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Abstract

Domain decomposition strategies for solving hyperbolic sys-
tems of partial differential equations on distributed-memory
parallel computing platforms are investigated. The logically-
rectangnlar computational domain is divided either one, two,
or three dimensionally into a series of computational blocks,
and each block is assigned to a single processor. Theoretical
predictions using standard parallel performance models indi-
cate that higher-dimensional decompositions provide supe-
rior parallel program performance in terms of scalability.
The theory is tested using a finite-volume time-domain
(FVTD) Maxwell equations solver to compute the electro-
magnetic fields inside a rectangular waveguide using various
grid sizes and processor numbers on three different parallel
architectures—the Intel Paragon, the IBM SP2, and the Cray
T3D. The specific performance of the FVTD algerithm on
the three machines is investigated, the relation between pro-
cessor connection topology and message passing perfor-
mance of a typical grid-based hyperbolic equation solver are
identified, and the results are used to augment the classical
parallel performance model. Although clear performance
trerds emerge in terms of the dimensionality of the decom-
position, results indicate that higher-dimensional decompo-
sitions do not always provide superior parallel performance.

1 Inoroduction

Numerical simulations of electromagnetic or fluid flow phe-
nomena are most often constrained in their complexity by
available computational processing capability. Although
complex three-dimensional calculations were once the
exclusive realm of the vector supercomputer, through recent
dramatic advances in computer hardware technology—
including the development of powerful Reduced Instruction
Set Computing (RISC) microprocessors, high-density
Dynami¢c Random Accesses Memory (DRAM), and very-
high-speed switching networks-designers have been able to
construct powerful machines comprised of hundreds to thou-
sands of processors which are often capable of performance
exceeding that of traditional vector supercomputers. Unfor-
tunately, efficient utilization of these parallel machines
requires much more effort on the part of the algorithm
designer since compilers are not yet able to fully extract the
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parallelism inherent in a computer code and properly map
that parallelisra to a distributed-memory environment.

One method of potentially achieving a high degree of
concurrency in typical grid-based scientific computations
such as those found in time-dornain computational electro-
magnetics (CEM) or computational fiuid dynamics (CFD)
algorithms is to divide the computational domain into a
series of subdomains or blocks and then assign the blocks in
some manner to the available processors. This approach has
been applied with an emphasis toward engineering practical-
ity by several researchers in both the CFD and CEM
communities' . Furthermore, the issue has been examined
from a parallel efficiency standpoint by Wong, et al.”

Since the practice of domain decomposition has become
increasingly prevalent, it is important to investigate methods
for partitioning and assigning the computational dontain to
the available processors. Because the problem of determin-
ing an optimal mapping is known to be in problem space NP
Complete®, no such attempt is made here. Instead three
domain decomposition approaches—one, two, and three
dimensional (as depicted in Figure 1)-are examined in terms
of theoretical and measured parallel scalability. Furthermore,
since modern parallel architectures differ widely in their pro-
cessor capabilities, interprocessor connection topologies and
communication bandwidths, it is reasonable to expect that a
given domain mapping cannot yield identical parallel scal-
ability across all platforms. For this reason, the domain
decomposition analysis is performed on three separate paral-
tel plaiforms which are discussed in the following section.

2 Target Architectures

The machines chosen for use in this study-the Intel Paragon,
the IBM SP2 and the Cray T3D-arguably represent the most
widely available cumently produced distributed-memory
computing platforms. Each of these machines is similar in
that each utilizes RISC processors as its central processing
units. However, the interprocessor connection topology of
the machines differs substantially. The Paragon and T3D
both employ very-high-performance static interconnection
networks configured as a two-dimensional mesh and a three-
dimensional torus, respectively. The SP2, on the other hand,
utilizes an omega network of substantially lower bandwidth.
In addition to the differences in connection topology, the
T3D provides several programming options net available on
the other machines due to its memory structure. Although
the SP2 and Paragon are true distributed-memory platforms,



Figure 1: Domain Decomposition Techniques

the T3D is classified as a distributed-shared-memory
machine since, although memory is physically distributed, a
single global address space is available. This allows any pro-
cessor to directly address memory contained on another pro-
cessor. It is also possible to explicitly deliver data between
processors through the use of a message-passing library such
as that encapsulated in Paralle] Virtual Machine (PVM)°. In
this mode, the programming environment of the T3D is sim-
ilar to that of the Paragon and SP2.

