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Abstract – In this contribution, the authors focus on the
use of a metasurface (physically implemented as a 2D
array of spiral resonators) as an additional component of
a two-coil Wireless Power Transfer (WPT) system, with
the aim of increasing the robustness to misalignment
between the transmitter and the receiver coils. Resonator
arrays have been proven to have a positive effect on
WPT systems’ performance since they produce a focus-
ing effect on the magnetic field; at the same time, they
contribute to the reduction of the electric near field. In
addition, we herein demonstrate how proper control over
the metasurface’s unit cells can contribute to making a
WPT system more tolerant to misalignment. In partic-
ular, the comparison between metasurfaces of different
sizes (keeping the same transmitting and receiving coils)
and their optimization performed to improve misalign-
ment robustness is proved by numerical simulations.

Index Terms – Metamaterials, metasurfaces, misalign-
ment compensation, wireless power transfer.

I. INTRODUCTION
Wireless Power Transfer (WPT) apparatuses based

on resonant multi-coil systems are becoming popular
devices. Especially for low-power applications, WPT
can be already considered a consumer-ready product,
regulated by specific international standards such as Qi.
At the same time, power levels up to hundreds of kilo-
watts can be delivered with the same concept (but with
different and more complex systems) for applications
such as e-mobility. In this latter case, more aspects
should be taken into account in the design phase of
the WPT system, such as electromagnetic shielding and
cooling issues ([1–7]).

Electromagnetic shielding is a particularly impor-
tant aspect when WPT apparatuses are used to power

biomedical devices or implants due to the proximity of
human tissue being at its maximum. Several solutions
for the reduction of magnetic field leakage are available
in the literature, employing shields and passive or active
coil arrangements [8–13].

More recently, some research shows that metamate-
rials (most commonly implemented as 2D metasurfaces)
can be useful to increase power transfer efficiency by
focusing the magnetic field and not being excessively
prone to eddy currents [14–15]. In addition, in [16]the
authors demonstrated that the use of a metasurface can
also improve the system’s performance from the EMC
point of view by reducing the electric near field produced
by the transmitting side of a WPT system.

Nevertheless, all of the above-mentioned applica-
tions critically suffer from misalignment between the
transmitter and the receiver; indeed, not perfectly aligned
coils share a drastically reduced inductive mutual cou-
pling, leading to a degradation of the global WPT per-
formance (efficiency, amount of delivered power, flux
leakage). In some commercial products, misalignment is
solved by forcing the position between transmitter and
receiver (i.e., in the wireless rechargeable toothbrushes).
Unfortunately, this is not always a viable option, for
obvious reasons. The authors demonstrated that the
insertion of a metasurface between driving and receiv-
ing coils also mitigates the efficiency drop problem that
arises from misalignment in a common inductive WPT
system [17]. Other research groups proposed a tunable
active version of the resonator’s matrix, with the same
purposes [18–19].

In this contribution, a study on a metasurface, in
which each resonator is passive, is performed, with the
goal of addressing the misalignment recovering purpose.

The analysis is conducted both by employing
full wave electromagnetic software (for the system
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characterization) together with a circuit simulator. Dif-
ferent optimization procedures are followed to find the
best values of the capacitors that are connected to each
single resonator of the metasurface

The practical implementation of the proposed com-
pensation is case-dependent. If the geometrical structure
of the system allows misalignment only along one direc-
tion, a direct solution without active devices, taking into
account the results shown below, is feasible. In case the
misalignment is completely not predictable, then the use
of varicaps is needed.

The results obtained (and shown in this paper)
demonstrate that the use of passive metasurfaces for mis-
alignment compensation is possible, and constitutes a
basis for the designers, evidencing how the size of the
metasurface affects the performance of the system.

II. WORKING PRINCIPLE
The WPT configuration object of this study is a

commonly used magnetic resonance-based system, in
which a compensation network is present both at the
transmitter and receiver sides; the compensation net-
work makes the system resonant at a specific working
frequency.

