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Abstract – A novel four-way substrate integrated waveg-
uide (SIW) filtering power divider (FPD) with in-phase
and out-of-phase characteristics and a large power divi-
sion ratio (PDR) is presented in this work. The frequency
selection and power division functions are effectively
realized by employing SIW resonators at the bottom
layer and at microstrip sections at the top layer, respec-
tively. Four microstrip lines coupled with SIW cavity
through a slotline realize in-phase and two out-of-phase
output characteristics and a large PDR of 7:1. To ver-
ify the design method, a four-way prototype with PDR
of 7:7:1:1 is designed, fabricated, and measured. Results
exhibit good filtering performance, large power division
ratio, and in-phase and out-of-phase characteristics.

Index Terms – Four-way, filtering power divider (FPD),
in-phase - out-of-phase, power division ratio (PDR), sub-
strate integrated waveguide (SIW).

I. INTRODUCTION
In modern wireless system, as two key passive

components in wireless communication system, power
dividers and filters are usually used in a cascaded way.
This undoubtedly increases the circuit size and loss. In
recent years, a high-integration design method, namely
filtering power divider (FPD), has been widely devel-
oped. It can not only achieve the frequency selection
function of the filter but also realize the power division
of the power divider. According to its response type, it
can be divided into in-phase FPD [1–4] and out-of-phase
FPD [5–8]. In addition, unequal FPDs also become par-
ticularly important because their specific unequal power
division ratio (PDR) can enable the array to obtain better
directional performance in beamforming systems [9].

On the other hand, as an important part of substrate
integrated circuits (SICs), substrate integrated waveguide
(SIW) has attracted extensive attention from scholars due
to its low cost, low loss, high integration, high power
capacity, and so on [10]. A series of SIW-based FPDs

is proposed, such as dual-band FPD on SIW triangular
cavities [11], wideband four-way design based on SIW
loaded square patch resonator [12], three-way FPD with
adjustable PDR [13], and so on. Nevertheless, very few
designs can realize in-phase and out-of-phase output at
the same time and with a large PDR.

In this work, a novel four-way SIW FPD with large
PDR of 7:7:1:1 is presented. Specifically, two ways are
in-phase output while other two ways are out-of-phase
phase output, with a 7:1 PDR of in-phase and out-of-
phase output. The frequency selection and power divi-
sion functions are effectively realized by employing SIW
resonators and microstrip sections, respectively. Four
microstrip lines coupled with SIW cavity through a slot-
line realize two in-phase and two out-of-phase output
characteristics and a large PDR of 7:1. To verify the
method, a prototype is designed, fabricated, and mea-
sured. The results show good filtering performance, large
power division ratio, and in-phase and out-of-phase char-
acteristics.

II. DESIGN AND ANALYSIS
The physical structure of proposed four-way SIW

FPD is shown in Fig. 1. It consists of two coupled SIW
resonators at the bottom layer, a slotline at the middle
layer, and four microstrip lines at the top layer. Specif-
ically, the two SIW cavities resonate at TE101 mode
and are coupled through a coupling window to realize
second-order filtering performance. Then, the energy is
transmitted to the top layer through the slotline and out-
put through four microstrip lines. The slotline is set at
the strong magnetic field of the SIW cavity to realize
the transmission from the bottom layer to the top layer.
Figure 2 shows the coupling diagram of proposed four-
way SIW FPD.

According to the above design concept, a four-way
SIW FPD operating at 13 GHz with PDR of 7:7:1:1
is designed. Firstly, the size of the SIW cavity can be
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Fig. 1. Structures of proposed four-way SIW FPD: (a)
Three-dimension view and (b) planar layout.
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layer. Figure 2 shows the coupling diagram of proposed 
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SIW FPD operating at 13 GHz with PDR of 7:7:1:1 is 

designed. Firstly, the size of the SIW cavity can be 

calculated according to the formulas 
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where w1 and l1 represent the design width and 

length of the SIW cavity and weff and leff represent the 

effective width and length, respectively. d is the diameter 

of the vias, p is the distance between the adjacent vias, c 

is the speed of light in vacuum, and ɛr is the relative 

permittivity of substrate. 

The external quality factor of the input port and the 

coupling coefficient between the SIW resonators can be 

calculated according to the formulas 
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where τS11(fi) is the group delay of |S11| at resonance 

fi, and f1 and f2 denote the higher and lower resonant 

frequencies of two coupled, respectively. Figure 3 shows 

the graphs of the external quality factor Qes and the 

coupling coefficient K as a function of different 

parameters. 
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Fig. 3. Extracted external quality factor: (a) Qes and 

coupling coefficient, (b) K. 

Symmetrical

Port 2

Port 3

E-field Direction

Reverse 
Symmetrical

Port 4

Port 5

E-field Direction

 

(a)                                          (b) 

Fig. 4. Analysis of phase characteristic of output ports: 

(a) In-phase output, (b) out-of-phase output. 
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Fig. 4. Analysis of phase characteristic of output ports:
(a) In-phase output and (b) out-of-phase output.