Although several message-passing libraries are avail-
able for each machine, the libraries used in this study were
chosen based on vendor support, portability, and perfor-
mance. At the inception of this study, PVM was actively sup-
ported by Cray Research for the T3D. Similarly, support and
documentation for the Intel message passing library, NX 10
was readily available. Finally, Message Passing Interface1f
(MPI) was selected for the SP2 due to its portability and per-
formance. By abstracting the library-specific programming
calls through the use of the macro feature in the C program-
ming language, a single computer code was used to collect
performance data on all three machines. A summary of the
salient features of each of the machines appears in Table 1.

3 Problem Descripti

3.1 Model Problem

The problem selected for examining the various domain
decomposition approaches was the computation of the elec-
tromagnetic fields inside a rectangular waveguide as
depicted in Figure 2. The computational domain for the
problem was uniform and Cartesian, thereby facilitating a
relatively straightforward partitioning of the domain. The
physical dimensions a, b, and L of the waveguide were
scaled to T, T, and 1 respectively, and the waveguide was
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Figure 2: Rectangular Waveguide Geometry
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excited in a TMZ11 mode. This problem has been exten-
sively studied by Shang™12, and the existence of an analyti-
cal solution!? allows for a ready verification of paraliel
program correctness.

3.2 Numerical Procedure

In order to compute the electromagnetic fields inside the
rectangular waveguide, the differential vector forms of the
two Maxwell curl eguations are solved using a collocated,
cell-centered, explicit FVTD scheme. For a general curvilin-
ear (E, 1, () coordinate system, the equations can be written
as

0@ JE dF oG _ -~

8t+3§+3n+i=" (1)
where (0 contains the six unknown scalar electromagnetic
field components, J contains the scalar components of the
surface current, and £, F, and G are known as the flux vec-
tors. Application of equation (1) to a general hexahedral
finite volume cell yields
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where R = EE+ Ffj + GT, A, and A, are the unit surface
normal and surface area of cell face k, respectively, and V is
the cell volume.

In order to advance the solution in time, the FVTD
scheme requires the evaluation of the flux vectors at the cell
faces. To do so, the present study wvses a flux-vector-splitting
approach after Steger and Warming!® which splits the flux at
a cell face into positive and negative components according
to the signs of the eigenvalues of the flux Jacobian matrix A,



Cray T3D IBM SP2 Intel Paragon XP/S
A (Maui High Performance (Wright Patterson Air
(Eglin Air Force Base, FL) Computing Center) Force Base, OH)

. . DEC 21064 IBM RS/6000 % i/860XP @ 5
central processing unit (CPU) A]rl:ll;; ahlé)r?z @ 150 megahe rt(? 66.7 Intcléiggghem@ 0
single processor megaflop rating
(double precision) 150 266 75
number of compute processors 128 400 368
memory per CPU (megabytes) 64 64-1024 32-64
interprocessor connection topology (ngzze;g::ggi%"gl’:ﬁ 4) Omega network Two-dimensional mesh
communication bandwidth
(megabytes/sec) 300 40 . 200
communication library used Parallel \(fli’r‘t]uﬁl)l\dachine hﬁéﬁfg;}ﬁ%ﬁg NX
maximum processors available toa
single job (without special request) 128 128 128

Table 1: Target Machine Characteristics

where for the 1 direction
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and for the i+1/2 face of cell i (see Figure 3),
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Similar expressions hold for the fluxes at the five
remaining cell faces. Note that the positive and negative
fluxes in equation (4) are functions of the dependent
variables at the left and right states (denoted by the
superscripts L and R in the equation) of cell face
i+ 1/2; however, the dependent variables are not
defined at the cell faces but rather at the cell centers. It
thus becomes necessary to transfer information from
cell centers to cell faces, This can be accomplished in
one of two ways: the fluxes can be evaluated at cell cen-
ters and then extrapolated to cell faces, or the dependent
variables can be extrapolated to the cell faces and the
fluxes subsequently evaluated. The latter method is
known as Monotone Upstream-centered Schemes for
Conservation Laws (MUSCL) and is the methodology
used in this work. Using the MUSCL approach after van
Leer!’, the extrapolation yields a scheme that is spa-
tially third-order accurate.