Instead of adopting additional repeater coils (typi-
cally one or two), a metasurface is specifically designed.
Typically, all the metasurface elements are tuned at the
same operating frequency of the two main coils (trans-
mitter and receiver); moreover, the metasurface is usu-
ally positioned in between the two principal coils, at a
specific distance from one of them, depending on the
specific purpose it is designed for.

The authors in [16] demonstrated that an optimally
designed metasurface, located in close proximity to the
transmitter, reduces the electric field that could reach
values above the limits recommended by the ICNIRP
guidelines. In the same study, the authors performed an
analysis of the geometrical characteristics of the meta-
surface, identifying, for this particular case, the optimal
number of elements. This optimum allowed us to achieve
the desired shielding level while maintaining an accept-
able decrease in the performance due to increased losses
in the metasurface itself.

By starting from this study, Fig. 1 shows the com-
plete system after the design process, leading to an opti-
mal configuration of the metasurface, i.e., a 5×5 matrix
of resonators. The system has been designed and pro-
totyped, showing that a real shielding effect can be
achieved [16].

Figure 1, on the contrary, shows the same configura-
tion but with the presence of a misalignment (indicated
by Dy) between the transmitting and receiving coils.
As anticipated, a misalignment between transmitter and
receiver in resonant WPT systems reduces the coupling
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Fig. 1. Geometry of the proposed WPT system: (a) coax-
ial; (b) with a Dy misalignment along y axis.

coefficient, hence both the transmitted power and the
efficiency. There are various techniques to reduce the
misalignment effect on the performance, ranging from
mechanical constraints to a closed loop communication
between transmitter and receiver (implemented by the
measurement of sensitive quantities such as currents, for
instance), that gives feedback to the operator relative to
the misalignment quantity.

In this contribution, the authors focus on the use of
a passive metasurface as the means to recover the mis-
alignment between transmitter and receiver. The advan-
tage of this choice relies on the fact that no complex
communication link should be created; in addition, a pas-
sive metasurface, if compared to an active device, avoids
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the presence of complex networks for changing loading
capacitors values. In [17], only a metasurface of spe-
cific dimensions was considered (coincident with the one
shown in Fig. 1); in this case, the side of the square meta-
surface is coincident with the diameter of the transmitter
and receiver coils. As demonstrated in [16], this solution
reduces joule losses (that are introduced in the case of
larger metasurfaces, i.e., with a higher number of res-
onators), but once one of the two coils is moved, there is
a significant part of its surface that is projected outside
the metasurface. This led the authors to investigate the
possibility of employing larger metasurfaces that, despite
being characterized by higher power losses, can reduce
performance degradation in case of misalignment.

For this reason, the performances of metasurfaces
of different dimensions are compared, and a procedure
for the optimization of the loading capacitors’ value is
performed.

III. NUMERICAL METHODS
The CAD model of the system, as shown in Fig. 1,

has been created with commercial electromagnetic soft-
ware (Feko suite, Altair, Troy, MI, USA) based on the
Method of Moments. In the full wave model, each coil
of the WPT system (including the unit cells of the meta
surface) terminates in a lumped port. The ports of the
metasurface elements are, in turn, closed on a lumped
capacitor; the port of the driver coil (transmitter) is ter-
minated with a series connection between the generator
and the proper resonant capacitor, while the port of the
receiver is terminated with the resonant capacitor and
resistive load.

A single full-wave simulation (for a given operation
frequency) allows the characterization of the system as
an N-port entity, represented by using the S or Z parame-
ters matrix. In this particular case, N−2 ports are relative
to the lumped loading capacitances of the metasurface
unit cells (used to impose resonance of each resonator
at the selected frequency) while the 2 remaining ports
(labeled as Port 1 and Port 2) are relative to the transmit-
ter and receiver, represented in Fig. 2 as a generator and
a resistive load, respectively.

