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Abstract – A new compact broadband circularly polar-
ized (CP) crossed dipole antenna using split ring res-
onator (SRR) and parasitic patches are presented. The
proposed antenna is mainly composed of two orthogo-
nal strip dipoles, two 90◦ phase delay lines, four SRRs,
and four parasitic patches. The combination of the or-
thogonal strip dipoles and the delay lines forms a crossed
dipole as the main CP radiator. The well-designed SRR
can extend the current path and improve the current dis-
tribution of high-frequency without increasing the size
of the antenna, thereby reducing the size of the antenna
and increasing the axial ratio (AR) bandwidth of the
high-frequency. The introduction of parasitic patches can
improve the current distribution between the upper and
lower cut-off frequency points of the bandwidth, and
make up for the defects of the insufficient bandwidth of
the crossed dipole and the SRR, thereby realizing broad-
band CP radiation. To verify the antenna, a physical pro-
totype is fabricated. The measured results show that the
impedance bandwidth (IBW) of 69.1% (1.38-2.84 GHz),
and a wide AR bandwidth of 57.7% (1.43-2.59 GHz).
In addition, the designed antenna achieves a stable gain
in the working band and a certain band-edge selectiv-
ity. Such a single-fed, simple structure and the wideband
CP antenna is an excellent candidate for communication
systems such as ISM (2.4 GHz), WiBro (2.3-2.39 GHz)
and Inmarsat.

Index Terms – Circularly Polarized (CP) antenna,
crossed dipole, parasitic patches, Split Ring Resonator
(SRR).

I. INTRODUCTION
Compared to linearly polarized antennas, circularly

polarized (CP) antennas have received widespread atten-
tion due to their advantages of eliminating polarization
mismatches and suppressing multipath interference. At
the same time, there are no strict requirements for the
direction of transmitting and receiving antennas, which

can improve the flexibility between transmitting and re-
ceiving antennas. In recent years, with the development
of miniaturization and integration of wireless communi-
cation systems, miniaturization and broadband CP anten-
nas have attracted more and more attention.

The traditional CP crossed dipole antennas use a
phase-delay ring to provide orthogonal phase and gen-
erate CP radiation [1]. The circumference of the ring is
one-quarter of the waveguide wavelength corresponding
to the center frequency, and its size is small and easy
to design, with an axial ratio (AR) bandwidth of up to
15.6%. Although this bandwidth has a significant ad-
vantage over traditional circularly polarized patch an-
tennas, it has only a single resonant mode, which is
not competitive enough in modern wireless communi-
cation systems. There have been many papers [2]-[15]
that have reported on further expanding the CP band-
width of the crossed dipole antenna. In [2], Feng, et al.
proposed a crossed dipole antenna loading an asymmet-
ric cross-loop, and achieving a 53.4% CP bandwidth in
the form of a multi-mode resonance. Similarly, by in-
troducing structures such as parasitic magneto-electric
dipoles [3], two parasitic patches [4], dual cavity [5], and
parasitic modified patches [6], the bandwidths can reach
28.6%, 66%, 66.7%, and 72.7%, respectively. However,
the introduction of the above-mentioned parasitic struc-
tures leads to an increase in the size of the antenna. In
[7]-[10], by improving the early linear crossed dipoles,
the rectangular crossed dipole [7], double bowtie crossed
dipole [8], asymmetric bowtie crossed dipole [9], and
L-shaped crossed dipole [10] are used. The matching
of broadband is improved, and the final CP bandwidth
reaches 27%, 26.3%, 51%, and 62.3%, respectively. In
[11], a wideband and directional crossed dipole CP an-
tenna is studied. By adding the parasitic patches and de-
fecting the ground plane, the CP bandwidth is enhanced.
In [12], the stepped dipole and L-shaped folded ground
plate is designed to enhance the CP operation band-
width of a crossed dipole antenna. Although, in [11] and
[12], their CP bandwidths can reach 68.6% and 74.7%,
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respectively, their sizes are 0.97 λ 0 × 0.97 λ 0 and 1.03
λ 0 × 1.03 λ 0, which is still relatively large. In [13] and
[14], the size of the deformed crossed dipole antenna
with four parasitic plates and the crossed dipole antenna
using coupling stubs can reach 0.4 λ 0 × 0.4 λ 0 and 0.32
λ 0 × 0.32 λ 0, respectively. However, the CP bandwidths
of these two antennas are only 52.6% and 45%, which is
narrower than the antennas [11] and [12]. In [15], a wide-
band CP crossed dipole antenna with improved band-
width and gain performance is presented. By designing
parasitic elements, a cavity-backed reflector, and a cir-
cular ring reflector, good CP bandwidth and high gain
are obtained. The size of the antenna in [15] is 0.6 λ 0
× 0.6 λ 0, and the CP bandwidth is 85.5%. Nevertheless,
the structure of the antenna is complex and the assembly
is difficult, which increases the difficulty of debugging
the antenna. Therefore, it is of interest to design crossed
dipole antennas with a simple structure, small size, and
wide bandwidth.

