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Abstract – Microwave Tomography Imaging System
(MwTIS) is an emerging tool for medical diagnosis in
the non-invasive screening process. This paper addresses
the ill-condition problem by proposing two new schemes
incorporated into the DBIM image reconstructed algo-
rithm for high frequencies in MwTIS. The first scheme
is to propose an optimal step frequency using the degree
of ill-posedness value for reducing the frequency diver-
sity problem. The second scheme is to propose Krylov
Subspace-based regularization method called Flexible
Preconditioned Conjugate Gradient Least Square (FP-
CGLS) method to resolve the ill-condition problem. The
iteratively updated preconditioner matrix in the proposed
FP-CGLS method reduces the number of iterations and
it is stable in high-level Gaussian noise. The efficiency of
the proposed FP-CGLS method is validated by imposing
Gaussian noise up to 30% in scattered breast phantom in
the multifrequency range of 2 GHz -3 GHz It achieves an
enhanced reconstructed image at 12 iterations with a rel-
ative error of 0.1802 for 20% of Gaussian noise and for
the same scheme the existing CGLS method has a 0.4480
relative error at the 77 iterations. Further, the FP-CGLS
along with the DBIM method produces a reconstructed
image with the accuracy of 0.8760 in four DBIM itera-
tions.

Index Terms – CGLS, ill-posedness, Krylov subspace
method, microwave tomography, regularization.

I. INTRODUCTION
Microwave Tomography Imaging System (MwTIS)

is a promising diagnostic tool in breast cancer detection
[1] and monitoring [2, 3] its progress towards widespread
clinical application. It inspires several benefits such as
usage of nonionizing low power electromagnetic signals,
cost-effective antenna-array, low health risk, and porta-
bility. MwTIS aims at estimating the dielectric values of
internal tissues from processing measured electromag-
netic field data is stated to solve the electromagnetic in-
verse scattering problem [4]. Various inverse scattering

problem resolving algorithms such as the Born iterative
method (BIM), Distorted Born iterative method (DBIM),
and Gauss Newton (GN) can employ to compute im-
ages by a set of underdetermined linear equations. Ev-
ery iteration of the DBIM algorithm, the linear system
of equations is solved by using regularization methods
and has found optimal solutions by the inversion process.
Thresholding [5, 6], Compressive sensing with Sparsity
[7], and Krylov subspace-based methods [8] are explored
towards the quality of the resultant image.

Refinement of image resolution and reduction of
computation time is currently needed in medical diag-
nosis applications for microwave imaging. While in-
corporating prior information [9], reducing the size
of resolution grid elements [10], contrast enhancement
[11], and high frequency microwaves [12] certainly in-
creased the quality of microwave tomography images.
High frequencies in MwTIS have inherently obtained
fine internal details of the tissues in a high resolution
grid than low frequency. Although high frequency mi-
crowave has increased the spatial resolution that may
be acquired in high resolution images, unstable conver-
gence is a significant limiting factor in the inversion pro-
cess. The multifrequency [6, 13] approach has stabilized
the inversion process by reducing the imbalance ratio
between the number of measurements and the number
of pixels in high resolution grid. Hence, this paper has
conducted a detailed study and proposed a method to
improve significant resolution enhancement with mul-
tifrequency in breast imaging systems. Excellent imag-
ing results have been obtained using frequency hop-
ping techniques which is an initial guess pursued by
inverting single-frequency data then followed by pro-
cessing of multifrequency data. This can be extremely
time-consuming due to non-linearity raised by the fre-
quency diversity problem (switching from low frequency
to high frequency) and ill-posedness in the linear system
of equations. A credible work in the literature, DBIM
with Thresholding method [6] and wavelet basis with
CGLS method [14] resolved the above problem by hy-
brid frequency hopping technique. It is performed well
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in the resolution of 1 mm to 4 mm but they lacked to
perform below 1 mm resolution breast images. Because,
each frequency range has its unique characteristics like
convergence time, stability in solution estimation, and
also put in high measurement noise in the received scat-
tered fields. Further, it meets more computational bur-
dens like a greater number of iterations to construct suf-
ficiently high-resolution images. Therefore, this paper
gives special attention to the multifrequency techniques
and regularization method to handle nonlinearity and ill-
posedness problems in the reconstruction algorithm.