The rationale behind the choice of finding an equiv-
alent circuit stands in the fact that we are not interested
in the field distribution, but only in the performances of
the system in terms of currents and voltages. Indeed, the
efficiency of the system is calculated as:

η =
Pout

Pin
=

∣∣İ2
∣∣2RL

R
{

Ė İ∗1
} . (1)

Equation (1) applies to the N-port circuit repre-
sented in Fig. 2. A more synthetic representation would
be the usual 2-port circuit, easily obtainable by the same
full-wave model and not considering the capacitors as
external ports, as in the following expression.
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While this synthetic representation would anyway
allow the evaluation of the efficiency as in equations (1)
and (2) and give more insight due to the explicit pres-
ence of the impedance parameters, it will not allow for
an optimization of the capacitances to achieve misalign-
ment compensation.

The calculations on the N-port circuit have been car-
ried out by using the Keysight Advanced Design System
(ADS) software, according to the following steps:

a. evaluation of the performance in case of perfect
alignment between transmitter and receiver, with
the capacitance value optimized to a specific single
nominal value;

b. evaluation of the performances in case of misalign-
ment, with the capacitances set to the nominal value
(as in the previous simulation);

c. optimization the capacitances, with the goal of max-
imizing the efficiency level of the system in pres-
ence of misalignment.

The optimization procedure used in this paper is
directly implemented in the software ADS; the num-
ber of parameters to be optimized is relatively high
(the capacitance of each lumped element present in the
metasurface, ranging from 25 to 81 in the following
results), and the fitness function in equation (2) is rel-
atively flat with a high number of local minima. How-
ever, the obtained results are sound and small differences
in the value of the capacitances (obtained in different
optimization runs) do not significantly affect the results.
The authors also performed a set of Montecarlo analysis
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(not shown here for the sake of conciseness) to verify
how the system is robust towards capacitances variation
due to tolerance, and the outcome confirm the validity of
the results shown below.

IV. RESULTS
The numerical cases reported in this section have

been obtained by employing the commercial tools men-
tioned before; in addition, the system named “test case
#1” has been also implemented in a lab experiment, as
described below. On the contrary, the test cases with
metasurfaces of larger dimensions have been imple-
mented only numerically. All the simulations results are
characterized by a voltage source of amplitude Ė = 1V ,
since the goal of the analysis is to validate the working
principle of the proposal. Both the generator and the load
resistances (Rs and RL respectively) have been chosen
equal to 50Ω.

A. Test case #1: metasurface and coils characterized
by the same dimension

The first results are relative to the experimental
setup proposed in [16], in which the metasurface is a
square slab with the side coincident with the diameter
of the transmitting and receiving coils, fabricated with
a 3D printing process. The slab was engraved with spi-
ral grooves following the unit cells profile thanks to a
commercial 3D printer. Table 1 shows the main geomet-
rical quantities, while Fig. 3 shows the system during the
experiments performed and described in [16].

In this nominal case, the optimal value of the capac-
itances that leads to the higher efficiency level is Cnom =
585pF . A full-wave simulation with all the unit cells
tuned with Cnom has been carried out to obtain the
efficiency (as defined in equations (1) - (3)) and the
power delivered to the load, respectively η = 0.57, PL =
0.37mW .

Later, the same simulation has been performed in the
case of a misalignment of the receiver, where Dy = 6cm
(see Fig. 4).

Table 1: Geometrical quantities of the system
Quantity Value
Tx diameter D = 18cm
Rx diameter D = 18cm
Operating frequency f0 = 6 MHz
Slab thickness l = 5mm
Unit cell conductor diame-
ter

dcopper = 1.4mm

Unit cell average diameter dcell = 40mm
Slab distance from the
transmitter

1.4cm

Number of resonators 5×5
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In the misaligned configuration, the performances
are summarized by efficiency and power as η = 0.49,
PL = 0.27mW , which is lower with respect to the previ-
ous nominal case.

To improve the performances in case of misalign-
ment, different values of the tuning capacitors are con-
sidered; the optimization procedure has now been set
to optimize every single capacitance. This result in new
values of efficiency and power to the load, respectively
η = 0.52, PL = 0.36mW .

