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Abstract – In this paper a new method of applying
Chebyshev distribution for series fed antenna array was
proposed for radar applications. The first part of this
study consists of applying the proposed method on
antenna arrays working at 2.3 GHz (S-band radar appli-
cations) with 6, 8, 10, 14, and 28 elements, whereas the
second part of the study is applying the method on an-
tenna arrays working at 5.2 GHz (C-band radar applica-
tions) with the same number of elements. The achieved
sidelob level is around (19.6- 24 dB).The obtained an-
tenna gain is around (10-17.4 dB) depending on the num-
ber of elements. Whereas the horizontal half-power beam
width is around (7◦ – 20◦).

Index Terms – Antenna array, Chebyshev distribution,
series fed, side lob level.

I. INTRODUCTION
Radars can be used in many fields such as marine

applications, air traffic control, and military fields. There
are many frequency bands dedicated to radar applica-
tions, for example, X-band (8.5-10.5 GHz), S-band (2.3-
2.38 GHz), and C- band (5.2-5.8 GHz) [1].

In general, antennas play a significant role in radar
systems and they affect the performance of the radar sys-
tems. There are many types of antennas used in radars
applications such as parabolic antennae, horn antennae,
and microstrip antennae. The accuracy of radar detection
depends on several antenna parameters for instance side
lobe level, HPBW, polarization, and gain. Microstrip an-
tenna arrays are widely used in radar applications, due
to their unique features such as high gain, low cost,
lightweight, and low profile, and can accurately con-
trol the radiation patterns [2]. The desired radiation pat-
tern of the antenna array can be formed depending on
the spacing between the elements. It is also relying on
the excitation’s distribution of the elements. The most
popular methods of amplitude distribution are uniform,
Chebyshev and Binomial distribution. Feeding of mi-

crostrip patch antenna array can be achieved by sin-
gle feed or multiple ports. Because of the simplicity of
a single feed port, it is widely used in radar antennas.
Chebyshev method was chosen to apply to the series feed
array antenna with single.

Reducing the side lobe of antenna arrays has at-
tracted much research in recent years [3–8]. Designing
a series-fed microstrip array antenna for x-band Indone-
sian maritime radar was proposed by Hajian M. et al.
In the mentioned work, the researchers designed an 8-
and 16element antenna array and they used the spacing
between elements as a parametric study to optimize the
radiation pattern [9]. Chen Z. and Otto S. studied a ta-
per optimization of a microstrip patch antenna array [10].
A 2*16-element antenna array working at 9.35 GHz for
marine radar applications were proposed by Kuo F. Y.
and Hwang R. B. [11]. The researchers used s-parameter
analysis to find the values of main feed line impedances
by which the Chebyshev distribution is achieved [11].
Milijić M. et al studied the influence of feeding structure
on the side lobe level [12]. A 4*4 non-uniform antenna
array working at 0.9 GHz was designed by Inserra D., Hu
W., and Wen G. They used a sequentially rotated series
power divider to apply a Chebyshev tapering [13]. Toan,
Tran, and Giang proposed a double-sided printed dipole
linear array antenna working at 5.5 GHz for WLAN out-
door applications. The proposed antenna consists of 10-
element double side; also the researchers used series-fed
Chebyshev tapering [14].

The main idea behind this paper is to examine a
new analysis method to apply Chebyshev distribution
for a series-fed microstrip antenna array. The distribu-
tion of amplitude excitations of the array elements is
controlled by changing the width of the main feed line.
The variation of the width was evaluated depending on
the impedance values, which were calculated by the pro-
posed method. By applying this method of analysis,
a wider feed line was obtained as compared to other
works. This technique allows more power to be trans-
mitted through the antenna array due to the fact that
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impedance values are reduced with increasing the width
of the feed line. In addition, the increased width of the
feed lines is an advantage from the manufacturing per-
spective since less fabrication accuracy is needed. Fur-
thermore, the proposed method in this work has shown
that the variation of the feed line’s impedance is too small
where the impedance values are ranging from 43 to 70
Ω, which in fact doesn’t necessitate the use of λ /4 trans-
form. All these advantages of the proposed technique
cause the proposed antenna arrays to exhibit low com-
plexity and low fabriction cost in addition to handling
higher power while maintaining the standard acceptable
performance.

