
dual port of the radiation device respectively. Sinusoidal
source signal is used for single port excitation. We can
control the output frequency of the signal source accord-
ing to the input data and input the data into the micro-
controllers through the keyboard. And we can control
the gain of dual port adjustable gain amplifiers, such
as A-way and B-way and the last dual port output of
the phase shifter, respectively. There is a wave detec-
tion device that can feedback the field strength of the
experimental space. The integrated phase locked loop
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Fig. 1. Structure of a dual port radiation device. 
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Fig. 1. Structure of a dual port radiation device.

module has the advantage of low noise characteristics
and saving development time. The amplifier module uses
chip-compatible variable attenuator to achieve its gain
control, while the micro-controllers will connect the key-
board and screen to input the required frequency and the
power. In this way, we can change the power and phase
of the signal source. By adding it to the two ports of
the radiation device, two broadband signals with differ-
ent power and phase can be generated to change the dis-
tribution of internal electromagnetic field.

III. DIFFERENTIAL ALGORITHM
ANALYSIS AND SIMULATION

A. Differential algorithm analysis
The electromagnetic field values of each discrete

point in the device are different, and the degree of varia-
tion is also different [12]. The field distribution of the
TEM mode is solved by the two-dimensional Laplace
equations, as shown in the following equation:

∇
2
i ϕ (x,y) = 0, (1)

where ϕ is the scalar potential and ∇ is the Laplacian
operator.

Given the initial value of each point, the electromag-
netic field formula is analyzed and discretized, and the
distribution of electric field is obtained in the following
equations:

Ex (i, j) =
ϕ(i−1, j)−ϕ(i+1, j)

2δ
, (2)

Ey (i, j) =
ϕ(i, j−1)−ϕ(i, j+1)

2δ
, (3)

where Ex is the electric field in the x direction, Ey is the
electric field in the y direction, and δ is the grid size.

Differential algorithm is used to calculate the elec-
tromagnetic field distribution. In the calculation process,
the phase and power (amplitude) are introduced by set-
ting the initial amplitude and phase of the input signal.
And the phase and power are further calculated by itera-
tion. The frequency set in program calculation is 6 GHz.
The 3-D field distribution of single port signal source by
differential algorithm is shown in Figure 2. Figure 2 (a)
shows the Ex field distribution and Figure 2 (b) shows the
Ey field distribution, where a is half of the cross-sectional
length of outer conductor plate and b is half of the cross-
sectional length of outer conductor plate. x is the position
coordinate in the length direction of the cavity and y is
the position coordinate in the height direction of the cav-
ity. As can be seen from Figure 2 (a), the peak value of
field strength appears at x = 0.4a y = 0.776b, x = 0.6a y
= 0.782b, x = 0.6a y = 0.28b, and x = 0.4a y = 0.274b.
As can be seen from Figure 2 (b), the peak value of field
strength appears at x = 0.5a y = 0.992b, x = 0.5a y =
0.504b, and x = 0.5a y = 0.006b.

Field distribution of single port signal source
in X-Y view by differential algorithm is shown in



375 ACES JOURNAL, Vol. 37, No. 4, April 2022

 

 

 

(a) xE   

 

(b) yE  

  

Fig. 2. 3-D field distribution of single port signal source by 

differential algorithm. 

 

Field distribution of single port signal source in X-Y view 

by differential algorithm is shown in Figure 3. Figure 3(a) 

shows the  field distribution and Figure 3(b) shows the 

 
field distribution. Figure 3 is the top view of Figure 2, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

(a) xE   

 

(b) yE   

Fig. 3. Field distribution of single port signal source in X-Y 

view by differential algorithm. 
 

In order to observe the electric field distribution better, the 

field distribution of single port in one-dimension is shown in 

Figure 4. In Figure 4, the red dotted line shows the field 

distribution and blue line shows the  field distribution of 

single port signal source in one-dimension. As can be seen 

from Figure 4, the peak value of 
 

field strength appears at 

x = 0.5a, and the amplitude is 7. The peak value of 
 

field 

strength appears at x = 0.4a and x = 0.6a, and the amplitude is 

5. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X Length(:a)

0

1

2

3

4

5

6

7

A
m

p
li

tu
d

e

Ex

Ey

X 0.5

Y 6.985

X 0.4

Y 5.165

X 0.6

Y 5.165

 
Fig. 4. Field distribution of single port signal source in 

one-dimension. 