This paper proposed two schemes to resolve the
above-mentioned problems in DBIM with a multifre-
quency microwave tomography breast imaging system.
The first is reducing the nonlinearity by selecting the op-
timal step frequency in frequency hopping techniques.
The value called degree of ill-posedness helps to select
the suitable step frequency which makes the minimum
effects of ill-posedness in the linear system of equations.
The second scheme is proposing a Preconditioner in-
corporating the Krylov subspace regularization method
to achieve optimal imaging accuracy and reconstruction
stability by solving the ill-posedness problem. Conju-
gate Gradient Least Square (CGLS) is one of the credi-
ble Krylov subspace regularization methods that worked
well with the DBIM reconstruction algorithm for tu-
mor detection [15] and density estimation [16] in breast
imaging applications. This paper proposed a modified
version of the CGLS method called the Flexible Pre-
conditioner CGLS (FP-CGLS) method for inverting un-
derdetermined multifrequency linear equations with high
measurement error. In this proposed scheme, the Flexible
Preconditioner is being updated in every iteration helps
to stable and quicken the convergence time in an unsta-
ble high-frequency imaging system. In addition, the non-
negativity constraint in the estimation of the appropriate
dielectric values of unknown breast tissues is increases
the truthfulness of the solution. These proposed schemes
take less iteration for the DBIM algorithm to find the
high accuracy resultant images.

The paper is organized into the following sections.
Section 2 explains the measurement matrix formation
process. A detailed description of the proposed method is
stated in section 3. Section 4 explained the properties of
breast phantom, implementation specifications, and the
results achieved from the study. The conclusion is ex-
plained in section 5.

II. MEASUREMENT MATRIX
FORMULATION

This section explains the formation of a measure-
ment matrix based on the design characteristics of the
MwTIS. The circular measurement domain (S) with the
transmitter (Nt ) and receiver (Nr) antennas and the object

are present in the D domain. The object is illuminated
by the Nt and the scattered fields are received by the
Nr simultaneously. The integral equation of imaging do-
main (D) linearized by the first-order Born approxima-
tion which governs the entire DBIM algorithm expressed
in eqn (1),

Escat(r) = k2
b

∫
d

G(r, r
′
).Xob ject(r

′
)Einc(r

′
)dr

′
. (1)

G(r, r
′
) is the Green’s function with the wavenum-

ber of the background medium (kb ). Xob ject(r
′
) is rela-

tive permittivity ( εr−εb
εb

) of an object to be imaged. Einci

is the plane wave incident fields. r
′
, r are the spatial po-

sitions in S and D domains. To format the measurement
matrix of the proposed work, integral (1) of the imaging
domain is discretized using Fredholm of the first kind
and pixel-based smooth basis function [17]. It leads to
an increase the imaging accuracy as well as resolution.
Now, the integral equation (1) is converted into a linear
system of equations as,

AMxN .XNx1 = bMx1. (2)
Here A(M X N) is the measurement matrix which is

the outcomes of the interaction between the incident field
and background medium. bMX1 is the received scattered
field. Here M is the number of measurement antenna
pairs and N is the row vector representation of the num-
ber of pixels in the image grid. In the multifrequency for-
ward process, the size becomes (M X F) X N). Here F is
the number of frequencies in the multifrequency range.

