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Abstract – A high-precision cavity model of resistor-
loaded patch antenna (RLPA) with adjustable gain is
proposed and rigorously studied in this article. In our
analysis, the loaded resistors are perceived as controlled
current sources, thus the RLPA can be solved as a mod-
ified cavity model. Accurate expressions of field dis-
tribution, input impedance, and radiation patterns are
derived in this way, and a gratifying agreement has been
achieved between the calculated and simulated results.
Based on this approach, RLPAs for indoor motion radar
are designed and analyzed. Comprehensive analysis is
conducted to reveal the loading effect on radiation gain,
radiation efficiency, and quality factor of RLPAs under
various circumstances. Through altering the value of
the loaded resistance, its radiation gain and coverage
range can be flexibly adjusted. Besides, enhanced oper-
ating bandwidth and improved performance stability are
also achieved due to the loaded resistors. Last but not
least, several indoor motion radars based on the proposed
patches are carried out and measured, which demon-
strates the validity of the proposed method and design.

Index Terms – Cavity model, flexible gain, indoor
motion radar, resistor-loaded patch antennas.

I. INTRODUCTION
As the applications of smart home services are

experiencing an appreciable growth in recent years, the
microwave motion sensor system used for human body
sensing has become an attractive solution for the realiza-
tion of indoor intelligent services [1]. A microwave sen-
sor is able to detect humans in a certain range [2], thus

providing necessary data for the control strategy of smart
home services.

Microstrip patch antennas are widely applied in
these sensors, and they satisfy most requirements except
the capacity of recognition scope adjustment, which is in
high demand. The working scenario sample is illustrated
in Fig. 1. Due to the penetrability of microwaves [3],
humans in the occupied room are potentially detectable
by the radar in the empty room. Consequently, the lights
and air conditioner in the empty room will be falsely
triggered. In the need of resolving this problem, a gain
adjustable antenna is required for the purpose of flexible
radiation coverage.

Fig. 1. A scenario of the indoor motion sensor applica-
tion. The 5.8 GHz radar in the occupied room detects the
existence of humans and automatically turns the light on,
while the radar in the empty room detects no living crea-
ture and turns the domestic appliances off.
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Altering the transmitting power of the chip might be
the most direct solution. However, most low-price chips
cannot afford additional power-control circuits [4]. A rel-
atively simple solution is to load a chip capacitor to the
feeding circuit, which changes the reflection and thus
adjusts realized gain.

To achieve a similar effect, lumped impedance can
be loaded to the patches as well. Through loading capac-
itors or inductors to the patches, miniaturization [5–9],
frequency/polarization tuning [10–17], or gain enhance-
ment [18] can be achieved. However, the aforementioned
antennas suffer from narrow bandwidth and are sensitive
to manufacture deviation.

Compared with the sufficient studies above, rel-
atively little research has concentrated on the topic
of resistor-loaded patch antennas (RLPAs). In reported
works, the resistor loading technique is primarily
adopted for impedance matching [20], frequency tun-
ing [21], and bandwidth widening [22–25]. These works
have already noticed the non-negligible impact brought
by resistors on the total efficiency. However, few of
them propose precise models or analytical methods for
RLPAs.

As is well known, the cavity model theory is an
effective and high-accuracy method to analyze regular
patch antennas [26–27]. However, to the best of our
knowledge, no one used to apply the cavity model to the
analysis of RLPAs.

In this article, a reformative cavity model for the
rectangular patch antenna loaded with resistors is pre-
sented, which offers an alternative perspective on the
analysis of this kind of patch antenna. This model per-
ceives the loaded resistors as multiple controlled current
sources, thus transferring the RLPA model into a multi-
excitation cavity model. For validation, the calculation
results with the proposed method are compared with the
simulation results of the commercial ANSYS HFSS sim-
ulator, and satisfactory agreement is achieved.

Last but not least, an indoor radar module equipped
with the proposed RLPA is designed and measured. By
changing the loaded resistance, different coverage ranges
are achieved. Additionally, the enhanced bandwidth can
alleviate the risk of performance deviation of final prod-
ucts, which validates the promising practicality of RLPA.