 

Fig. 2. 3-D field distribution of single port signal source
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Figure 3. Figure 3 (a) shows the Ex field distribution and
Figure 3 (b) shows the Ey field distribution. Figure 3 is
the top view of Figure 2, respectively.

In order to observe the electric field distribution bet-
ter, the field distribution of single port in one-dimension
is shown in Figure 4. In Figure 4, the red dotted line
shows the Ey field distribution and blue line shows the
Ex field distribution of single port signal source in one-
dimension. As can be seen from Figure 4, the peak value
of Ey field strength appears at x = 0.5a, and the amplitude
is 7. The peak value of Ex field strength appears at x =
0.4a and x = 0.6a, and the amplitude is 5.

Figure 5 shows the field distribution of dual port in
one-dimension. In Figure 5, the red dotted line shows
the Ey field distribution and blue line shows the Ex field
distribution of single port, the green line shows the Ey
field distribution, and black dotted line shows the Ex field
distribution of dual port. When the relative phase and
amplitude of the dual port are changed, the Ex field distri-
bution and Ey field distribution will also change. Because
the field along the y direction is nearly unchanged, and
the field along the x direction changes greatly in the
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Fig. 4. Field distribution of single port signal source in
one-dimension.

placement area of the radiation device, we focus on the
field along the x direction.

When the amplitude is constant, the relative phase is
changed and some parameters are selected, the field dis-
tribution in one-dimension is shown in Figure 5 (a), (c),
(e), and (g). Figure 5 (a) illustrates that the relative phase
is 90/180*pi and the relative amplitude is 1. Figure 5 (c)
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(a) Relative Phase = 90/180*pi 

Relative Amplitude = 1 
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(b) Relative Phase = 90/180*pi 

Relative Amplitude = 2 
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(c) Relative Phase = 120/180*pi 

Relative Amplitude = 1 

illustrates that the relative phase is 120/180*pi and the
relative amplitude is 1. Figure 5 (e) illustrates that the
relative phase is 210/180*pi and the relative amplitude
is 1. And Figure 5 (g) illustrates that the relative phase
is 360/180*pi and the relative amplitude is 1. When the
amplitude is constant, the relative phase changes from
90/180*pi, 120/180*pi to 210/180*pi, the amplitude of
Ex field and Ey field decrease by nearly half. While the
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(d) Relative Phase = 120/180*pi 

Relative Amplitude = 2 
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(e) Relative Phase = 210/180*pi 

Relative Amplitude = 1 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X Length(:a)

0

1

2

3

4

5

6

7

8

9

A
m

p
li

tu
d

e

Ex
s
ingle

Ey
s
ingle

Ex
d
ual

Ey
d
ual

X 0.5

Y 8.657

X 0.4

Y 6.4

X 0.5

Y 6.985
X 0.6

Y 6.4

X 0.4

Y 5.165

X 0.6

Y 5.165

 
(f) Relative Phase = 210/180*pi 

Relative Amplitude = 2 
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(h) Relative Phase = 360/180*pi 

Relative Amplitude = 2 

Fig. 5. Field distribution of dual port signal source in 

one-dimension when relative phase and amplitude change. 

B. CST Simulation 

The commercial software CST Microwave Studio Suite TM 

2013 could be used to simulate the inner field distribution of 

the device [22]−[26]. The meshing parameters of CST 

simulation are provided in Table 1 and the boundary 

conditions are PEC boundary.  
Table 1: Meshing parameters of the structure 

Meshing 

parameters 

Values 

(mm) 

Lower 

mesh limit 

5 

Min. mesh 

step 

0.154755 

Max. mesh 

step 

0.505055 

Meshcells 4,670,784 

 
Figure 6 illustrates the cross-sectional structure of the DC to 

6 GHz wideband electromagnetic radiation device, and Table 

2 lists the structural parameters in the CST simulation process. 