As it is evident from the previous values, the new
capacitances allow a partial recovery both of the effi-
ciency and the power delivery levels.

Figure 5 shows a 5× 5 colormap matrix in which
the values of the capacitances are associated with their
position in the metasurface. At a first glance, it can be
easily noted that in areas of the metasurface not cov-
ered by the misaligned receiver, the capacitance assumes
a higher value, i.e., the single resonator is characterized
by a higher inductive behavior.
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capacitances variation due to tolerance, and the outcome 

confirm the validity of the results shown below. 

 

IV. RESULTS 
The numerical cases reported in this section have 

been obtained by employing the commercial tools 

mentioned before; in addition, the system named “test 

case #1” has been also implemented in a lab experiment, 

as described below. On the contrary, the test cases with 

metasurfaces of larger dimensions have been 

implemented only numerically. All the simulations 

results are characterized by a voltage source of amplitude 

�̇� = 1𝑉, since the goal of the analysis is to validate the 

working principle of the proposal. Both the generator 

and the load resistances (𝑅𝑠 and  𝑅𝐿 respectively) have 

been chosen equal to 50Ω. 

 

A. Test case #1: metasurface and coils 

characterized by the same dimension 
The first results are relative to the experimental 

setup proposed in [16], in which the metasurface is a 

square slab with the side coincident with the diameter of 

the transmitting and receiving coils, fabricated with a 3D 

printing process. The slab was engraved with spiral 

grooves following the unit cells profile thanks to a 

commercial 3D printer. Table 1 shows the main 

geometrical quantities, while Figure 3 shows the system 

during the experiments performed and described in [16]. 

 

 
Figure 3. Experimental setup. The metasurface is placed 

few millimeters above the driving coil. 

 

Table 1: Geometrical quantities of the system 

Quantity Value 

Tx diameter 𝐷 = 18𝑐𝑚 

Rx diameter 𝐷 = 18𝑐𝑚 

Operating frequency 𝑓0 = 6 𝑀𝐻𝑧 

Slab thickness 𝑙 = 5𝑚𝑚 

Unit cell conductor diameter 𝑑𝑐𝑜𝑝𝑝𝑒𝑟 = 1.4𝑚𝑚 

Unit cell average diameter 𝑑𝑐𝑒𝑙𝑙 = 40𝑚𝑚 

Slab distance from the 

transmitter 
1.4cm 

Number of resonators 5 × 5 

 

In this nominal case, the optimal value of the 

capacitances that leads to the higher efficiency level is 

𝐶𝑛𝑜𝑚 = 585𝑝𝐹. A full-wave simulation with all the unit 

cells tuned with 𝐶𝑛𝑜𝑚 has been carried out  to obtain the 

efficiency (as defined in equations (1) - (3)) and the 

power delivered to the load, respectively 𝜂 = 0.57, 𝑃𝐿 =
0.37𝑚𝑊.  

Later, the same simulation has been performed in 

the case of a misalignment of the receiver, where 𝐷𝑦 =

6𝑐𝑚 (see Figure 4). 

 
Figure 4. Representation of the WPT system with the 

misaligned receiver. 

 

In the misaligned configuration, the performances 

are summarized by efficiency and power as 𝜂 = 0.49, 

𝑃𝐿 = 0.27𝑚𝑊, which is lower with respect to the 

previous nominal case.  

 To improve the performances in case of 

misalignment, different values of the tuning capacitors 
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set to optimize every single capacitance. This result in 

new values of efficiency and power to the load, 

respectively  𝜂 = 0.52, 𝑃𝐿 = 0.36𝑚𝑊.  

As it is evident from the previous values, the new 

capacitances allow a partial recovery both of the 

efficiency and the power delivery levels. 

 

Fig. 5. Values of the tuning capacitors in the metasurface
with 5×5 elements.