In this paper, a crossed dipole antenna with a sim-
ple structure, small size, and wide CP bandwidth is pro-
posed, and it has been validated in [16]. In this design,
the well-designed SRR makes good use of its resonant
properties to produce multiple resonant modes by cou-
pling with the crossed dipole. The introduction of par-
asitic patches can improve the current distribution be-
tween the upper and lower cut-off frequency of the band-
width, and make up for the defects of the insufficient
bandwidth of the crossed dipole and the SRR, thereby
realizing wide CP bandwidth. The size of the antenna
is 0.66 λ 0 × 0.66 λ 0. The measured results reveal that
the IBW of the antenna is 69.1% (1.38-2.84 GHz), the
CP bandwidth is 57.7% (1.43-2.59 GHz) and the gain is
stable within the working bandwidth. In addition, since
the crossed dipole and the SRR adopt the narrow-band
resonance mode, the antenna shows good band-edge se-
lectivity in the upper and lower sidebands. In general, the
antenna has good advantages in size, structure, and per-
formance index, and can be used as an alternative prod-
uct in the field of satellite communication and RFID.

II. ANTENNA DESIGN AND ANALYSIS
A. Antenna configuration

Figure 1 shows the configuration of the proposed
compact broadband CP crossed dipole antenna, which is
mainly designed on an FR4 substrate with relative dielec-
tric constant εr = 4.4 and a thickness of 0.8 mm. The pro-
posed antenna consists of two orthogonal strip dipoles,
two symmetrical 90◦ phase delay lines, four SRRs, four
parasitic patches, and a metal reflector plate. The orthog-
onal dipoles printed on the upper and lower sides of the
substrate are connected by delay lines to realize CP radi-
ation. The interaction of the four SRRs with the crossed
dipole produces two resonant modes at high and low
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Fig. 1. Configuration of the proposed antenna. (a) Top
view. (b) Side view.

Table 1: Antenna parameters (units: mm)
L W L1 W1 R G1

100 90 23 3.1 4.6 1.1
G2 Q1 Q2 Q3 H H1
0.2 23 17 6.6 36 0.8

frequencies, increasing the IBW as well as the axial ratio
(AR) bandwidth. To obtain a better AR bandwidth, four
rectangular patches with chamfered corners were intro-
duced. In addition, the metal reflective plate of size L× L
is added 1/4 λ below the dielectric plate, which can bet-
ter enhance the unidirectional radiation performance of
the antenna. The dielectric plate and the reflector are sup-
ported by four nylon columns to maintain the stability of
the antenna. Finally, the optimal results are obtained by
optimizing the parameter characteristics through HFSS.
In the simulation optimization, the excitation type of the
antenna adopts a lumped port setting, and the size of the
radiation box is selected to be no less than a quarter of
the working wavelength of the low frequency from the
antenna edge. The optimal parameters of the antenna are
shown in Table 1.