The dimensions are as follows: aT = 20 cm, bT = 20 cm, wT = 

13.12 cm, L0 = 40 cm, and L1 = 36.5 cm, where aT is the 

cross-sectional length of outer conductor plate, bT is the 

cross-sectional length of outer conductor plate, wT is the 

cross-sectional width of inner conductor plate, L0 is the length 

of intermediate cavity of the device, and L1 is the length of 

conical cavity on the side. Moreover, the device has to be 

symmetrical and its characteristic impedance is chosen to be 

. The characteristic impedance of 50 Ω is provided 

by adjusting the ratio of the inner conductor to the outer 

conductor of the coaxial at the port. The reflection coefficient 

S11 is depicted in Figure 7. It depicts that the S11 is better than 

−10 dB in the frequency range of DC to 6 GHz.  
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relative phase changes from 210/180*pi to 360/180*pi,
the amplitude of Ex field and Ey field is nearly doubled.
It can be seen from the above three figures that when the
relative phase changes, the amplitude of the field distri-
bution changes periodically. The maximum amplitude is
twice that of the single port.

When the phase remains constant, we change the
relative amplitude and some parameters are selected,
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Fig. 5. Field distribution of dual port signal source in 

one-dimension when relative phase and amplitude change. 

B. CST Simulation 

The commercial software CST Microwave Studio Suite TM 

2013 could be used to simulate the inner field distribution of 

the device [22]−[26]. The meshing parameters of CST 

simulation are provided in Table 1 and the boundary 

conditions are PEC boundary.  
Table 1: Meshing parameters of the structure 
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step 
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Figure 6 illustrates the cross-sectional structure of the DC to 

6 GHz wideband electromagnetic radiation device, and Table 

2 lists the structural parameters in the CST simulation process. 

The dimensions are as follows: aT = 20 cm, bT = 20 cm, wT = 

13.12 cm, L0 = 40 cm, and L1 = 36.5 cm, where aT is the 

cross-sectional length of outer conductor plate, bT is the 

cross-sectional length of outer conductor plate, wT is the 

cross-sectional width of inner conductor plate, L0 is the length 

of intermediate cavity of the device, and L1 is the length of 

conical cavity on the side. Moreover, the device has to be 

symmetrical and its characteristic impedance is chosen to be 

. The characteristic impedance of 50 Ω is provided 

by adjusting the ratio of the inner conductor to the outer 

conductor of the coaxial at the port. The reflection coefficient 

S11 is depicted in Figure 7. It depicts that the S11 is better than 

−10 dB in the frequency range of DC to 6 GHz.  
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Fig. 5. Field distribution of dual port signal source in 

one-dimension when relative phase and amplitude change. 

B. CST Simulation 

The commercial software CST Microwave Studio Suite TM 

2013 could be used to simulate the inner field distribution of 

the device [22]−[26]. The meshing parameters of CST 

simulation are provided in Table 1 and the boundary 

conditions are PEC boundary.  
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Figure 6 illustrates the cross-sectional structure of the DC to 

6 GHz wideband electromagnetic radiation device, and Table 

2 lists the structural parameters in the CST simulation process. 

The dimensions are as follows: aT = 20 cm, bT = 20 cm, wT = 

13.12 cm, L0 = 40 cm, and L1 = 36.5 cm, where aT is the 

cross-sectional length of outer conductor plate, bT is the 

cross-sectional length of outer conductor plate, wT is the 

cross-sectional width of inner conductor plate, L0 is the length 

of intermediate cavity of the device, and L1 is the length of 

conical cavity on the side. Moreover, the device has to be 

symmetrical and its characteristic impedance is chosen to be 

. The characteristic impedance of 50 Ω is provided 

by adjusting the ratio of the inner conductor to the outer 

conductor of the coaxial at the port. The reflection coefficient 

S11 is depicted in Figure 7. It depicts that the S11 is better than 

−10 dB in the frequency range of DC to 6 GHz.  
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Fig. 5. Field distribution of dual port signal source
in one-dimension when relative phase and amplitude
change.

the field distribution in one-dimension is shown in
Figure 5 (b), (d), (f), and (h). Figure 5 (b) illustrates that
the relative phase is 90/180*pi and the relative ampli-
tude is 2. Figure 5 (d) illustrates that the relative phase is
120/180*pi and the relative amplitude is 2. Figure 5 (f)
illustrates that the relative phase is 210/180*pi and the
relative amplitude is 2. And Figure 5 (h) illustrates that
the relative phase is 360/180*pi and the relative ampli-
tude is 2. Comparing Figure 5 (b), (d), (f), and (g)
with (a), (c), (e), and (h), respectively, when the relative
amplitude changes, the amplitude of field distribution
causes corresponding changes, the relative amplitude has
changed to two times the original one. And when the
relative amplitude becomes twice, the amplitudes of Ex
field and Ey field increase.