III. PROPOSED ENHANCEMENT SCHEME
FOR MICROWAVE BREAST IMAGING

A. Proposed optimized step frequency to resolve fre-
quency diversity problem

This section has detailed the behavior of condition
number in the system measurement matrix (A) due to
variation in the operating frequency value and selection
of optimum multifrequency range with minimum condi-
tion number. The performance of the reconstruction al-
gorithms is based on the condition number of the sys-
tem coefficient matrix (A). Small changes in the condi-
tion number of A will affect more in the solution more. It
takes more iteration to converge the solution and struggle
to produce the appropriate solution. This is called an ill-
posed condition problem. In this paper, a study has been
conducted to analyse the impact of the frequency diver-
sity problem in the existing studies [6, 14]. It depicts, that
the condition value increases in the multifrequency range
due to the high frequency hopping step from 1 GHz to
3 GHz To meet the high spatial resolution requirement
of MwTIS, the paper needs to find the optimum multi-
frequency scenario with a high frequency range. So, the
measurement matrix (A) of the proposed multifrequency
needs to estimate the effect of ill-posedness on the fre-
quency diversity problem. The factor called degree of
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reconstruction algorithms is based on the condition 
number of the system coefficient matrix (𝐀𝐀). Small 
changes in the condition number of 𝐀𝐀 will affect more 
in the solution more. It takes more iteration to converge 
the solution and struggle to produce the appropriate 
solution.This is called an ill-posed condition problem.  
In this paper, a study has been conducted to analyse the 
impact of the frequency diversity problem in the 
existing studies [6,14]. It depicts, that the condition 
value increases in the multifrequency range due to the 
high frequency hopping step from 1 GHz to 3 GHz. To 
meet the high spatial resolution requirement of MwTIS, 
the paper needs to find the optimum multifrequency 
scenario with a high frequency range. So, the 
measurement matrix (A) of the proposed 
multifrequency needs to estimate the effect of ill-
posedness on the frequency diversity problem. The 
factor called degree of ill-posedness (α ) value [18] 
was used to find the proposed multifrequency scenario. 
It is calculated using, 

 . i).exp(- =K(A) α   (3) 

Here, K(A) is the condition number of A and i is 
the number of the singular value spectrum. α  is the 
positive integer value. The α  is calculated for two 
different step frequencies such as 500 MHz [6] and 200 
MHz[14] in the 1 GHz to 3 GHz frequency range.  As 
well, α  is calculated for the 250 MHz jumping 
frequency for the proposed multifrequency range from 
2 GHz to 3 GHz. These values are plotted in Figure 1. It 
has shown that the proposed frequency has a minimum 
α  value than the existing scenario.Based on the above 
analysis the suitable frequency range for the desired 
application can be fixed. Further, this analytical proof 
has depicted the proposed multifrequency scenario will 
produce a good quality image in the regularization  

 

 
Fig. 1. Analysis of α  value for the proposed 
multifrequency scenario in high frequency range. 

process. However, the measurement matrix (A) in eqn 
(2) is under-determined and needs to solve by the 
normal equation in the least square method such as the 
CGLS method. A detailed explanation of the solving 
procedure of A is stated in the next section. 
 
B.Proposed flexible preconditioned CGLS (FP-
CGLS) regularization method 
 

This section has explained the steps and advantages 
of the proposed Flexible Preconditioned CGLS (FP-
CGLS) Krylov subspace regularization method. 
Especially in medical imaging, Born (BIM, DBIM) 
type reconstruction algorithms give under-
determined ((𝑀𝑀𝑀𝑀 𝐹𝐹) << 𝑀𝑀) set of linear equations 
which means the imbalance between  (𝑀𝑀𝑀𝑀 𝐹𝐹) and (𝑀𝑀). 
The cost function is represented as, 

.)(min bAAxAx TT ==φ  (4) 

The results from the analytical study in section 3.1 
depict the A having α as 0.169 and it conveys the A is 
stuck with the ill-posedness problem. Due to the large 
condition number of A, the right-hand side b is 
contaminated by noise (b+ἠ) in real-time. Eqn(4) 
solved using CGLS may compute the useless solution 
and often converge very slowly and cannot stable in the 
number of iterations in frequency diversity problem in 
the multifrequency scenario. To resolve the above 
problem need additional computational matrix called 
preconditioner (P) is added to eqn(4). The linear 
equations become,  

.)(min 1 bAPxAPAPx THTH −−− −=φ (5) 