With the flux evaluation complete, equation (2) is
solved over each cell by applying a two-stage, second-
order-accurate Runge Kutta procedure to the temporal
derivative term. This yields a fully explicit numencal
procedure that is ideally suited to a parallel implementa-

tion.
3.3 Parallel Implementation

The MUSCL scheme described in the previous section
forms the crux of the data dependencies of the numeri-
cal scheme. Referring to Figure 3, in order to compute
the total flux at cell face i + 1/2, F;, 17, the positive
flux component requires dependent variable information
from cells i—1, i, and i+ 1. Similarly, the negative
flux component requires information from cells i, i + 1,
and i+ 2. These data dependencies are known as the
computational stencil of the scheme and are depicted in
the top portion of the figure. In a parallel environment,
one or more of these cells may reside on different pro-
cessors, and thus a means must exist to transfer neces-
sary information between processors. The transfer of
information is facilitated through the use of buffer stor-
age locations. These locations serve to hold dependent-
variable or other information that is computed on one
processor but necessary for other computations on
another. A sample of the huffer locations is shown as the
shaded cells in the lower portion of Figure 3. Using this
approach for the simple two-processor, one-dimensional
example shown in the figure, the flux calculation for a
cell which falls on a boundary created by the domain
decomposition begins as processors 1 and 2 indepen-
dently compute the positive and negative flux compo-
nent, respectively, for cell face i+1/2. This
calculation requires data stored in the buffer locations
on each processor. Processor 1 passes the positive flux
component to processor 2 which then computes the total
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flux for the cell face and returns this information to proces-
sor 1. Assuming the fluxes at the remaining cell faces have
been calculated, the processors subsequently update cells i
and i+ 1, respectively, to the new time level. For a higher-
dimensional problem, the message-passing scenario is
repeated for each of the decomposition directions. No mes-
sages are required along a coordinate direction in which the
computational domain is not decomposed. Once all cells
have been updated to the new time level, dependent-variable
information is exchanged so the buffer storage locations con-
tain new time level data. Since the waveguide was consid-
ered filled with a homogenecus material (free space), the
wave speed was uniform throughout the computational
domain. This allows a single global time step determination
at the beginning of program execution, and thus no global
communications are required by the algorithm after the ini-
tial time step caiculation.

It is possible to double the size of the buffers and
thereby preclude the requirement for either processor to send
any flux data to the other; however, this approach was exam-
ined and discarded since the storage penalty exacted was not
offset by any significant performance gain.

4 Parallel Analysis

4.1 ica] Parallel Pe

Given the algorithm data dependencies described in the pre-
vious section, the theoretical parallel performance can be
determined. Parallel run time, T),,,, can be assumed to con-
sist of contributions from calculations, T, and from paral-
lel overhead, T,, . heqq> 1-€-

T = Tcaic + To )

par verhead

The overhead consists of several factors including com-
munication and any extra calculations necessary to imple-
ment the code on a parallel machine. For this analysis, the
parallel overhead is assumed to be dominated by the commu-
nication time, T, If the classical cut-through-routing
communication cost model of Kumar, et al.!? is used, then
the communication time required for a single message to
travel between processors aand b, ¢, is given by

Leomm = 4t mt, it (6)
where 7, is the message start-up time, ¢, is the per-word
transfer time, 1, is the latency associated with a hop between
two processors, m represents the number of words trans-
ferred, and I represents the number of hops the message must
make in order to travel from processor a to processor b. In
most modern parallel architectures, the per-hop time is
extremely small and all processors can be considered com-
putationally close. This allows the communication cost
model to be simplified®, viz.

toomm = st mit, e)]

For this analysis, the computational domain is assumed
to be three dimensional and to consist of n cells with
n'/3 = R cells distributed along each of the three coordinate
directions. Furthermore, the domain is assumed to be evenly
divided among the number of available processors, p. Thus,
the number of grid cells residing on each processor, n,, is
given by

3
n, = R/p (8)