B. CST simulation
The commercial software CST Microwave Studio

Suite TM 2013 could be used to simulate the inner
field distribution of the device [22–26]. The meshing

Table 1: Meshing parameters of the structure
Meshing parameters Values(mm)

Lower mesh limit 5
Min. mesh step 0.154755
Max. mesh step 0.505055

Meshcells 4,670,784
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(h) Relative Phase = 360/180*pi 
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Fig. 5. Field distribution of dual port signal source in 

one-dimension when relative phase and amplitude change. 

B. CST Simulation 

The commercial software CST Microwave Studio Suite TM 

2013 could be used to simulate the inner field distribution of 

the device [22]−[26]. The meshing parameters of CST 

simulation are provided in Table 1 and the boundary 

conditions are PEC boundary.  
Table 1: Meshing parameters of the structure 

Meshing 
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Values 
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mesh limit 
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step 

0.154755 

Max. mesh 

step 

0.505055 

Meshcells 4,670,784 

 
Figure 6 illustrates the cross-sectional structure of the DC to 

6 GHz wideband electromagnetic radiation device, and Table 

2 lists the structural parameters in the CST simulation process. 

The dimensions are as follows: aT = 20 cm, bT = 20 cm, wT = 

13.12 cm, L0 = 40 cm, and L1 = 36.5 cm, where aT is the 

cross-sectional length of outer conductor plate, bT is the 

cross-sectional length of outer conductor plate, wT is the 

cross-sectional width of inner conductor plate, L0 is the length 

of intermediate cavity of the device, and L1 is the length of 

conical cavity on the side. Moreover, the device has to be 

symmetrical and its characteristic impedance is chosen to be 

. The characteristic impedance of 50 Ω is provided 

by adjusting the ratio of the inner conductor to the outer 

conductor of the coaxial at the port. The reflection coefficient 

S11 is depicted in Figure 7. It depicts that the S11 is better than 

−10 dB in the frequency range of DC to 6 GHz.  
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Fig. 6. Cross-sectional structure of the device.

parameters of CST simulation are provided in Table 1
and the boundary conditions are PEC boundary.

Figure 6 illustrates the cross-sectional structure of
the DC to 6 GHz wideband electromagnetic radiation
device, and Table 2 lists the structural parameters in the
CST simulation process. The dimensions are as follows:
aT = 20 cm, bT = 20 cm, wT = 13.12 cm, L0 = 40 cm,
and L1 = 36.5 cm, where aT is the cross-sectional length
of outer conductor plate, bT is the cross-sectional length
of outer conductor plate, wT is the cross-sectional width
of inner conductor plate, L0 is the length of intermedi-
ate cavity of the device, and L1 is the length of conical
cavity on the side. Moreover, the device has to be sym-
metrical and its characteristic impedance is chosen to be
Z0 = 50 Ω. The characteristic impedance of 50 Ω is pro-
vided by adjusting the ratio of the inner conductor to the
outer conductor of the coaxial at the port. The reflection
coefficient S11 is depicted in Figure 7. It depicts that the
S11 is better than −10 dB in the frequency range of DC
to 6 GHz.

When single port source was used in simulation, the
other port was connected to the matching load. Field
distribution of single port signal source is shown in
Figure 8. Figure 8 (a) shows the Ex field distribution and
Figure 8 (b) shows the Ey field distribution at 6 GHz.
Figure 8 (c) shows that the electromagnetic field distri-
bution at 3 GHz. It can be seen from Figures 3 and 8

Table 2: Simulation parameters of the structure
Structural parameters aT bT wT L0 L1

Values (cm) 20 20 13.12 40 36.5
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(h) Relative Phase = 360/180*pi 
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Fig. 5. Field distribution of dual port signal source in 

one-dimension when relative phase and amplitude change. 

B. CST Simulation 

The commercial software CST Microwave Studio Suite TM 

2013 could be used to simulate the inner field distribution of 

the device [22]−[26]. The meshing parameters of CST 

simulation are provided in Table 1 and the boundary 

conditions are PEC boundary.  
Table 1: Meshing parameters of the structure 
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Values 
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step 
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Figure 6 illustrates the cross-sectional structure of the DC to 

6 GHz wideband electromagnetic radiation device, and Table 

2 lists the structural parameters in the CST simulation process. 