B. Test case #2: metasurface side larger than coils
diameters (7×7 elements)

In this second case, the authors simulated the pres-
ence of a slab of wider dimension, i.e., whose side is larger
than the transmitting and receiving coil diameters. The
metasurface is now composed of a 7 × 7 matrix of the
same identical spiral resonators, with the aim of investi-
gating the possibility of an increased capability misalign-
ment compensation. The new test case is shown in Fig. 6,
both in the aligned and in the misaligned configuration.
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the values of the capacitances are associated with their 

position in the metasurface. At a first glance, it can be 

easily noted that in areas of the metasurface not covered 

by the misaligned receiver, the capacitance assumes a 

higher value, i.e., the single resonator is characterized by 

a higher inductive behavior. 
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presence of a slab of wider dimension, i.e., whose side is 

larger than the transmitting and receiving coil diameters. 

The metasurface is now composed of a 7 × 7 matrix  of 

the same identical spiral resonators, with the aim of 

investigating the possibility of an increased capability 

misalignment compensation. The new test case is shown 
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configuration. 

 

  
 

Figure 6. WPT system with 7 × 7 metasurface, with the 

receiver in aligned position (left) and misaligned 

position (right). 

 

In the nominal case, the optimal value of the 

capacitances that leads to the higher efficiency is 𝐶𝑛𝑜𝑚 =
598𝑝𝐹; with all the unit cells tuned with 𝐶𝑛𝑜𝑚, the 

efficiency and the power delivered to the load, 

respectively, are  𝜂 = 0.57, 𝑃𝐿 = 0.77𝑚𝑊.  

The simulation has been replicated in presence of 

the same misalignment 𝐷𝑦 = 6𝑐𝑚 (see Figure 6). It is 

worth noticing that, in this case, the slab 7×7 

(characterized by increased size) covers both the 

transmitter and the receiver also in the misaligned 

configuration, leading to a potentially higher capability 

of misalignment recovery. 

In this case, the performances are summarized by 

efficiency and power as 𝜂 = 0.52, 𝑃𝐿 = 0.61𝑚𝑊, that 

are lower with respect to the previous nominal case. At 

the same time, a newsworthy result is derived: the 

performance decrease is lower if compared to the 

previous case. 

The same optimization procedure has been 

performed in this case, resulting in new values of the 

selected performance parameters, respectively𝜂 = 0.56, 

𝑃𝐿 = 0.59𝑚𝑊.  

As it is evident from the previous values, the new 

capacitances allow an almost complete recovery of the 

efficiency also in the misaligned configuration. 

 

 
Figure 7. Values of the tuning capacitors in the 

metasurface with 7×7 elements. 

 

Figure 7 shows a 7 × 7 colormap matrix in which 

the values of the capacitances are associated with their 

position in the metasurface. Again, it is easy to verify 

that in the section of the metasurface not covered by the 

misaligned receiver, the capacitance assumes a higher 

value. 

 

C. Test case #3: metasurface side larger than 

coils diameters (9 × 9 elements) 
 

In the final case shown in this paper, the authors 

simulated the presence of a slab of an even wider 

dimension, i.e., a matrix of 9 × 9 resonators. The new 

test case is shown in Figure  8, both in the aligned and in 

the misaligned configuration. 

 

  
 

Figure 8. WPT system with 9 × 9 metasurface, with the 

receiver in aligned position (left) and misaligned 

position (right). 
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receiver in aligned position (left) and misaligned posi-
tion (right).

In the nominal case, the optimal value of the
capacitances that leads to the higher efficiency is
Cnom = 598pF ; with all the unit cells tuned with Cnom,
the efficiency and the power delivered to the load, respec-
tively, are η = 0.57, PL = 0.77mW .

The simulation has been replicated in presence of
the same misalignment Dy = 6cm (see Fig. 6). It is worth
noticing that, in this case, the slab 7×7 (characterized
by increased size) covers both the transmitter and the
receiver also in the misaligned configuration, leading to
a potentially higher capability of misalignment recovery.

In this case, the performances are summarized by
efficiency and power as η = 0.52, PL = 0.61mW , that
are lower with respect to the previous nominal case. At
the same time, a newsworthy result is derived: the perfor-
mance decrease is lower if compared to the previous case.