II. THEORETICAL ANALYSIS
The analysis of the feeding network was achieved

by considering each feed line of the elements as a tee
junction, which is denoted by T1, T2....T6 as shown in
Fig. 1, [11]. The distance between the two elements was
chosen to be one wavelength λ , whereas the length of
the feeding line of each element is λ /4 see Fig. 1. The
power ratio between the tee junction ports is depending
on the characteristic impedance of the microstrip lines.
The impedances of the main feed line are denoted by Zi,
where i = 1, 2. . . 7 as explained in Fig. 2. The value of
Z1 was assumed to be 70 Ω. The impedances of the feed
lines of all the elements were assumed to be the same
and denoted by Z = 50 Ω except element 7, which was
assumed to be 45 Ω. The values of Z(in,1) to Z(in,6) which
represent the impedances seen after i-th tee junction were
calculated depending on the power divider relation. For
example, to calculate Z(in,1), at tee junction 1 the power
divider relationship is given by [13]:

PinZ1 = Pin,1Zin,1. (1)
Where: Pin is the total power fed to the one side of the
feeding network. Pin,1 is the power delivered to port 2 of
the first tee junction and it is given by Eq. 2.

Pin,1 = Pin −P1. (2)
Where P1, P2 . . . . . . . Pi is the power fed to each ele-
ment of the array, which was calculated according to
the Chebyshev distributions. Therefore, the values of
Z(in,1) to Z(in,6) were evaluated using Eq. 1. To calcu-
late the values of Zi, a reverse impedance analysis was
applied. The values of the calculated Zi are listed in
Table 1. Depending on the assumed values of Z1 and Z,
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Table 1: Values of calculated impedances of the main
feed line

Impedance Value of the
Impedance Ω

Width of the
Line (mm)

Z1 (assumed) 70 1.5
Z2 49.5 3
Z3 51.1 2.85
Z4 51.7 2.8
Z5 52.5 2.7
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the obtained range of Zi is extended from 43 to 70 Ω. On
the other hand, this assumption excludes the use of λ /4
transform between the elements but only one λ /4 trans-
form is used in the feed that separates both sides of the
antenna array.

III. ANTENNA DESIGN
A rectangular microstrip antenna was chosen to be

the basic element of the array. The width (W) and length
(L) of the elements were optimized to satisfy the de-
sired frequency bands. At the S-band, the dimensions of
the patch antenna is W = 39.18 mm and L = 30.4 mm,
whereas W = 17.1 mm and L = 12.8 mm at the C-band.

At the beginning, a 14-element antenna array work-
ing on 2.3 GHz was designed. The array is divided into
two symmetrical parts each part contains 7 elements as
shown in Fig. 1. The proposed antenna array was imple-
mented on FR4 substrate with relative dielectric constant
εr = 4.3, thickness of 1.6 mm and tangent loss δ=0.025.

The feeding network was designed according to the
Chebyshev distribution. The amplitude excitation of each
element was calculated based on the Chebyshev method
[1] and listed in Table 2. To validate the proposed method
of feeding network analysis, two steps were applied.
The first step is to change the number of elements (6, 8
and 10) for the proposed antenna array at 2.3 GHz. The
second step of validation is to redesign the same antenna
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Table 2: Calculated Chebyshev amplitude excitation
Amplitude
Excitation
of the i-th
Element

6
Elements

8
Elements

10
Elements

14
Elements

a1 1 1 1 1
a2 0.72 0.818 0.89 0.786
a3 0.37 0.544 0.706 0.496
a4 —— 0.33 0.485 0.266
a5 —— —— 0.357 0.138
a6 —— —— —— 0.077
a7 —— —— —— 0.0065

arrays (6, 8, 10 and 14 elements) at different frequency
band (5.2 GHz). To increase the gain of the array, the
number of elements was duplicated as shown in Fig. 3 to
be a 2∗14-element antenna array.