The dimensions are as follows: aT = 20 cm, bT = 20 cm, wT = 

13.12 cm, L0 = 40 cm, and L1 = 36.5 cm, where aT is the 

cross-sectional length of outer conductor plate, bT is the 

cross-sectional length of outer conductor plate, wT is the 

cross-sectional width of inner conductor plate, L0 is the length 

of intermediate cavity of the device, and L1 is the length of 

conical cavity on the side. Moreover, the device has to be 

symmetrical and its characteristic impedance is chosen to be 

. The characteristic impedance of 50 Ω is provided 

by adjusting the ratio of the inner conductor to the outer 

conductor of the coaxial at the port. The reflection coefficient 

S11 is depicted in Figure 7. It depicts that the S11 is better than 

−10 dB in the frequency range of DC to 6 GHz.  
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Fig. 6. Cross-sectional structure of the device. 
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Fig. 7. Reflection coefficient S11 of the device. 
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port was connected to the matching load. Field distribution of 
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Fig. 7. Reflection coefficient S11 of the device. 
 

When single port source was used in simulation, the other 

port was connected to the matching load. Field distribution of 

single port signal source is shown in Figure 8. Figure 8(a) 

shows the 
 

field distribution and Figure 8(b) shows the 

 
field distribution at 6 GHz. Figure 8(c) shows that the 

electromagnetic field distribution at 3 GHz. It can be seen 

from Figure 3 and Figure 8 that the peak values of  

appear on both sides, and the peak value of  appears in 

the middle. Compared with Figure 3, the simulated results are 

basically consistent with the calculated results, which shows 

that the established model is correct. From this point of view, 

it is consistent in Figures 3 and 8. There are some deviations 

between the simulated results and the calculated results in 

some places, which are related to the thickness error of the 

dielectric plate at the edge of the intermediate conductor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) xE  

 

 

(b) yE  

 

 
(c) Field distribution at 3 GHz 

 

Fig. 8. Field distribution of single port signal source. 

 

When we add two different signal sources to ports of the 

device, the inner filed will be superimposed. Field 

distributions of dual port signal source are shown in Figures 

9−12. Figures 9 and 10 illustrate the two different powers of 

the dual port signal source, which 
2 1P P in Figure 8 and 

2 12P P  in Figure 10. Figure 9(a) shows the 
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distribution and Figure 9(b) shows the 
yE  field distribution. 

Comparing Figure 8 with Figures 9 and 10, we can see that the 
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field distribution. Comparing Figure 8 

with Figure 11, we can see that the electromagnetic fields of 

the same phase are superimposed and offset at the radiation 

Fig. 8. Field distribution of single port signal source.

that the peak values of Ex appear on both sides, and the
peak value of Ey appears in the middle. Compared with
Figure 3, the simulated results are basically consistent
with the calculated results, which shows that the estab-
lished model is correct. From this point of view, it is
consistent in Figures 3 and 8. There are some devia-
tions between the simulated results and the calculated
results in some places, which are related to the thickness
error of the dielectric plate at the edge of the intermediate
conductor.

When we add two different signal sources to ports
of the device, the inner filed will be superimposed. Field
distributions of dual port signal source are shown in
Figures 9–12. Figures 9 and 10 illustrate the two differ-
ent powers of the dual port signal source, which P2 = P1
in Figure 8 and P2 = 2 ∗P1 in Figure 10. Figure 9 (a)
shows the Ex field distribution and Figure 9 (b) shows the
Ey field distribution. Comparing Figure 8 with Figures 9
and 10, we can see that the strength of electromagnetic
field has been superimposed on the radiation interface.
Figure 11 illustrates the two different phases of the dual
port signal source, which is φ2 = φ1−90◦. Figure 11 (a)
shows the Ex field distribution and Figure 11 (b) shows
the Ey field distribution. Comparing Figure 8 with
Figure 11, we can see that the electromagnetic fields of
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dielectric plate at the edge of the intermediate conductor. 

 

 
(a)  

 
(b)  

 
(c) Field distribution at 3 GHz 

Fig. 8. Field distribution of single port signal source. 