The same optimization procedure has been per-
formed in this case, resulting in new values of the
selected performance parameters, respectively η = 0.56,
PL = 0.59mW .

As it is evident from the previous values, the new
capacitances allow an almost complete recovery of the
efficiency also in the misaligned configuration.

Figure 7 shows a 7×7 colormap matrix in which the
values of the capacitances are associated with their posi-
tion in the metasurface. Again, it is easy to verify that in
the section of the metasurface not covered by the mis-
aligned receiver, the capacitance assumes a higher value.
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the same time, a newsworthy result is derived: the 
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previous case. 
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simulated the presence of a slab of an even wider 
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Fig. 7. Values of the tuning capacitors in the metasurface
with 7×7 elements.

C. Test case #3: metasurface side larger than coils
diameters (9×9 elements)

In the final case shown in this paper, the authors sim-
ulated the presence of a slab of an even wider dimension,
i.e., a matrix of 9× 9 resonators. The new test case is
shown in Fig. 8, both in the aligned and in the misaligned
configuration.

In the nominal case, the optimal value of the
capacitances that leads to the higher efficiency is
Cnom = 607pF ; with all resonators tuned with Cnom the
efficiency and the power delivered to the load, respec-
tively are η = 0.52, PL = 1.3mW .

The same simulations have been performed in pres-
ence of the same misalignment Dy = 6cm (see Fig. 8). In
this case, the performances are summarized by efficiency
and power as η = 0.48, PL = 1.13mW , which are lower
with respect to the previous nominal case. In the present
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Fig. 8. WPT system with 9 × 9 metasurface, with the
receiver in aligned position (left) and misaligned posi-
tion (right).

case, an already observed and interesting trend is con-
firmed: the performance decrease is lower if compared
to the previous cases.

The same optimization procedure has been per-
formed in this case, resulting in new values of the
selected performance parameters, respectively η = 0.51,
PL = 0.59mW .

In this case, the recovery in terms of efficiency is
practically total, even though it is performed at the cost
of a lower power delivered to the load.

Figure 9 shows a 9×9 colormap matrix in which the
values of the capacitances are associated with their posi-
tion in the metasurface. Again, it is easy to verify that in
the section of the metasurface not covered by the mis-
aligned receiver, the capacitance assumes a higher value,
suggesting a systematic behavior that the metasurface
needs to present with the aim of compensating for the
misalignment introduction in a specific direction, thus
confirming what already guess by the authors in [17].

In the nominal case, the optimal value of the 

capacitances that leads to the higher efficiency is𝐶𝑛𝑜𝑚 =
607𝑝𝐹; with all resonators tuned with 𝐶𝑛𝑜𝑚 the 

efficiency and the power delivered to the load, 

respectively are  𝜂 = 0.52, 𝑃𝐿 = 1.3𝑚𝑊.  

The same simulations have been performed in 

presence of the same misalignment 𝐷𝑦 = 6𝑐𝑚 (see 

Figure 8). In this case, the performances are summarized 

by efficiency and power as 𝜂 = 0.48, 𝑃𝐿 = 1.13𝑚𝑊, 

which are lower with respect to the previous nominal 

case. In the present case, an already observed and 

interesting trend is confirmed: the performance decrease 

is lower if compared to the previous cases. 

The same optimization procedure has been 

performed in this case, resulting in new values of the 

selected performance parameters, respectively𝜂 = 0.51, 

𝑃𝐿 = 0.59𝑚𝑊.  

In this case, the recovery in terms of efficiency is 

practically total, even though it is performed at the cost 

of a lower power delivered to the load. 

Figure 9 shows a 9 × 9 colormap matrix in which 

the values of the capacitances are associated with their 

position in the metasurface. Again, it is easy to verify 

that in the section of the metasurface not covered by the 

misaligned receiver, the capacitance assumes a higher 

value, suggesting a systematic behavior that the 

metasurface needs to present with the aim of 

compensating for the misalignment introduction in a 

specific direction, thus confirming what already guess by 

the authors in [17]. 