With the exception of processors that contain the grid
cells on the boundaries of the computational domain, each
processor must send one message to each neighboring pro-
cessor along each of the decomposition directions during the
numerical flux computations. Furthermore, once the flux
computations are complete, the updated dependent-variable
information stored in the buffer arrays must be exchanged
between neighboring processors. Since the time integration
portion of the algorithm is a two-step procedure, this sce-
nario is repeated twice in order to advance the solution in
time. Consequently, the number of messages sent and
received per time step is 164, and the length of each message,
m, is

m = DRZP(l—i)/i (9)

where D represents the number of storage bytes required per
grid cell for the dependent-variable data and / represents the
dimensionality of the decomposition, 0 < i <3 . Note that for
i = 0, the computational domain is not decomposed, and
thus i = 0> p = 1. In all cases, the term p{'~"7" is
restricted to integral values. Since the total communication



time is the product of the single message communication
time and the total number of messages, then

L-§/8
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T, = 16i(t,+DRp ) (10)

comm
which leads to the theoretical parallel run times for the vari-
ous decompositions, namely

3 ) 2 (1=i)i
Tpar =t (R/p)+ l6t(ts+DR J 2 t

w) (11)
where 7, is the single-processor computation time per grid
cell per time step.

With parallel run time determined, theoretical absolute
speedup, S, and absolute efficiency, E,—two of the most
common metrics for parallel performance—can be deter-
mined using the standard definitions 1*

S, =TT, =~ (12}
E,=S/p : (13)

where T is.the run time for the best known serial algorithm
to solve the problem in question. It is often not practical to
compare the chosen parallel algorithm against the best
known serial algorithm, and consequently, relative speedup,
S, and efficiency, E, are often used whereby the parallel algo-
rithm run time is compared against the run time of the algo-
rithm on a single processor. Substituting i = 0, p = 1 into
equation (11) to determine T, the theoretical relative per-
formance is thus given by

116 : a4
o = IR20,/1)+Dp1=i(s /1))

S =

1

E = (15)

16i :
1+ PR/t + Dp1 /i1, /1))

At this point, the applicability of the analysis to other
implementations can be extended by treating the terms ¢ _,
P and 16i (the number of message passes) as constants.
An asymptotic analysis is then performed in which p and R
are assumed large to yield19

1
E=——p— (16)
1+8(p" '/R)

where @ indicates a tight upper bound.

It is important to note that the asymptotic analysis
encapsulated in (16) is taken for p and R appropriately large
when in fact, for a practical implementation, it may not be
possible to let either variable grow suitably large due to
memery or machine architecture restrictions. Consequently,
a consideration of the constants appearing in (14) and (15)
may be necessary when assessing true performance of the

algorithm on the machine of implementation.

Since parallel machines provide a means of solving rela-
tively large problems over a fairly large number of proces-
$0r13, it is desirable to predict how an algorithm will perform
as both the problem size and the number of processors is
increased. Isoefficiency measures the scalability of an algo-
rithm in such an instance and is determined by setting the
computational work equal to the parallel overhead
function!®. In the present analysis, the isocefficiency is
derived directly from equation (16} to yield

1/i 3/

R=n"=0p" Y2 =00") 17

Thus, in order to maintain a constant parallel efficiency,
a computational domain that is decomposed three dimen-
sionally need only be increased in size by an amount linearly
proportional to increasing processor number. One- and two-
dimensional decompositions require larger increases in the
size of the computational domain as increasing numbers of
processors are applied to the problem if the efficiency is to

be maintained at a constant value.

4.2 Machine Performance Characterization

Determination of theoretical performance as embodied in
equations (14) and (15) requires that the valuesof ¢_, _, and
t. be ascertained. In general, ¢, and t, are maci‘line spe-
cific, while ¢ depends both on the target architecture as well
as the a]goriﬁ:m. In order to determine ¢ e the FVTD algo-
ritbm was run for 100 time steps on a single processor on
each of the three machines using a variety of grid sizes up to
the maximum size containable in the machine’s core mem-
ory. The times for these execution runs are contained in Fig-
ure 4. Although not presented here, a formal analysis of the
FVTD algorithm run-time complexity reveals that the
method is in time space ®(r) where #n is the number of cells
in the computational domain. This analysis is corroborated
by the data exhibited in the figure which show the run times
to be a linearly increasing function of n. Any slight devia-
tions from linearity can be explained by noting that boundary
condition cells require less computational work, and as the
grid size decreases, the boundary condition points have an
increased affect on the algorithm run time. Using a simple
least-squares fit of the data, ¢, was determined from the
slope of each plot.