 

When we add two different signal sources to ports of the 

device, the inner filed will be superimposed. Field 

distributions of dual port signal source are shown in Figures 

9−12. Figures 9 and 10 illustrate the two different powers of 

the dual port signal source, which 
2 1P P in Figure 8 and 

2 12P P  in Figure 10. Figure 9(a) shows the 
xE  field 

distribution and Figure 9(b) shows the 
yE  field distribution. 

Comparing Figure 8 with Figures 9 and 10, we can see that the 

strength of electromagnetic field has been superimposed on 

the radiation interface. Figure 11 illustrates the two different 

phases of the dual port signal source, which is 2 1-90   . 

Figure 11(a) shows the 
xE  field distribution and Figure 

11(b) shows the 
yE

 
field distribution. Comparing Figure 8 

with Figure 11, we can see that the electromagnetic fields of 

the same phase are superimposed and offset at the radiation 

interface. Figure 12 illustrates the two different powers of the 

dual port signal source, which are 
2 12P P   and 

2 1-90   . As can be seen from Figure 12, when we 

change the power of each port, the strength of electromagnetic 

field will be superimposed on the radiation interface. And 

when we change the phase of each port, the electromagnetic 

field will be superimposed and offset by the same phase. It can 

be seen from the simulated results and calculated results that 

the trend and results are consistent, which shows that this 

method is feasible. In this way, we can change and control the 

electromagnetic field precisely.  

 

 

(a) xE  

 

(b) 
yE  

Fig. 9. Field distribution of dual port signal source when 

2 1P P . 

 
 

 

Fig. 9. Field distribution of dual port signal source when
P2 = P1.
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(a) xE  

 

(b) 
yE  

Fig. 10. Field distribution of dual port signal source when 

2 12P P  . 
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(b) 
yE  

Fig. 11. Field distribution of dual port signal source when 

2 1-90   . 

 

 

(a) xE  

 

(b) 
yE  

Fig. 12. Field distribution of dual port signal source when 

2 1-90   and 
2 12P P  . 

 

IV. COMPARISON OF THE SINGLE PORT 

DEVICE 

Table 3 summarizes the performance comparison between 

the proposed dual port radiation device and previously 

reported designs for radiation experiments.  

 
Table 3: Comparison between the proposed dual port radiation device and previously reported 

designs 

Ref. Structure Frequency 

range (GHz) 

Field 

distribution 

[11] Dual-port 

intermodulation 

generator 

710−2550 

MHz 

 

[12] Four-port 

high-frequency 

system 

0.14 THz  

[14] Twin TEM cells 200 MHz TEM 

[16] Twin TEM cells 1 GHz TEM 

[17] TEM/GTEM cell   

[20] Multi-step/piecewise 

linear TEM cell 

DC to 1 TEM 

This 

work 

Dual port device DC to 6 Uniform 

TEM/TM/TE 

 

The proposed dual port radiation device shows the widest 

frequency range compared with other designs [17, 20] for the 

radiation frequency range. In the item of field distribution, the 

proposed dual port device can control the field distribution and 

ensure the uniformity of the field in the radiation space 

compared with [14] and [16]. In general, the proposed dual 

port device has obvious advantages in the uniform field 

distribution and broadband aspect. 

Fig. 10. Field distribution of dual port signal source
when P2 = 2∗P1.
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(b) 
yE  

Fig. 10. Field distribution of dual port signal source when 

2 12P P  . 
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(b) 
yE  

Fig. 11. Field distribution of dual port signal source when 

2 1-90   . 
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(b) 
yE  

Fig. 12. Field distribution of dual port signal source when 

2 1-90   and 
2 12P P  . 
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0.14 THz  

[14] Twin TEM cells 200 MHz TEM 

[16] Twin TEM cells 1 GHz TEM 

[17] TEM/GTEM cell   

[20] Multi-step/piecewise 

linear TEM cell 

DC to 1 TEM 

This 

work 

Dual port device DC to 6 Uniform 

TEM/TM/TE 

 

The proposed dual port radiation device shows the widest 

frequency range compared with other designs [17, 20] for the 

radiation frequency range. In the item of field distribution, the 

proposed dual port device can control the field distribution and 

ensure the uniformity of the field in the radiation space 

compared with [14] and [16]. In general, the proposed dual 

port device has obvious advantages in the uniform field 

distribution and broadband aspect. 