II. ANALYSIS OF CAVITY MODEL
In this section, an improved cavity model is devel-

oped for the rectangular RLPA, which aims to provide
a rigorous and accurate solution for the antenna design.
The configuration of the antenna is shown in Fig. 2 (a).
The patch is placed on the x-y plane, and four resistors
are symmetrically loaded to the four corners of the patch
for load-balance. The patch is fed by a probe along the
central line.
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A. Electric field distribution
The electric field expression is critical for predict-

ing the impedance and radiation patterns of the patch
antenna, and so it is derived first. According to the clas-
sical cavity model [28], the rectangular patch antenna is
perceived as a lossy cavity in which the electric field dis-
tribution is bounded by two parallel electric walls (at the
top and bottom) and four magnetic walls surrounding the
periphery of patch, as shown in Fig. 2 (b). Its interior
field wave equation is written as(

∇
2 + k2)Ez = jωµ0Jz, (1)

where k is the wave number in the dielectric and Jz is the
total excitation source inside the cavity.

In the cavity model, the excitation is frequently
equivalent to a current sheet which has width ds and is
located at (xs, ys) with a joint current of Is. In order to
solve the resistor loading problem, a resistor Zi loaded to
the patch is regarded as an Ez-controlled current source,
which is equivalent to a current sheet with width di and
located at (xi, yi) with a joint current of Ez(xi, yi)h/Zi, as
shown in Fig. 2 (b). Therefore, the total excitation Jz is
expressed as
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(2)
where the variable i represents the number of resistors
loaded on the patch and the total amount of loaded resis-
tors is set as q.

On the basis of this assumption, the loaded resis-
tors do not change the eigen wave equation of this cavity.
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Utilizing the eigenmode expansion method, the solution
of (1) can be expressed as the superposition of various
eigenmodes of the cavity.

Ez (x,y) = ∑
m, n

Amnψmn (x,y) , (3)

ψmn =Cmn cos(kmx)cos(kny). (4)

As shown above, the eigenfunctions are completely
determined by the boundary condition of the cavity, and
they are independent of the loaded resistors themselves.

Separately, the mode weighting coefficients Amn are
determined by the total excitation Jz in the cavity.

Amn =
jωµ0

k2 − k2
mn

∫ s Jzψ
∗
mnds

∫ s ψmnψ∗
mnds

. (5)

The numerator and denominator of (5) are calcu-
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∫ xs+
ds
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where

δop =

{
2 , p ̸= 0
1 , p = 0 . (7)

Substituting (4), (5), (6-a), and (6-b) into (3) gives
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(9)
Since the dimensions of the excitations in this cavity

model satisfy ds ≪ W and di ≪ W (i = 1, 2, 3. . . ), the
expression of (8) is simplified as

Ez (x,y) = a0 (x,y)+
q

∑
i=1

Ez (xi,yi)ai (x,y) . (10)

It is worth mentioning that both the general solu-
tion and the specific solutions of Ez in (10) still remain
unknown at this stage, so it is necessary to construct a set
of homogeneous equations to solve Ez.

By substituting (x1, y1), (x2, y2), . . . , (xq, yq)
into (10), respectively, a set of equations are thus estab-
lished as



a0 (x1,y1)+ [a1 (x1,y1)−1]Ez (x1,y1)
+a2 (x1,y1)Ez (x2,y2)+ · · ·+aq (x1,y1)Ez (xq,yq) = 0
a0 (x2,y2)+a1 (x2,y2)Ez (x1,y1)
+[a2 (x2,y2)−1]Ez (x2,y2)+ · · ·+aq (x2,y2)Ez (xq,yq) = 0

...
a0 (xq,yq)+a1 (xq,yq)Ez (x1,y1)
+a2 (xq,yq)Ez (x2,y2)+ · · ·+[aq (xq,yq)−1]Ez (xq,yq) = 0

(11)
which is able to be written more concisely as a matrix
equation below.