The message-passing performance of each of the three
machines was determined by configuring eight processors as
a logical ring and circulating messages of varying size 1000
times around the ring. Run time data for this experiment
appears in Figure 5. By performing a linear curve fit of the
data, the message start-up time and per-word transfer time
can be computed directly from the y-intercept and line slope.
Although the linear curve-fitting process generated excellent
results (goodness of fit > 0.99 in all cases), the SP2 is char-
acterized by marked and somewhat random variations in
execution time. This variation is most likely due to message
contention over the omega switching network. Table 2 con-
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Figure 4: Single Node Algorithm Run Times

tains a summary of the findings of this portion of the study.
The values agree in general with those of Foster®. Any dis-
crepancies can be explained by differences in operating sys-
tems and message-passing libraries used.

S Domain L tion Stud
5.1 Test Procedure

As is evident in the theoretical derivations, parallel speedup
and efficiency are dependent on a variety of parameters
including the problem size and the number of processors on
which the algorithm is executed. In order to test these param-
eters, the FVTD algorithm was run for 100 iterations on grid
sizes ranging from R = 32 to R = 128 wusing up fo 128
processors. One-hundred iterations was deemed an accept-
able number so that min times would not be excessive yet any
transient paraliel-environment effects such as interprocess-
message contentions would be suitably minimized. In every
decompeosition, the number of finite-volume cells residing
on each processor was identical. This reduced, but did not
completely eliminate, load imbalance since boundary condi-
tion cells require less computational effort than interior cells.
The choice of domain decompositions and grid sizes was
constrained primarily by the amount of memory available on
each processor. This was especially true in the case of the
Paragon which, with the exception of 16 “MP” nodes, pos-
sesses only 32 megabytes per processor. In addition to the
memory constraint, additicnal restrictions were imposed by
the processor-allocation scheme of the T3D. The current ver-
sion of the operating system on this machine allows proces-
sors to be allocated only in powers of two. This required that
the computational domain be partitioned in powers of two
along each decomposition direction.
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Figure 5: Ring Message Passing Times
(1000 rings on 8 processors)

In addition to the dimensionality of the decomposition,
the directional dependence of the decompositions was
assessed by permuting the decompositions for each coordi-
nate direction. The permutations comrespond to a re-orienta-
tion of the planes or lines of grid points as depicted in Figure
1. Examination of the decomposition along each direction
allows for an assessment of machine memory-accessing per-
formance and uncovers potential bus contentions which are
the inevitable result of mapping a higher-dimensional physi-
cal problem onto a lower-dimensional interconnection net-
work. Table 3 contains a summary of the decompositions
examined. Rather than list each grid size, processor count,
and decomposition separately, they are combined into a sin-
gle listing whenever possible with the understanding that all
possible combinations on a given table row were examined.

The FVTD code used to conduct the study was written
in C to take advantage of that language’s dynamic memory
allocation routines. Memory for each grid decomposition
was allocated at run time. This facilitated the examination of

rC ts tw
(nsec) (psec) (psec)

T3D 102 25 030
Paragon 546 36 .018
SP2 132 76 040

Table 2: Machine and FVTD Algorithm Performance
Parameters



Dimension Grid
. Processors ce:
of Size ) Decomposition*
Partition ®)
1D 32, 64, 4, 8, 16, Pxlxl
128 32,64, 128 such that P< R
32, 64,
2D 6 4, 16, 64 JPx P x1
32, 64, P P
2D 06 8,32, 128 J;sz;xl
3D 2 864 3/ x 3P x 4P
\ 32,64, e [P P
3D 36 16, 128 %/; x %/; x 2(3[5)
32, 64,
3D 06 3z Zx4x4
*All permutations of the tabulated decompositions were per-
formed. For example, in addition to the stated P x 1 X 1 one-
dimensional partitioning, 1 xPx 1 and 1 x 1 X P partitions
were also examined. The decomposition nomenclature refers
to the number of blocks by which the computationai domain
was partitioned in each coordinate direction.

Table 3: Summary of Examined Decompeositions

a large number of decompositions during a single program
run with no memory wasted due to static array dimension-
mg. All message passing was performed using non-blocking
communication primitives with special care taken to inter-
leave communication and computation wherever possible.