B. Antenna mechanism
To better explain the working mechanism of the an-

tenna, Fig. 2 shows the evolution process of the antenna,
and Fig. 3 shows the relationship between the corre-
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Fig. 5. The simulated |S11| and gain with different values
of Q1 and Q2.
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factor to realize the CP mode. As shown in Fig. 6 (c), the
current at 2.4 GHz is mainly distributed on the dipole.
Therefore, the CP radiation is achieved mainly through
dipoles and phase delay lines at high frequencies. As can
be seen from Fig. 6, according to the rotation direction
of the current, it can be concluded that the current flows
in the counter-clockwise direction along the +z direction
in the working frequency band, so the antenna generates
right-handed circularly polarized (RHCP) waves.
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tenna are 69.6% (1.35-2.79 GHz) and 69.1% (1.38-2.84
GHz), respectively. The simulated results are in good
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the measured and simulated results of AR and gain. As
illustrated in Fig. 7 (b), the measured and simulated 3 dB
AR bandwidths are 57.7% (1.43-2.59 GHz) and 58.5%
(1.4-2.56 GHz) respectively. Compared with the sim-
ulated results, the working frequency band is slightly
shifted to the right in the measured results, which may
be caused by the dielectric constant error of the substrate
and the processing error. Figure 7 (b) illustrates the mea-
sured and simulated gain results are in good agreement,
and the in-band fluctuation is less than 1.5 dB, which
shows good in-band flatness. In addition, the reflection
coefficient and gain of the antenna all show good side-
band selection characteristics, which gives the antenna a
certain filtering function. Figure 8 shows the measured
and simulated radiation patterns for two principal planes
(xoz and yoz) at 1.45 GHz, 1.8 GHz, and 2.4 GHz, re-
spectively. The simulated results agreed well with the
measured results. It can be observed that the RHCP
waves are at least 15 dB larger than the left-handed Cir-
cularly Polarized (LHCP) waves, which means that the
antenna radiates RHCP waves.

To highlight the novelty of the proposed antenna,
Table 2 lists a comparison of the performance between
this paper and other references [4], [6], [7], [11], [13]
and [15]. Compared with the references in [6] and [11],
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antenna in [15]. Although the CP bandwidth in [7] is the
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the proposed antenna has good band-edge selectivity and
stable radiation pattern in the working frequency band.
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Fig. 7. Measured and simulated results of the proposed
antenna. (a) |S11| (a prototype is shown as an insert). (b)
AR and gain.
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(a)

(b)

(c)

Fig. 8. Measured and simulated radiation patterns in xoz
and yoz planes for the antenna at three frequencies. (a)
1.45 GHz. (b) 1.8 GHz. (c) 2.4 GHz.

Table 2: Comparison between the proposed and other
works
Ref Overall

Size(λ 0
3)

IBW ARBW Band-
edge
Selectiv-
ity

Average
Gain
(dBic)

[2] 1.1×1.1×0.28 67.5% 53.4% NO 8.0
[4] 1.04×1.04×0.26 77.6% 66% NO 7.2
[5] 0.79×0.79×0.27 95.0% 58.6% NO 8.2
[9] 0.88×0.88×0.23 78.3% 51% NO 9.6
[11] 0.97×0.97×0.32 82% 68.2% NO 8.0
[13] 0.4×0.4×0.13 68.9% 52.4% NO 3.0
Pro 0.66×0.66×0.25 69.1% 57.7% YES 7.7

λ 0: operating wavelength in free space at the center
frequency.

IV. CONCLUSION
In this study, a compact wideband CP antenna using

SRR and parasitic patches has been presented. By adding
the well-designed SRRs close to the crossed dipoles, the
current path and the current distribution can be well mod-
ified, also the size of the antenna and the AR bandwidth
of the high-frequency can be improved. In addition, the
introduction of parasitic patches can improve the cur-
rent distribution between the upper and lower cut-off fre-
quency points of the bandwidth, and make up for the de-
fects of the insufficient bandwidth of the crossed dipole
and the SRR, thereby realizing broadband CP radiation.
The measured results show an IBW of 69.1% (1.38-2.84
GHz), and a wide AR bandwidth of 57.7% (1.43-2.59
GHz). Moreover, the designed antenna achieves a stable
gain in the working band and good band-edge selectivity,

which can be used as a candidate for ISM band, WiBro
and Inmarsat communication systems.
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