IV. RESULTS ANALYSIS
This section presents the simulated results of the

proposed antenna arrays in terms of reflection coeffi-
cient (S11), surface current distribution, half power beam
width (HPBW), antenna gain and sidelobe level at two
frequency bands (S and C band). These simulated re-
sults are obtained by CST software package. The sim-
ulated reflection coefficients for the two arrays are ex-
plained in Figs. 4 (a) and (b). Each array is simulated
with different number of elements (6, 8, 10, 14 and 28
elements) to show their effect on the bandwidth. It is
clear from figures that the obtained bandwidth fluctuated
when increasing the number of elements in both bands.
These fluctuations can be related to the effect of the feed-
ing network. By increasing the number of elements the
feeding network becomes more complex and the over-
all impedance of the antenna array will change. This
will affect the S11 and bandwidth results. Additionally,
it can be noticed that there is a small shift in the operat-
ing frequency bands. This shift happened because of the
change of the total physical length of the array antenna
due to the change in the number of elements in each
array.
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Fig. 4. S11 of the designed antenna arrays at: (a) S-band.
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Furthermore, the 2D-Normalized antenna array pat-
terns in xz-plane were plotted in Fig. 5 while the
antenna parameters of the presented antennas like
HPBW, antenna gain and side lob level were listed in
Tables 3 and 4. These tables show the natural trend of
decreasing HPBW with increasing the number of radiat-
ing elements in 1-D antenna array [2]. This means com-
pressing the radiation pattern in the xz-plane (horizon-
tal) and expanding the radiation pattern in the yz-plane
(vertical). The only exception for the previous scenario
is in the case of the 2∗14 element where the horizontal
HPBW is slightly increased approximately by 2◦. This
increase is resulted from duplicating the number of ele-
ments from 14 to 2∗14 element, which leads to compress
the pattern in elevation and expand the pattern in the hor-
izontal plane.
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Table 3: HPBW, Gain and SLL of array antennas at
2.35 GHz
No. of Elements HPBW

(deg.)
xz-

Plane

HPBW
(deg.)

yz-
Plane

BW
(MHz)

Gain
(dB)

SLL
(dB)

6 20.3 78 44 10 −22
8 19.5 79 40 10.8 −20
10 17 81 76 11.3 −23
14 7.4 89 169 14.5 −20
2*14 9.1 86 199 17.4 −21.5

Table 4: HPBW, Gain and SLL of array antennas at
5.2 GHz
No. of
Ele-

ments

HPBW
(deg.) xz-

Plane

HPBW (deg.)
yz- Plane

BW
(MHz.)

Gain
(dB)

SLL
(dB)

6 20.4 79 240 10.1 −19.7
8 20 79 387 10.3 −19.6
10 13.1 82 290 11.4 −21.9
14 8.4 85 408 13.2 −20.1
2*14 10.8 83 357 17 −23.1

Moreover, the tables indicate that the gain of an-
tenna arrays are increased with increasing the number
of elements. A 3dB gain enhancement was obtained by
duplicating the radiating elements from 14 to 28. Re-
garding to the achieved side lob level, it is approximately
-19 down to -25 dB. On the other hand, the surface cur-
rent distribution for the 2∗14-element antenna array is
shown in Fig. 6. It evident that the radiating elements
at the center of the arrays have higher amplitude ex-
citation compared to the elements at the edges of the
arrays as shown in the amplitude excitation values in
Table 2. Finally, the 3D and 2D radiation patterns for
28 elements were illustrated in Fig. 7 and Fig. 8 at the
two bands.

V. EXPERIMENTAL RESULTS
To validate the simulation results, 14 and 28-

element prototype antenna arrays at 5.2GHz were cre-
ated on a PCB board as shown in Fig. 9. A vector net-
work analyzer (VNA) was used to test the S-parameter
of the printed antennas. Comparisons between the sim-
ulated and measured outcomes for the two proposed an-
tennas are depicted in Fig. 10. It is clear from these com-
parisons that the results of the 2∗14-element antenna ar-
ray have the same tendency whereas some differences
were noticed in the results of the 14-element antenna
array.

The radiation pattern is another significant parame-
ter that should be tested practically inside the anechoic
chamber to show the side lobes levels and compare it

(a)

(b)

Fig. 5. 2D Radiation pattern in x-z plane of the designed
antenna arrays at: (a) 2.35 GHz; (b) 5.2 GHz.

(a)

(b)

Fig. 6. Surface current distribution of 28 element at: (a)
2.35 GHz; (b) 5.2 GHz.

with the simulation ones. The x-y plane radiation pat-
tern was plotted. Figure 11 shows the comparison of the
x-y plane radiation pattern of the theory with the simu-
lated and measured results. The theory results were ob-
tained using the equations listed in [1]. The array fac-
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(a) (b)

(c)

Fig. 7. Far-field radiation pattern of the antenna array at
2.35 GHz.: (a) H-plane; (b) E-plane; (c) 3D pattern.