 

 
Figure 9. Values of the tuning capacitors in the 

metasurface with 9×9 elements. 

 

D. General comments 
The following overall trend can be evidenced: 

● The nominal capacitance capable of making the 

whole system resonate at 𝑓0 = 6 𝑀𝐻𝑧 slowly 

increases with the dimension of the 

metasurface. This is due to the known 

frequency shifting phenomenon caused by the 

mutual coupling between all the metasurface 

elements. The larger the metasurface, the higher 

the mutual coupling contribution coming from 

the surrounding cells.  

● An increase of the dimension of the 

metasurface above a certain limit, causes a 

reduction of the efficiency, because of the joule 

losses in the high-number resonators. 

Moreover, the unit cells far from the center of 

the Tx or Rx coils have practically no effect on 

the field focusing. 

● An increase in the dimension of the metasurface 

allows a lower performance degradation in case 

of misalignment. 

● An increase in the dimension of the metasurface 

allows a stronger efficiency recovery when the 

values of the capacitances are properly selected. 

● The inductive behavior of the single resonators 

appearing in case of misalignment (of the areas 

of the metasurface not covered by the 

misaligned receiver) can be explained by the 

need of reducing the current in these particular 

resonators to redistribute the magnetic field 

spatial configuration, that is achieved with an 

increase of the equivalent inductance. 

Considering all the previous points, from the 

economical point of view, the inclusion of a passive 

metasurface in a WPT system does not significantly 

affect its overall cost. In case the metasurface is 

implemented with the use of varicaps, the main cost 

increase would be relative to the varicaps control circuit, 

but in the authors’ opinion, it will not anyway be 

comparable with the cost of the high-frequency AC 

power supply. 

 

VI. CONCLUSION 
In this paper the authors investigated the use of 

passive metasurfaces as a tool for the compensation of 

misalignment in wireless power transfer systems. 

Starting from a system implemented in the lab, the 

authors have simulated metasurfaces of different 

dimensions and verified that, when they are properly 

designed, they can contribute to the reduction and 

compensation of performance degradation, in case a 

perfect placement of the transmitter and receiver coil 

cannot be guaranteed.  
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D. General comments
The following overall trend can be evidenced:

• The nominal capacitance capable of making the
whole system resonate at f0 = 6 MHz slowly
increases with the dimension of the metasurface.
This is due to the known frequency shifting phe-
nomenon caused by the mutual coupling between
all the metasurface elements. The larger the meta-
surface, the higher the mutual coupling contribution
coming from the surrounding cells.

• An increase of the dimension of the metasurface
above a certain limit, causes a reduction of the
efficiency, because of the joule losses in the high-
number resonators. Moreover, the unit cells far from
the center of the Tx or Rx coils have practically no
effect on the field focusing.

• An increase in the dimension of the metasurface
allows a lower performance degradation in case of
misalignment.

• An increase in the dimension of the metasurface
allows a stronger efficiency recovery when the val-
ues of the capacitances are properly selected.

• The inductive behavior of the single resonators
appearing in case of misalignment (of the areas
of the metasurface not covered by the misaligned
receiver) can be explained by the need of reducing
the current in these particular resonators to redis-
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Considering all the previous points, from the eco-
nomical point of view, the inclusion of a passive meta-
surface in a WPT system does not significantly affect its
overall cost. In case the metasurface is implemented with
the use of varicaps, the main cost increase would be rel-
ative to the varicaps control circuit, but in the authors’
opinion, it will not anyway be comparable with the cost
of the high-frequency AC power supply.

V. CONCLUSION
In this paper the authors investigated the use of pas-

sive metasurfaces as a tool for the compensation of mis-
alignment in wireless power transfer systems. Starting
from a system implemented in the lab, the authors have
simulated metasurfaces of different dimensions and ver-
ified that, when they are properly designed, they can
contribute to the reduction and compensation of perfor-
mance degradation, in case a perfect placement of the
transmitter and receiver coil cannot be guaranteed.
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