Here, P ∈ RN x N . In this paper, the Krylov subspace 
method called Flexible Preconditioner CGLS method is 
taken to solve eqn (5). It is an enhanced version of the 
PCGLS[19] method. It is used to estimate dielectric 
values of x by fast convergence in ill-condition A and 
appropriate x  in noise is corrupted in the received 
scattered field.It increases the accuracy and reduces the 
number of iterations compared to the standard solvers. 
To compute the meaning solution one additional 
constraint called non-negativity is added in this method. 
The appropriate solution x 𝒎𝒎 in standard CGLS is 
determined as follows, 

..11 mmmm dxx −− += α  (6) 

In FP-CGLS the parameters such as scalar step 
length (αm )and the direction vector ( dm) enforce non-
negativity in every iteration 
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Fig. 1. Analysis of α value for the proposed multifre-
quency scenario in high frequency range.

ill-posedness (α) value [18] was used to find the pro-
posed multifrequency scenario. It is calculated using,

K(A) = exp(−α.i) . (3)
Here, K(A) is the condition number of A and i is

the number of the singular value spectrum. α is the pos-
itive integer value. The α is calculated for two different
step frequencies such as 500 MHz [6] and 200 MHz [14]
in the 1 GHz to 3 GHz frequency range. As well, α is
calculated for the 250 MHz jumping frequency for the
proposed multifrequency range from 2 GHz to 3 GHz
These values are plotted in Fig. 1. It has shown that
the proposed frequency has a minimum α value than
the existing scenario. Based on the above analysis the
suitable frequency range for the desired application can
be fixed. Further, this analytical proof has depicted the
proposed multifrequency scenario will produce a good
quality image in the regularization process. However, the
measurement matrix (A) in eqn (2) is under-determined
and needs to solve by the normal equation in the least
square method such as the CGLS method. A detailed ex-
planation of the solving procedure of A is stated in the
next section.

B. Proposed flexible preconditioned CGLS (FP-
CGLS) regularization method

This section has explained the steps and ad-
vantages of the proposed Flexible Preconditioned
CGLS (FP-CGLS) Krylov subspace regularization
method. Especially in medical imaging, Born (BIM,
DBIM) type reconstruction algorithms give under-
determined ((M X F) < < N) set of linear equations
which means the imbalance between (M X F) and (N).
The cost function is represented as,

minφ(x) = AT Ax = AT b. (4)
The results from the analytical study in section

3.1 depict the A having α as 0.169 and it conveys

the A is stuck with the ill-posedness problem. Due to
the large condition number of A, the right-hand side b
is contaminated by noise (b+

,
η) in real-time. Eqn (4)

solved using CGLS may compute the useless solution
and often converge very slowly and cannot stable in the
number of iterations in frequency diversity problem in
the multifrequency scenario. To resolve the above prob-
lem, one needs additional computational matrix called
preconditioner (P) is added to eqn (4). The linear equa-
tions become,

minφ(x) = P−HAT AP−1x−P−HAT b. (5)
Here, P ∈ RN x N . In this paper, the Krylov sub-

space method called Flexible Preconditioner CGLS
method is taken to solve eqn (5). It is an enhanced ver-
sion of the PCGLS [19] method. It is used to estimate
dielectric values of x by fast convergence in ill-condition
A and appropriate x in noise is corrupted in the received
scattered field. It increases the accuracy and reduces the
number of iterations compared to the standard solvers.
To compute the meaning solution one additional con-
straint called non-negativity is added in this method. The
appropriate solution xm in standard CGLS is determined
as follows,

xm = xm−1 +αm−1.dm. (6)
In FP-CGLS the parameters such as scalar step

length (αm) and the direction vector ( dm) enforce non-
negativity in every iteration

αm−1 =
(resm−1,wm−1)

(wm−1,wm−1)
. (7)

Here m is the iteration index. αm−1 selected by satis-
fying the bounded step length αm−1 condition αm−1>0.
The bounded step length is computed as follows,

αm−1 = min(αm−1,min(
−xm−1(dm−1 < 0)
dm−1(dm−1 < 0)