Ab = c, (12-a)

A=


a1 (x1,y1)−1 a2 (x1,y1) · · · aq (x1,y1)

a1 (x2,y2) a2 (x2,y2)−1 · · · aq (x2,y2)
...

...
. . .

...
a1 (xq,yq) a2 (xq,yq) · · · aq (xq,yq)−1

 ,

(12-b)

b =


Ez (x1,y1)
Ez (x2,y2)

...
Ez (xq,yq)

 , c =−


a0 (x1,y1)
a0 (x2,y2)

...
a0 (xq,yq)

 . (12-c)

As shown in (9), ai(x,y) is expressed as the sum of
infinite series, and the orders m and n in the series rep-
resent the operating modes excited in the cavity. Since
the computational script solely supports the summation
of finite series, the maximum order of calculated modes
should be limited. Considering the fact that the modes
excited within a rectangular patch are generally dom-
inated by a single dominant mode (such as the TM01
mode), the influence of higher-order modes is quite lim-
ited, which merely contributes to a small quantity of the
imaginary part of the input impedance. Consequently, a
finite-order model with m ≤ 5 and n ≤ 5 is adopted
in this work, which is sufficient to provide satisfactory
accuracy. Thus, every element of matrixes A and c can
be calculated.

On condition that the q×q matrix A is full rank, the
field distribution vector b can be solved in a breeze. As
a result, the Ez-field value at arbitrary points within the
cavity is obtained from expression (10).

In addition, it is also worth mentioning that the W
and L sizes are slightly larger than the physical sizes
W ′ and L′ of the patch because of the fringing-field
effect [28].

W =W ′+2∆l
(
L′) ,L = L′+2∆l

(
W ′) . (13)

B. Input impedance and radiation parameters
To obtain accurate input impedance and radiation

efficiency of the patch antenna, its radiation and other
loss should be included in the cavity model. Therefore, a
wave number ke f f in the dielectric is introduced.

ke f f = k0

√
εr
(
1− j tanδe f f

)
. (14)
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The equivalent loss tangent δ e f f derives from the
radiation power, the conduction loss, the dielectric loss,
and the surface-wave loss, which can be calculated by
referring to the formulations in [28]. Because the resistor
loss has already been included in the cavity functions,
there is no need to calculate it separately.

Replacing each wave number k in the abovemen-
tioned equations with ke f f , the matrix equation (12-a)
needs to be solved once more, since the E-field distribu-
tion gets changed. Then the input impedance at the feed
point is acquired by

Zin =−Ez (xs,ys)h
Is

. (15)

Since the E-field distribution at the periphery has
been acquired, the far fields are able to be calculated
by the magnetic current model, in which the edges of
the cavity are perceived as equivalent magnetic current
sources [28].

III. CALCULATION AND SIMULATION
A. E-field distribution and input impedance

For reasons of observing the influence of resistor
loading on input impedance, chip resistors of 200, 510,
and 2000 Ω are respectively loaded. The E-field dis-
tribution of RLPA is calculated through the proposed
cavity model. The calculated and simulated E-fields are
depicted in Fig. 3, and they are coincident with the cosine
distribution of TM01 mode. In particular, by reducing the
loaded resistance, the overall magnitude is attenuated.
This indicates that smaller resistance will result in more
consumed power at load.

With the derived E-field distribution, the input
impedance can be calculated. Figure 4 illustrates the
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comparison results, which show excellent agreement
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Inexpensive commercial substrates, such as FR4,
usually suffer from unstable permittivity, which may be
harmful to the homogeneity of products in mass produc-
tion. Fortunately, the enhanced bandwidth brought by
resistor loading can well address this issue. Supposing
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= 0.4, the reflection coefficients |S11| with and without
resistor loading are carried out with calculation and sim-
ulation, and they are compared in Fig. 5. It can be seen
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variation. As a result, even if a cheap substrate with 
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Fig. 5. Calculated and simulated reflection coefficients
of the resistor-loaded patch antenna under different rela-
tive dielectric permittivity (εr = 4.4, ∆ = 0.4): (a) Patch
antenna without resistors and (b) patch antenna with
510 Ω resistors loaded.
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the |S11| of RLPA remains comparatively steady, and the
maximum value is kept below -6 dB, which will not
cause significant gain variation. As a result, even if a
cheap substrate with unstable εr is employed, RLPA can
still maintain steady performance.