The phase characteristics of the output ports can be
analyzed as follows. As shown in Fig. 4 (a), microstrip
lines connected to output ports 2 and 3 are symmetrical
about the slotline, so the in-phase characteristic can be
obtained at output ports 2 and 3, while microstrip lines
connected to output ports 4 and 5 are reverse symmet-
rical about the slotline, shown in Fig. 4 (b), so the out-
of-phase characteristic can be obtained at output ports 4
and 5 [14]. It is worth noting that by adjusting QeL, that
is, the parameter ds1 and ds2, the PDR of in-phase out-
put and out-of-phase output can be controlled. The QeL
of each output port can be obtained as [15]

QeLi =
α1 +α2 + ...+αN

αi
Qs, (5)

where N = 4, and α1, α2, α3, and α4 represent the dissi-
pated power of each output port. The division ratio can be
adjusted by tuning the QeL ratio of the four output ports.
In order to more clearly demonstrate the adjustment pro-
cess of the PDR, Fig. 5 depicts the PDR changes under
different QeL, that is, different parameters ds1, of output
ports.
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The simulated results show most consistency with the 

measured results, but there are some differences between 

the measured and simulated results in our article, mainly 

because there are certain errors in the processing process, 

and the SMA plug has a certain degree of wear during 

testing, both of which lead to the difference. 

In addition, in order to highlight the advantages of 

our design, Table 1 lists the comparisons between this 

work and other reported works. It is clear that the 

proposals in this work achieves a larger PDR and both 

in-phase and out-of-phase response. 
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Fig. 5. The PDR changes under different parameters ds1.
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ing at 12.96 GHz with PDR of 7:7:1:1 is fabricated on
Rogers 5880 substrate with the relative dielectric con-
stant of 2.2 and thickness h = 0.508 mm. The final dimen-
sion of the proposed four-way SIW FPD is determined as
follows: L = 14, W = 9.5, wio = 3, lio = 2.55, g = 1.6, wc
= 3.6, wms = 0.6, ls = 7, S1 = 0.8, S2 = 3.3, ds1 = 5.3,
ds2 = 5.05 (all units: mm). The whole area of fabricated
FPD is around 1.2 λ g × 0.9 λ g, where λ g is the guided
wavelength at 13 GHz.

According to the PDR of 7:7:1:1, S21, S31, S41, and
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The phase characteristics of the output ports can be 
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Fig. 6. Continued
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Table 1: Comparisons with other reported works
Refs. CF (GHz) 3-dB FBW

(%)
Size (λg2) IL (dB) Order Number

of Ways
Power

Division
Ratio

Phase

[4] 4.82 11.6 0.469 2.0 2 2 1:1 In-phase
[11] 8.3 9.6 1.91 1.5 2 2 1:1 In-phase
[12] 3.55 21.3 1.3 2.0 2 4 1:1:1:1 In-phase
[13] 11.8 5.9 1.28 1.0 2 3 1:1:1.5 In-phase
This
work

12.96 3.96 1.08 0.8 2 4 7:7:1:1 In-phase &
Out-of-phase
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Fig. 6. Simulated and measured results of proposed four-

way SIW FPD: (a) S-parameters, (b) magnitude 

difference and phase difference of in-phase case, (c) 
magnitude difference and phase difference of out-of-
phase case. 

VI. CONCLUSION 
In this work, a four-way SIW FPD with in-phase and 

out-of-phase characteristics and large PDR is presented. 

A prototype with PDR of 7:7:1:1 is designed, fabricated, 

and measured. The results show good filtering 

performance, phase characteristic, and large PDR. It is 

believed that the proposal has a good prospect in 

beamforming systems. 
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division loss). The measured center frequency (CF) is
12.96 GHz, and the 3 dB fractional bandwidth (FBW)
is 3.96%. As shown in Figs. 6 (b) and (c), the magnitude
difference between in-phase output ports is 0.3 dB, while
between out-of-phase output ports is 0.45 dB. The phase
difference between in-phase output ports is 1.8 degrees,
while between out-of-phase output ports is 4.9 degrees.
The simulated results show most consistency with the
measured results, but there are some differences between
the measured and simulated results in our article, mainly
because there are certain errors in the processing process,
and the SMA plug has a certain degree of wear during
testing, both of which lead to the difference.

In addition, in order to highlight the advantages of
our design, Table 1 lists the comparisons between this
work and other reported works. It is clear that the propos-
als in this work achieves a larger PDR and both in-phase
and out-of-phase response.

IV. CONCLUSION
In this work, a four-way SIW FPD with in-phase and

out-of-phase characteristics and large PDR is presented.
A prototype with PDR of 7:7:1:1 is designed, fabricated,
and measured. The results show good filtering perfor-
mance, phase characteristic, and large PDR. It is believed
that the proposal has a good prospect in beamforming
systems.
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