(a) (b)

(c)

Fig. 8. Far-field radiation pattern of the antenna array at
5.2 GHz: (a) H-plane; (b) E-plane; (c) 3D pattern.

tor was calculated first and then multiplied with the ra-
diation pattern of the single-element antenna. It is clear
from Fig. 11 that a good agreement is achieved between
simulated and measured results for the two proposed an-
tenna arrays. All the obtained results are summarized in
Table 5. It is clear from the table that the experimental re-
sults have the same trend as those obtained by simulation
with small differences.

Finally, the differences between simulation and
measurements results in Figs. 10 and 11 can be related
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(a) 14-elements fabricated antenna array. (b) 28-elements
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Fig. 10. Comparison of S11 results between Simulation
and Measurements at C-band.
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due to the toleration of manufacturing and soldering,
there are some deviations between the measured and
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achieved the expected SLL. The differences between the
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(a) 

 
(b) 

Fig. 11. Comparison of xy-plane results for the printed 
antenna array at 5.2 GHz. (a) 14-elements.(b) 28- 
elements. 
 
 
Table 5. HPBW, gain and SLL of array antennas at 5.2 
GHz of the simulated and measurement results 
No. of Elements  HPBW 

(deg.) xz 
plane 

BW 
(MHz) 

Gain 
(dB) 

SLL 
(dB) 

14 Simulated  8.4  408  13.2 ‐20.1

14 Measured  12  318  12.1 ‐20

2*14 Simulated  10.8  357  17  ‐23.1

2*14 Measured  10  540  15.7 ‐24

VI. COMPARESION WITH OTHER WORKS 
Table 6 shows a comparison between the obtained 

results of the proposed antenna arrays in this article with 
other works. To make a fair comparison, the 
performance of the antenna array was compared with 
other works in literature that have the same number of 
elements. It was observed that a good agreement with 
such works is obtained in terms of HPBW and SLL. 
However, the values of BW that are obtained in this work 
outperform other reported works. In addition, there are 
some differences in gain values, which can be related to 
the number of elements or to the geometry of the antenna 
array as shown below. Finally, the overall agreement 
between the obtained results and the other works validate 

the proposed method of applying the Chebyshev 
distribution with gaining the advantage of less 
complexity and cost. 

By comparing the design of 10 elements with a  
reference [10], a good correlation was observed between 
the results. In [10], a symmetric 10-element antenna 
array with a Chebyshev tapering operating at 5.8 GHz 
has been designed by two methods of tapering. The first 
is the patch width tapering method and the second is the 
feed line tapering method [10]. As compared to [14], 
there is a difference in the results of the SLL and gain for 
the design of 10-element antenna array at the C-band. 
The difference of the gain values is due to the effect of 
the driven element, which is found above each element 
in the array reported in [14]. Whereas the difference of 
the SLL can be related to the methodology of the design 
and the type of the material (Roger RT /Duroid). The 
main difference between this work and [14] is the 
methodology of the design. Stunt stubs were added to the 
main feed line to achieve Chebyshev tapering with 
calculated values of the impedances of these stubs 
ranging from 45-178 Ω whereas in this work they are 
from 43-70 Ω. In addition, in [14] the value of the higher 
impedance is 178 Ω and the width of the strip line less 
than 0.8mm, which represent weakness when using high 
power. In [11] the researchers designed a 2*16-element 
antenna array. They used the width of the main feed line 
to achieve the Chebyshev distribution. They considered 
each junction of the feed line of the element as a tee 
junction then they found the s-matrix of the tee junction. 
Depending on the analysis of the s-matrix, they found the 
impedances of the main feed line. In addition, they 
considered the impedance 

 
Table 6. Comparing with results from other works. 

This 
work 
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No. of 
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SLL / dB ‐21.9 ‐25.6 ‐24  ‐20  ‐26  ‐26.4 

 
value of feed lines of the elements to be equal to 100 Ω. 
It can be noticed that they use a λ/4 transformer after 
each junction. Referring to [11], the SLL results of the 
design of the 2*14-element antenna array is 
approximately equal. On the other hand, the gain values 
of this work are lower by 5dB. This difference in the gain 
values is caused by the effect of two metallic plates 
bounding the antenna array in [11], which acts as a 
director. It is true that the gain was improved by using 
such a director, but this gain is at the price of complexity 

Fig. 11. Comparison of xy-plane results for the printed
antenna array at 5.2 GHz. (a) 14-elements. (b) 28-
elements.