As timing data was collected, several runs were re-
accomplished to assess the repeatability of the timing data.
In the case of the T3D and the Paragon, results were found to
be repeatable to well within one percent. However, such was
ot the case for the SP2 where timing data varied much more
dramatically (most likely due to the effects observed in Fig-
ure 5). In order to ensure accurate results, all runs on the SP2
were accomplished at least five times and the minimum time
observed was used as the execution time. This procedure is
similar to that recommended by Thinking Machines in the
timing studies conducted by Blosch'.

5.2 Results
5.2.1 Electromagnetic Field Computations

Figure 6 contains a comparison of the magnitude of the com-
puted and exact magnetic fields inside the waveguide. The
computed solution was obtained from a 32-node Paragon run
using approximately 110,000 grid points with the computa-

10

Figure 6: Total Magnetic Field Contours
{a) exact, (b) computed

tional domain partitioned three-dimensionally ina 4 x2x 4
configuration. In the figure, the y and z axes have been
scaled so that the cutting planes located at y = 0.6, 1.6, and
2.5 are unobstructed. The computed and exact solutions are
in excellent agreement; in fact, the plots are indistinguish-
able, While not a formal proof of correctness, it does indicate
that the parallel algorithm functioned as intended.

5.2.2 Parallel Scalability

The results of the domain-decomposition studies appear in
Figures 7-12, Figures 7-9 contain parallel speedup results for
the one-, two-, and three-dimensional decompositions,
respectively, while Figures 10-12 contain efficiency results.
A comparison of the relative performance of the FVTD algo-
rithm for a given dimensionality of decomposition on each
of the three machines can be conducted by examining sub-
figures a, b, and ¢ of a single figure. On the other hand, a
comparison of the sub-figures in a given column facilitates
an examination of the effects of the dimensionality of the
decomposition for a given platform. It is apparent from the
figures that in nearly every case, the two- and three-dimen-
sicnal decompositions produced performance superior to
that of the one-dimensional decompositions. Furthermore,



three-dimensional decompositions exhibited slightly better
performance in several instances on the T3D while two-
dimensional decompositions were slightly superior in gen-
eral on the Paragon and noticeably superior on the SP2. This
is especially evident in an examination of the efficiency
curves of Figures 10-12, These trends in parallel perfor-
mance correspond quite closely to the topologies of the three
machines. The three-dimensional torus structure of the T3D
allows each processor six neighboring processors while the
two-dimensional mesh structure of the Paragon translates to
at most four neighbors for a given computational node. In
contrast, the omega network of the SP2 requires that any
communication between two processors traverse at least one
switch hop and two communication lines. It appears that
superior parallel performance is achievable when there is a
close agreement between the physical dimensionality of the
domain decomposition and the physical topology of the
architecture onto which it is mapped. It should be remem-
bered that the speedup and efficiency curves of Figures 7-12
provide one measure of the scalability of the algorithm and
do not reflect actual program execution times. For example,
although the curves show the scalability of the algorithm on
the SP2 to be decidedly less than that on the other two plat-
forms, the superior performance of the RS/6000 when com-
pared to the i/860XP yielded substantially faster run times.
In other cross-platform comparisons, the T3D was able to
significantly outperform the other two machines both in
terms of paratlel scalability and in terms of absolute execu-
tion speed. This is despite the comparatively poor perfor-
mance of the message passing (as shown in Figure 5) which
is most likely due to the use of PVM.

5.2.3 Comparison with Theoretical Model

A comparison of the theoretical and measured parallel
speedups for a two-dimensional decomposition (R = 64)
appears in Figure 13. The theoretical curve was generated by
substituting the measured values contained in Table 2 into
equation (14). The measured speedup is somewhat over pre-
dicted, but this is not surprising since the theoretical model
neglects such issues as load imbalance and message conten-
tion. It is therefore expected that this model provides a best-
case performance prediction. The behavior of the model with
respect to variations in the ratio ¢ /¢ =7y is also shown in
the figure. Using the value for ¢, and r, found in Table 2
yields the ratio i = 0.0003 . A value of ¢ = 0.0009 is also
shown for reference purposes. It is not unreasonable to
expect fairly large variations in ¥ for different decomposi-
tions due to differences in memory accessing patterns. In
fact, these variations are demonstrated in section 5.2.4.