)). (8)

The scalar αm−1 is satisfies the condition of orthog-
onality which project the ATb in the nonnegative or-
thant, due to xm= 0 until the αm−1>0. It gives added
truthfulness to the solution in which the imaged ob-
ject does not contain negative dielectric properties. The
iteration depends on the residual norm vector res =(

b+
,
η

)
−A.xm and dm. To improve the speed of con-

vergence the left preconditioner (Pm) is multiplied to
resm . It is computed as follows,

Pm = PmAT resm. (9)
The standard PCGLS method calculated the L as a

(N X N) sparse matrix but in the proposed FP-CGLS the
P(m)= diag(xm) and it is updated in every iteration. Ev-
ery iteration step ensures the nonnegativity constraints
and proceeds right direction towards the appropriate sub-
space. So that it is called as Flexible Preconditioner
CGLS method. This is the reason the solution x does
not distort by the measurement noise (

,
η). The cost of
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computing vector and matrix multiplication with a pre-
conditioner is minimum compared to other Krylov meth-
ods like CGLS. The residual norm is set as the stop-
ping criteria. The discrepancy principal inequality con-
dition helps to stop the iteration at right time. The FP-
CGLS does not require an explicit regularization param-
eter instead of that the step length (α) and tuning param-
eter (β ) do the same. In this manner, the proposed FP-
CGLS method controls the measurement error and unsta-
ble convergence due to the frequency diversity problem
by resolving the ill-condition problem with less number
of iterations. It improves the quality of high-resolution
MWTIS for the breast category.

IV. RESULTS AND DISCUSSION
This section has explained the numerical setting of

the simulation study and evaluated the results achieved
by the proposed FP-CGLS method for desired multifre-
quency scenario using scattered breast phantoms. The
main purposes of the study have mentioned below,

• Analysed the reconstruction performance of the
proposed multifrequency range 2 GHz to 3 GHz
with 250 MHz step frequency using the proposed
FP-CGLS. The relative error and optimal iteration
count are used to evaluate the performance.

• The convergence behavior of the proposed FP-
CGLS is examined by adding different measure-
ment error levels (

,
η) in the scattered field (b) that

are
,
η = 10%, 20%, and 30%. The relative resid-

ual norm and iteration count are the parameters used
for the convergence analysis.

• The efficiency of the FP-CGLS in the DBIM recon-
struction algorithm is analyzed by the Mean Square
Error (MSE) and DBIM iteration count.

The simulation study has also been conducted by the
standard CGLS method for comparative analysis.

A. Simulation specification and dataset
The circular imaging system (domain S) is set with

a diameter of 30 cm The Nt= 15 and Nr= 16 are
placed around the boundary of the S domain. In the
real-time scenario, the breast was immersed in a loss-
less coupling medium, for that the background medium
is assigned to εb= 2.6 in the proposed method. The
M = 240 samples of scattered fields are collected by
consecutive incidence and reception of these Nt and Nr.
The five equally spaced (F = 5) multifrequency sce-
narios are in the range of 2 GHz to 3 GHz (pro-
posed in section 3.1). The numerical process and eval-
uation were done in MATLAB-R2021. The Scattered
(ID=070604PA1) breast phantom has been taken from
the numerical repository of the Cross-Disciplinary Elec-
tromagnetics Laboratory [20] (University of Wisconsin

CEM Laboratory) for the proposed work. The 2D slice
No 135 of the phantom is extracted from the 3D breast
model.

The breast phantom is shown in Fig. 2. The pixel
size is equal to 0.5 mm and other prerequisite data are
initialized as mentioned in the instruction manual [20]
of the same. The dielectric values of the breast tissues
[21] in the phantoms are listed in Table 1. The numerical
process and evaluation were done in MATLAB-R2021.