Table 5: HPBW, gain and SLL of array antennas at
5.2 GHz of the simulated and measurement results

No. of Elements HPBW
(deg.) xz

plane
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(MHz)

Gain
(dB)

SLL
(dB)

14 Simulated 8.4 408 13.2 −20.1
14 Measured 12 318 12.1 −20
2*14 Simulated 10.8 357 17 −23.1
2*14 Measured 10 540 15.7 −24

VI. COMPARESION WITH OTHER WORKS
Table 6 shows a comparison between the obtained

results of the proposed antenna arrays in this article with
other works. To make a fair comparison, the performance
of the antenna array was compared with other works in
literature that have the same number of elements. It was
observed that a good agreement with such works is ob-
tained in terms of HPBW and SLL. However, the val-
ues of BW that are obtained in this work outperform
other reported works. In addition, there are some differ-
ences in gain values, which can be related to the num-
ber of elements or to the geometry of the antenna ar-
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No. of El-
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1*10 2*14 2*14 1*10 1*10 2*16

Freq/GHz 5.2 5.2 5.2 5.8 5.5 9.35
HPBW/ 0 13.1 10.8 10 10 10.4 5.3
BW/ MHz 290 357 540 90 212 100
Gain / dB 11.4 17 15.7 —- 17.5 22
SLL / dB −21.9 −25.6 −24 −20 −26 −26.4

ray as shown below. Finally, the overall agreement be-
tween the obtained results and the other works validate
the proposed method of applying the Chebyshev distri-
bution with gaining the advantage of less complexity and
cost.

By comparing the design of 10 elements with a ref-
erence [10], a good correlation was observed between
the results. In [10], a symmetric 10-element antenna ar-
ray with a Chebyshev tapering operating at 5.8 GHz has
been designed by two methods of tapering. The first is
the patch width tapering method and the second is the
feed line tapering method [10]. As compared to [14],
there is a difference in the results of the SLL and gain
for the design of 10-element antenna array at the C-band.
The difference of the gain values is due to the effect of
the driven element, which is found above each element in
the array reported in [14]. Whereas the difference of the
SLL can be related to the methodology of the design and
the type of the material (Roger RT /Duroid). The main
difference between this work and [14] is the methodol-
ogy of the design. Shunt stubs were added to the main
feed line to achieve Chebyshev tapering with calculated
values of the impedances of these stubs ranging from 45-
178 Ω whereas in this work they are from 43-70 Ω. In
addition, in [14] the value of the higher impedance is
178 Ω and the width of the strip line less than 0.8mm,
which represent weakness when using high power. In
[11] the researchers designed a 2*16-element antenna ar-
ray. They used the width of the main feed line to achieve
the Chebyshev distribution. They considered each junc-
tion of the feed line of the element as a tee junction then
they found the s-matrix of the tee junction. Depending on
the analysis of the s-matrix, they found the impedances
of the main feed line. In addition, they considered the
impedance value of feed lines of the elements to be equal
to 100 Ω. It can be noticed that they use a λ /4 trans-
former after each junction. Referring to [11], the SLL re-
sults of the design of the 2∗14-element antenna array is
approximately equal. On the other hand, the gain values
of this work are lower by 5dB. This difference in the
gain values is caused by the effect of two metallic plates
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bounding the antenna array in [11], which acts as a direc-
tor. It is true that the gain was improved by using such a
director, but this gain is at the price of complexity and
reliability. Thus, careful consideration should be paid to
such tradeoffs.

VII. CONCLUSION
A new method of applying Chebyshev distribution

on a microstrip antenna array is produced. The method is
tested by designing two sets of antenna arrays that work
at the S-band and C-band respectively. As mentioned
previously, the values of the impedances of the main
feed line is around (43-70 Ω) which means the quarter
wavelength transformers are not needed. The feed line
of the proposed array is wider than the previous designs
of the other researchers, which allows more power to
be transmitted through it. The practical measurements
show an agreement with the simulation results. The pro-
posed antenna (2∗14 Element) is suggested for radar
applications.
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