B. Radiation gain and efficiency
The absorption of resistors will also affect the radia-

tion gain and radiation efficiency of RLPA. The gain pat-
terns under 200, 510, and 2000 Ω resistance loadings are
calculated and simulated in Fig. 6. The maximum gain
of RLPA gradually diminishes from 0.75 to -4.6 dBi,
when the resistance reduces from 2000 to 200 Ω. The
half-power beamwidth (HPBW) is kept constant. This is
well coincident with the field distribution in Fig. 3. The
power dissipation from radiating edges to loaded resis-
tors primarily contributes to this phenomenon. Besides,
the calculated gains are slightly lower than the simulated
ones. This phenomenon derives from the delicate differ-
ence between calculated and simulated E-field distribu-
tion. As is shown in Fig. 3, the E-field magnitude at the
corner in the simulation is slightly lower than the one in
the calculation result, which results in reduction of power
consumption caused by loaded resistors.

Further, R-Efficiency curves under different per-
mittivity εr are calculated and plotted in Fig. 7 (a).
There is an overall tendency that the radiation efficiency
decreases as the loaded R declines. The efficiency curve
alters drastically when loaded R is small, whereas it
becomes more insensitive when loaded R gets larger.
Additionally, as εr varies from 2.2 to 6.6, the overall radi-
ation efficiency decreases, which evidently demonstrates
that the increased substrate εr is adverse for antenna radi-
ation.

The curves of derived quality factor Q and band-
width (BW) are concentrated as well in Fig. 7 (b). The
Q factor remains relatively low when 200 Ω resistors are
loaded, while it significantly rises as larger resistance is
adopted. As a result of this increment, BW is narrowed
down, which validates the inverse relationship between
Q and BW. Further, when εr increases from 2.2 to 6.6,
the Q factor gradually gets higher, while BW gets even
narrower in the meantime. These results will serve as a
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Fig. 7. Calculated and simulated results of (a) radiation
efficiency and (b) quality factor and bandwidth for 10-
dB return loss. The substrate thickness is 0.8 mm.

constructive guideline for the design of RLPAs accord-
ing to the requirements.

From the calculated and simulated results above,
it is known that the radiation efficiency becomes rel-
atively lower when smaller resistors are loaded to the
patch. But in the case of indoor motion radar applica-
tions, the superiority of the resistor-loading technique
far outweighs its drawback. In practical situations, the
recognition scope varies from 0.1 m to 10 m, thus a high
agility of efficiency adjustment is required. The resistor-
loading technique brings noteworthy design flexibility
and extra bandwidth, which contribute to a better adapt-
ability to the diverse application requirements.

IV. MEASUREMENTS AND APPLICATIONS
The prototypes of the proposed RLPA with varied

resistance are fabricated and measured. The photograph
is shown in Fig. 8 (b). The measurements are conducted
with Rohde & Schwarz ZVA vector network analyzer
and a SY-16M near-field chamber.

performance.  

 

B. Radiation gain and efficiency 

The absorption of resistors will also affect the 

radiation gain and radiation efficiency of RLPA. The 

gain patterns under 200, 510, and 2000 Ω resistance 

loadings are calculated and simulated in Fig. 6. The 

maximum gain of RLPA gradually diminishes from 0.75 

to -4.6 dBi, when the resistance reduces from 2000 to 

200 Ω. The half-power beamwidth (HPBW) is kept 

constant. This is well coincident with the field 

distribution in Fig. 3. The power dissipation from 

radiating edges to loaded resistors primarily contributes 

to this phenomenon. Besides, the calculated gains are 

slightly lower than the simulated ones. This phenomenon 

derives from the delicate difference between calculated 

and simulated E-field distribution. As is shown in Fig.3, 

the E-field magnitude at the corner in the simulation is 

slightly lower than the one in the calculation result, 

which results in reduction of power consumption caused 

by loaded resistors.  