Here m is the iteration index. αm−1 selected by 
satisfying the bounded step length αm−1������� condition 
αm−1������� > 0. The bounded step length is computed as 
follows,
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The scalar αm−1�������is satisfies the condition of 
orthogonality which project the ATb in the nonnegative 
orthant, due to  x𝒎𝒎 = 0  until the αm−1������� > 0. It gives 
added truthfulness to the solution in which the imaged 
object does not contain negative dielectric properties. 
The iteration depends on the residual norm vector 
𝑟𝑟𝑟𝑟𝑟𝑟 = (𝑏𝑏 +  ἠ) − A. x𝒎𝒎and  dm . To improve the speed 
of convergence the left preconditioner (Pm ) is 
multiplied to resm . It is computed as follows,  

.m
T

mm resAPP = (9) 

The standard PCGLS method calculated the L as a 
(𝑀𝑀𝑀𝑀 𝑀𝑀) sparse matrix but in the proposed FP-CGLS the 
P(m) = diag(xm )  and it is updated in every iteration. 
Every iteration step ensures the nonnegativity 
constraints and proceeds right direction towards the 
appropriate subspace. So that it is called as Flexible 
Preconditioner CGLS method. This is the reason the 
solution x does not distort by the measurement noise(ἠ). 
The cost of computing vector and matrix multiplication 
with a preconditioner is minimum compared to other 
Krylov methods like CGLS. The residual norm is set as 
the stopping criteria. The discrepancy principal 
inequality condition helps to stop the iteration at right 
time. The FP-CGLS does not require an explicit 
regularization parameter instead of that the step length (
α ) and tuning parameter (β) do the same.  In this 
manner, the proposed FP-CGLS method controls the 
measurement error and unstable convergence due to the 
frequency diversity problem by resolving the ill-
condition problem with less number of iterations. It 
improves the quality of high-resolution MWTIS for the 
breast category.  
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Fig. 2. Reference scattered breast phantom. 

  
Fig. 2. Reference scattered breast phantom.

Table 1: Debye parameters of the breast tissues: [21]
Material ε∞ △ε σs
Adipose 3.987 3.545 0.080

Fibrogland 13.91 40.49 0.824
Background

medium
2.6 0.092 0.005

Skin 15.93 23.83 0.831

B. Assessment of proposed FP-CGLS in desired mul-
tifrequency range

This section has explained the performance of the
proposed multifrequency range using the FP-CGLS
method in the reconstructed breast phantoms. The
below-mentioned results are taken at A matrix of size
(1280 × 146689). The reconstruction quality of the pro-
posed FP-CGLS method and the parameters like Rela-
tive Error and total iteration (Iter), the count is compared
with CGLS. In this study, the maximum iteration count is
set as 150 and

,
η=0 to compare the performance of these

two methods. The calculation of Relative Error (RE) as
follows,

RE =
||X(r

′
)− xm||2

||X(r′)||2
. (10)
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Table 2: Comparison of relative error and their optimal
stopping iterations for proposed FP-CGLS

Breast phantom Methods Iter RE
Scattered

Breast ID:070604PA1
FP-CGLS 18 0.1770

CGLS 77 0.4480

Table 1: Debye parameters of the breast tissues: [21] 
Material 𝛜𝛜∞ ∆𝛜𝛜 𝛔𝛔𝐬𝐬 
Adipose 3.987 3.545 0.080 

Fibrogland 13.91 40.49 0.824 
Background 

medium 2.6 0.092 0.005 

Skin 15.93 23.83 0.831 
 

The breast phantom is shown in Figure 2. The pixel size 
is equal to 0.5 mm and other prerequisite data are 
initialized as mentioned in the instruction manual [20] 
of the same. The dielectric valuesof the breast tissues 
[21]in the phantoms are listed in Table 1. The 
numerical process and evaluation were done in 
MATLAB-R2021. 
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The best iteration count is selected by the 
discrepancy principle and listed in Table 2. This result 
has been achieved in the single DBIM iteration. The 
results in Table 2 clearly explained the benefits of the 
preconditioner (Pm  ) in the FP-CGLS methods.  