Although the theoretical model was able to predict the
performance of certain decompositions on the T3D to an
acceptable manner, such was not the case for the Paragon
and the SP2. In these cases, the model drastically over pre-
dicted parallel performance. Since it is known that ¥ plays a
primary role in paralle]l performance, a more realistic test
problem was conceived to measure ¢, . Instead of utilizing a
ring structure in which a single message is in transit at any
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given instant, processors were configured as a logical three-
dimensional mesh of dimension 2x2x2 and 4x4x4,
Nearest neighbors in the mesh simultaneously exchanged
messages of varying lengths along each coordinate direction
and the times for 1000 exchanges in each direction were
recorded. The results of this experiment are contained in Fig-
ure 14. In the absence of message contention, the message-
passing times are expected to be identical regardless of pro-
cessor number or direction of message exchange since no
two messages simultaneously transit the same logical con-
nection between processors. In reality, however, the mapping
of the logical three-dimensional structure to a lower-dimen-
sionality architecture resuits in the mapping of more than
one logical connection to the same physical connection.
Although all three machines exhibit some degree of variation
in message-passing times as the number of processors is
increased, the effect is much less dramatic on the T3D. The
deviation in the general trend is also small for the SP2, but
the variations exhibited in Figure 5 become much more pro-
nounced as the number of processors is increased. In addi-
tion to the variation with processor nimber, the Paragon also
exhibits a directional bias in message transfer times which
becomes more pronounced as the number of processors
increases. In the figure, the i, j, and & notation simply identi-
fies a direction along which the message exchanges
occurred. The magnitude of the variations in message-pass-
ing times relates directly to the quality of the theoretical par-
allel performance model, and large variations in message-
passing times are expected (and observed) to adversely
impact the theoretical predictions.

5.2.4 Variations in Decomposition Times

The results contained in Figures 7-12 represent the best
observed times for a given dimensionality of decomposition,
processor number, and grid size. As noted in Table 3, all per-
matations of a given decomposition were performed for each
case. Although each permmutation yielded the same number
of grid cells on a given processor and the same amount of
message traffic, certain decompositions were observed to
yield substantially better performance than others. The per-
formance differences were quantified by constructing the
ratio

(: = Tmax/Tmin

where T, . and 7, . represent the minimum and maxi-
mum observed run times for each combination of processor
number, grid size, and decomposition dimensionality, Figure
15 depicts this ratio for the two-dimensional decompositions
on the SP2. Although the trends differed depending on the
machine and decomposition approach, variations of similar
magnitude were observed for the Paragon and T3D. The
sometimes marked vartations indicate that memory access-
ing issues are as important as the dimensiopality of the
decomposition in achieving good performance. This is to be
expected since the RISC processors employed in all
machines require a high degree of data locality in order to
achieve near-advertised megaflop ratings. Should the
domains be decomposed in a manner that precludes locality-
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of-reference, then performance suffers dramatically.

6 Conclusions

The relation between the dimensionality of the domain
decomposition and parallel performance has been assessed
on three modern distributed memory parallel computing
platforms using 2 FVTD algorithm and a rectangular
waveguide geometry. Higher dimensionality (two- and three-
dimensional) decompositions were found to nearly always
outperform one-dimensional decompositions. The perfor-
mance of the decompositions was found to relate very
closely to the topology of the machine on which the algo-
rithm was implemented. In general, machines with higher
processor connectivity favored higher-dimensional decom-
positions.

Despite the fact the classical parallel performance model
used in this study accurately predicted performance trends, it
occasionally dramatically over predicted the actual perfor-
mance of the algorithm. This is due to the fact that the model
does not account for issues such as message contention
which occurs when more than one logical message path is
mapped to the same physical connection. The adverse affect
of message contention was observed to increase with
increasing processor count on all architectnres.

Although cauntion must be exercised when attempting to
extend program performance characteristics to other algo-
rithms, because many algorithms designed for solving hyper-
bolic systems of partial differential equations possess similar
data dependencies, the results presented here can be general-
ized at least to some degree to a large number of explicit
hyperbolic (and perhaps even some parabolic and elliptic)
partial differential equations solution schemes.
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