Fig. 11. Field distribution of dual port signal source
when φ2 = φ1 −90◦.
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Fig. 10. Field distribution of dual port signal source when 

2 12P P  . 
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Fig. 11. Field distribution of dual port signal source when 

2 1-90   . 
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Fig. 12. Field distribution of dual port signal source when 

2 1-90   and 
2 12P P  . 

 

IV. COMPARISON OF THE SINGLE PORT 
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Table 3 summarizes the performance comparison between 

the proposed dual port radiation device and previously 

reported designs for radiation experiments.  

 
Table 3: Comparison between the proposed dual port radiation device and previously reported 
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Ref. Structure Frequency 

range (GHz) 

Field 

distribution 

[11] Dual-port 

intermodulation 

generator 

710−2550 

MHz 

 

[12] Four-port 

high-frequency 

system 

0.14 THz  

[14] Twin TEM cells 200 MHz TEM 

[16] Twin TEM cells 1 GHz TEM 

[17] TEM/GTEM cell   

[20] Multi-step/piecewise 

linear TEM cell 
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The proposed dual port radiation device shows the widest 

frequency range compared with other designs [17, 20] for the 

radiation frequency range. In the item of field distribution, the 

proposed dual port device can control the field distribution and 

ensure the uniformity of the field in the radiation space 

compared with [14] and [16]. In general, the proposed dual 

port device has obvious advantages in the uniform field 

distribution and broadband aspect. 

Fig. 12. Field distribution of dual port signal source
when φ2 = φ1−90◦ and P2 = 2∗P1.

the same phase are superimposed and offset at the radi-
ation interface. Figure 12 illustrates the two different
powers of the dual port signal source, which are P2 =
2∗P1 and φ2 = φ1−90◦. As can be seen from Figure 12,
when we change the power of each port, the strength of
electromagnetic field will be superimposed on the radi-
ation interface. And when we change the phase of each
port, the electromagnetic field will be superimposed and
offset by the same phase. It can be seen from the sim-
ulated results and calculated results that the trend and
results are consistent, which shows that this method is
feasible. In this way, we can change and control the elec-
tromagnetic field precisely.

IV. COMPARISON OF THE SINGLE PORT
DEVICE

Table 3 summarizes the performance comparison
between the proposed dual port radiation device and pre-
viously reported designs for radiation experiments.

The proposed dual port radiation device shows the
widest frequency range compared with other designs
[17, 20] for the radiation frequency range. In the item
of field distribution, the proposed dual port device can
control the field distribution and ensure the uniformity
of the field in the radiation space compared with [14]
and [16]. In general, the proposed dual port device has



WANG, FANG, CHEN: FIELD DISTRIBUTION ANALYSIS BASED ON IMPROVED DIFFERENTIAL ALGORITHM 380

Table 3: Comparison between the proposed dual port
radiation device and previously reported designs

Ref. Structure Frequency range
(GHz)

Field
distribution

[11] Dual-port
intermodulation

generator

710–2550 MHz

[12] Four-port
high-frequency

system

0.14 THz

[14] Twin TEM cells 200 MHz TEM
[16] Twin TEM cells 1 GHz TEM
[17] TEM/GTEM cell
[20] Multi-

step/piecewise
linear TEM cell

DC to 1 TEM

This
work

Dual port device DC to 6 Uniform
TEM/TM/TE

obvious advantages in the uniform field distribution and
broadband aspect.

V. CONCLUSION
In this paper, a dual port radiation device is pro-

posed, which can change the power and phase of the
signal source. In this way, we can generate broad-
band signals with different power and phase to change
the distribution of the electromagnetic field in the radi-
ation space. Field distributions of the dual port radia-
tion device for improved differential algorithm and CST
simulation are provided. Its construction is given, and
the related key parameters are discussed. Therefore,
numerical and simulation analysis from DC to 6 GHz
was carried out to define the usability of the system
for well-controlled device. Based on the theoretical
analysis and simulation calculations, the electromagnetic
field distribution is generally shown. This character-
ization is assumed to be the fundamental prerequisite
before considering the presence of cell dishes within the
radiation device for radiation experiments of these new
and widespread used telecommunication frequencies.
Therefore, the proposed device can control the electro-
magnetic field in the radiation space. And the field dis-
tribution can be calculated with the proposed differential
algorithm.
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