 
Table 2: Comparison of relative error and their optimal 
stopping iterations for proposed FP-CGLS  

Breast 
phantom Methods Iter  RE  

Scattered 
Breast 

ID:070604PA1 

FP-
CGLS 18 0.1770 

CGLS 77 0.4480 
 

The FP-CGLS method has achieved a minimum 
relative error of 0.1773 within 18 iterations.  Further 
CGLS method has required 77 iterations to reach the 
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gradient in the CGLS method.Note that, the proposed 
FP-CGLS produces a better result with the minimum 
number of iterations for the proposed high frequency 
multifrequency range microwave tomography imaging 
system. The reconstructed image of the final DBIM 
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has explained the convergence behavior of the proposed 
FP-CGLS regularization method by varying the 
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convergence of these two regularization methods 
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The best iteration count is selected by the discrep-
ancy principle and listed in Table 2. This result has been
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Table 2 clearly explained the benefits of the precondi-
tioner (Pm) in the FP-CGLS methods.
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method has required 77 iterations to reach the mini-
mum relative error value of 0.4480. The reason behind
this is the FP-CGLS regularization method effectively
quickens the slow convergence of the gradient in the
CGLS method. Note that, the proposed FP-CGLS pro-
duces a better result with the minimum number of iter-
ations for the proposed high frequency multifrequency
range microwave tomography imaging system. The re-
constructed image of the final DBIM iterations is shown
in Fig. 3. Assessment of Proposed FP-CGLS Conver-
gence on Gaussian Noise This section has explained the
convergence behavior of the proposed FP-CGLS regular-
ization method by varying the different Gaussian noise
levels.
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recorded for the FP-CGLS and CGLS methods for the 
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except for the error levelἠ = 𝟑𝟑𝟏𝟏%.  There is a minor 
increment in the relative error value.  Another 
observation is, that the CGLS method stuck into 
stagnation problem even though in ἠ =  𝟐𝟐𝟏𝟏%. Based on 
the results, FP-CGLS has stable convergence behavior 
in higher measurement error. 
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This section has explained the overall 

reconstruction performance of the DBIM algorithm 
combined with the proposed FP-CGLS method for the 
desired multifrequency range in a scattered breast 
phantom.  The results are taken at A matrix of size 
(1280 ×146689). The ἠ is set as 0. The pixel size is 
assigned as 0.5 mm for high resolution reconstructed 
image. A cross-section plot (Figure7) of the 
reconstructed image illustrates the goodness of the 
proposed FP-CGLS method. It is plotted between the 
spatial position on X-axis and its corresponding static 
relative permittivity values on Y-axis.These types of 
visualization helps to identify the estimated dielectric 
values of the reconstructed image have met the actual 
values in the reference breast phantom. Figure 7 shows 
the reconstructed image in the second 

Fig. 4. Convergence plot for the reconstructions of the
scattered breast using proposed FP-CGLS method.

late the error vector of three distinct noise levels that are
,
η = 10,20, 30%.

It is added to b in eqn (2). This approach is used
to test the stability and robustness of the regularization
method against uncertainties like noise and other arti-
facts in the measurement system. The calculation of rel-
ative residual norm is calculated as,

RR Norm =
||AT dm − xm||

||AT b||2
. (11)

The semi-log plot of Relative Residual Norm
(RR Norm) and iteration count helps to numerically an-
alyze the convergence behavior of the proposed solution
based Preconditioner (Pm). Figures 4 and 5 show the
semilog plot for the CGLS method and proposed FP-
CGLS method. These figures are show the convergence
of these two regularization methods without noise distor-
tion. The noticeable value in this plot is the magnitude of
RR Norm.

The FP-CGLS method reaches the minimum value
(10−15) at the beginning of the iteration, But CGLS
method reached 10−4 only at the end of the iteration.

The product of Pm with resm quickly move to the
negative descent direction. Figure 6 shows the compar-
ison plot between FP-CGLS and CGLS regularization
methods for the different noise levels. The increments in
noise level reduce the iteration count in both FP-CGLS
and CGLS methods, but the FP-CGLS method is stable
in convergence (12 iterations) up to 20% of noise distor-
tion. The CGLS has sudden fall from 77 iterations to 17
iterations in 20% of noise distortion.