Further, R-Efficiency curves under different 

permittivity εr are calculated and plotted in Fig. 7 (a). 

There is an overall tendency that the radiation efficiency 

decreases as the loaded R declines. The efficiency curve 

alters drastically when loaded R is small, whereas it 

becomes more insensitive when loaded R gets larger. 

Additionally, as εr varies from 2.2 to 6.6, the overall 

radiation efficiency decreases, which evidently 

demonstrates that the increased substrate εr is adverse for 

antenna radiation.  

The curves of derived quality factor Q and bandwidth 

(BW) are concentrated as well in Fig. 7 (b). The Q factor 

remains relatively low when 200 Ω resistors are loaded, 

while it significantly rises as larger resistance is adopted. 

As a result of this increment, BW is narrowed down, 

which validates the inverse relationship between Q and 

BW. Further, when εr increases from 2.2 to 6.6, the Q 

factor gradually gets higher, while BW gets even 

narrower in the meantime. These results will serve as a 

constructive guideline for the design of RLPAs 

according to the requirements.  

From the calculated and simulated results above, it is 

known that the radiation efficiency becomes relatively 

lower when smaller resistors are loaded to the patch. But 

in the case of indoor motion radar applications, the 

 
 (a)  (b) 

Fig. 8.  (a) Simulated and measured reflection coefficient 

of the fabricated patch antennas; (b) photograph of the 

fabricated prototype.  

 

 

 (a)  (b) 

Fig. 9.  Peak gain of the antenna prototypes in the 

frequency range of 5.3 to 6.3 GHz: (a) Measured results, 

(b) simulated results.  

  

 
 (a)  (b) 

Fig. 10.  The radiation patterns of the antenna prototypes 

at 5.8 GHz: (a) E-plane and (b) H-plane  

 

 

 

 

 

 (a)  (b) 

Fig. 6.  Calculated and simulated gain patterns at 5.8 GHz 

of the infinite-ground model under different loaded 

resistance: (a) E-plane patterns, (b) H-plane patterns.  
  

 

 (a)  (b) 

Fig. 7.  Calculated and simulated results of (a) radiation 

efficiency and (b) quality factor and bandwidth for 10-dB 

return loss. The substrate thickness is 0.8 mm.  
 

(a) (b)

Fig. 8. (a) Simulated and measured reflection coefficient
of the fabricated patch antennas; (b) photograph of the
fabricated prototype.



YU, ZHANG, WU, ZHU, YUAN, HU: RIGOROUS ANALYSIS AND DESIGN OF RESISTOR-LOADED PATCH ANTENNAS WITH FLEXIBLE GAIN 812

Figure 8 (a) illustrates the measured and simulated
reflection coefficients of RLPAs loaded with resistors of
200, 510, and 2000 Ω, while Fig. 9 illustrates the mea-
sured peak gain from 5.3 to 6.3 GHz. The simulated and
measured results agree with each other. It is evident that
both the impedance bandwidth and gain bandwidth are
effectively enhanced. Figure 10 depicts the realized gain
patterns of the prototypes in the E- and H-planes. The
measured peak gains account for 2000, 510, and 200 Ω

resistance are 1.39, -1.73 and -3.78 dBi, respectively, and
the HPBWs are kept unchanged.

An indoor motion radar module based on the pro-
posed RLPA with flexible coverage area is developed,
manufactured, and tested. The photograph of the radar
module and the test facility is presented in Fig. 11. The
transmitter and receiver are connected to two orthogo-
nal feeds of the patch, which corresponds to two orthog-
onal polarizations. The radar module is horizontally
installed with the wave beam directed at the dummy.
The working principle is based on the Doppler effect of
microwaves, and the detection distance is chiefly deter-
mined by the antenna gain, which is affected by loaded
resistance.