The relative error value and the number of itera-
tions are recorded for the FP-CGLS and CGLS methods
for the three noise levels are listed in Table 3. It shows
that FP-CGLS has a substantially higher measurement
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proposed FP-CGLS method. It is plotted between the 
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,
η up to

20% except for the error level
,
η=30%. There is a minor

increment in the relative error value. Another observation
is, that the CGLS method stuck into stagnation problem
even though in

,
η= 20%. Based on the results, FP-CGLS

has stable convergence behavior in higher measurement
error.

C. Assessment of proposed FP-CGLS on DBIM
This section has explained the overall reconstruc-

tion performance of the DBIM algorithm combined with
the proposed FP-CGLS method for the desired multi-
frequency range in a scattered breast phantom. The re-
sults are taken at A matrix of size (1280 × 146689).
The

,
η is set as 0. The pixel size is assigned as 0.5

mm for high resolution reconstructed image. A cross-

Table 3: Comparison of relative error and their optimal
stopping iterations for different Gaussian noise
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section plot (Fig. 7) of the reconstructed image illus-
trates the goodness of the proposed FP-CGLS method.
It is plotted between the spatial position on X-axis and
its corresponding static relative permittivity values on Y-
axis. These types of visualization help to identify the
estimated dielectric values of the reconstructed image
have met the actual values in the reference breast phan-
tom. Figure 7 shows the reconstructed image in the sec-
ond and fourth iteration of the iteration of the DBIM
algorithm along with the reference profile. It showed
the proposed FP-CGLS produces an appropriate result
in 4 DBIM iterations. It has achieved accuracy val-
ues 0.6030, 0.6936, 0.7665, 0.8760 in DBIM iteration
1, 2, 3 and 4 respectively. According to this analysis,
the proposed FP-CGLS method is performed well in
the high frequencies in multifrequency microwave to-
mography breast imaging even though in higher noise
levels.

andfourthiteration of theiteration of the DBIM 
algorithm along with the 

 
Fig. 7. Cross-sectional view of reconstructed 
permittivity of scattered breast using proposed FP-
CGLS with iteration of DBIM algorithm. 
 
reference profile. It showed the proposed FP-CGLS 
produces an appropriate result in 4 DBIM iterations. It 
has achieved accuracy values 0.6030, 0.6936, 0.7665, 
0.8760 in DBIM iteration 1, 2, 3 and 4 respectively. 
According to this analysis, the proposed FP-CGLS 
method is performed well in the high frequencies in 
multifrequency microwave tomography breast imaging 
even though in higher noise levels. 

 
V. CONCLUSION 

 
This paper presents the high frequencies in 

multifrequency DBIM with a proposed Krylov 
subspace based regularization method called FP-CGLS 
for high-resolution MWTIS breast imaging. The 
frequency diversity problem is a major issue in 
multifrequency microwave tomography imaging.  It 
leads to received scattered fields corrupted by Gaussian 
noise and unstable convergence in the reconstruction 
process.  This paper addresses these issues modelled as 
the ill-condition problem. It was resolved by the 
proposed optimal step frequency (250 MHz) for the 
high frequency range (2 GHz to 3 GHz) selected based 
on the degree of ill-posedness value. The unstable 
convergence and accuracy of the solution are resolved 
by the iteratively updated preconditioner based FP-
CGLS method. A scattered breast phantom has been 
taken for this study. Stand CGLS method is used to 
compare the performance of the proposed 
multifrequency and FP-CGLS method.The iteratively 
updated preconditioner Pm in the proposed FP-CGLS 
method supports reaching the appropriate xm at 12 
iterations with a relative error of 0.1802 even though in 
20% of Gaussian noise. Compare the results with the 

Standard CGLS method; it achieved a 0.4480 relative 
error value at the 77 iterations. The FP-CGLS along 
with the DBIM method produces a reconstructed image 
with the accuracy of 0.8760 in 4 DBIM iterations.    
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