The measured coverage range is also displayed. The
recognition scopes of different radar modules range from
4.42 to 7.60 m, which could cover most of the domestic
application demands of indoor motion radar. Our indus-
trial partner has already put a series of microwave radar

performance.  
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superiority of the resistor-loading technique far 

outweighs its drawback. In practical situations, the 

recognition scope varies from 0.1 m to 10 m, thus a high 

agility of efficiency adjustment is required. The resistor-

loading technique brings noteworthy design flexibility 

and extra bandwidth, which contribute to a better 

adaptability to the diverse application requirements. 

 

IV.MEASUREMENTS AND APPLICATIONS 
The prototypes of the proposed RLPA with varied 

resistance are fabricated and measured. The photograph 

is shown in Fig. 8 (b). The measurements are conducted 

with Rohde & Schwarz ZVA vector network analyzer 

and a SY-16M near-field chamber.  

Fig. 8 (a) illustrates the measured and simulated 

reflection coefficients of RLPAs loaded with resistors of 

200, 510, and 2000 Ω, while Fig. 9 illustrates the 

measured peak gain from 5.3 to 6.3 GHz. The simulated 

and measured results agree with each other. It is evident 

that both the impedance bandwidth and gain bandwidth 

are effectively enhanced. Fig. 10 depicts the realized 

gain patterns of the prototypes in the E- and H-planes. 

The measured peak gains account for 2000, 510, and 200 

Ω resistance are 1.39, -1.73 and -3.78 dBi, respectively, 

and the HPBWs are kept unchanged.  

An indoor motion radar module based on the proposed 

RLPA with flexible coverage area is developed, 

manufactured, and tested. The photograph of the radar 

module and the test facility is presented in Fig. 11. The 

transmitter and receiver are connected to two orthogonal 

feeds of the patch, which corresponds to two orthogonal 

polarizations. The radar module is horizontally installed 

with the wave beam directed at the dummy. The working 

principle is based on the Doppler effect of microwaves, 

and the detection distance is chiefly determined by the 

antenna gain, which is affected by loaded resistance.  

The measured coverage range is also displayed. The 

recognition scopes of different radar modules range from 

4.42 to 7.60 m, which could cover most of the domestic 

application demands of indoor motion radar. Our 

industrial partner has already put a series of microwave 

radar products with the proposed RLPA to the market, 

and a few gratifying application effects have been 

obtained from consumers. 

 

V. CONCLUSION 
In this article, a reformative cavity model of resistor-

loaded patch antenna is proposed and comprehensively 

analyzed. The loaded resistors give rise to the reduction 

of Q factor, hence widen the bandwidth. The enhanced 

bandwidth provides better impedance-matching stability, 

which makes it possible that inexpensive material with 

unstable permittivity can be employed. The calculated 

results of the cavity model and the simulated results also 

present excellent agreement, which validates the 

precision of the proposed method. Further, in theory, the 

proposed cavity model is also applicable to other types 

of impedance loadings. 

What is more, prototypes of RLPA with different gain 

levels are fabricated and measured, whose measured 

results solidly confirm the gain adjustment capacity. 

Besides, indoor motion radar modules employing the 

RLPA are manufactured and tested as well, and flexible 

coverage scope is achieved.  
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Fig. 11. Photograph of the test site and the fabri-
cated radar module. The measured recognition scopes of
indoor motion radar modules loaded with 200-Ω, 510-Ω,
and 2000-Ω resistors are also illustrated. (The installa-
tion height is 0.9 m).
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In this article, a reformative cavity model of resistor-

loaded patch antenna is proposed and comprehensively
analyzed. The loaded resistors give rise to the reduction
of Q factor, hence widen the bandwidth. The enhanced
bandwidth provides better impedance-matching stability,
which makes it possible that inexpensive material with
unstable permittivity can be employed. The calculated
results of the cavity model and the simulated results also
present excellent agreement, which validates the preci-
sion of the proposed method. Further, in theory, the pro-
posed cavity model is also applicable to other types of
impedance loadings.

What is more, prototypes of RLPA with different
gain levels are fabricated and measured, whose mea-
sured results solidly confirm the gain adjustment capac-
ity. Besides, indoor motion radar modules employing the
RLPA are manufactured and tested as well, and flexible
coverage scope is achieved.
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