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Abstract – In this paper, a phase gradient metasurface
(PGM) is proposed to reduce the radar cross-section
(RCS) of the dihedral corner based on phase cancellation
mechanism. The phase cancellation mechanism is used
to derive the formula of the low-detectable dihedral
corner for the first time, which is directly used to deal
with the wave path difference problem that introduced
by the dihedral corner. According to the formula, six
sub-cells are designed with a 60◦ phase difference,
which is arranged by sub-array along the y-axis. The
reflection coefficients of the selected sub-cells are all
above 0.8. The RCS reduction of the dihedral corner
achieves over 10 dB from 4.9 GHz to 5.14 GHz
under an incident angle of 45◦. In particular, the
RCS reduction of the low-detectable dihedral corner is
13.97 dB at 5 GHz. Meanwhile, the proposed dihedral
corner with PGM also has an excellent performance
of angle insensitivity ranging from 0◦ to 75◦. To
further verify our design, the dihedral corner with
PGM is manufactured by a low-cost printing circuit
board technique. The measured results agreed well
with the simulations, and both of them show an
excellent performance of RCS reduction in the operating
frequency band, regardless of any angle within 75◦.
Overall, the dihedral corner with PGM that we proposed
has the advantages of being low-detectable, low-profile,
low-cost, lightweight, and it is easy to design and
manufacture. It has wide application prospects in the
future.

Index Terms – low-detectable dihedral corner, low-
profile metasurface, phase cancellation, phase gradient
metasurfaces, radar cross-section, wave path difference.

I. INTRODUCTION
The dihedral corner, which normally forms between

the aircraft’s tails, is a typical scattering structure
of a radar target. Its feature recognition is of
crucial significance for detecting complicated targets,
and it also serves as the basis for researching the
scattering properties of gradual scatters. In the design
of low-detectable targets, the dihedral corner is a
significant scattering source, and it is critical to regulate
its scattering characteristics. At present, the control
methods for dihedral corner scattering characteristics
mainly include the loading of lossy materials [1–2],
optimization of the included angle of the dihedral corner
[3–4], passive loading [5–6], etc.

Metasurface [7–9] is a sub-wavelength unit with
special manipulability for amplitude, phase, and
polarization of electromagnetic (EM) waves, which
has been applied in many fields, such as metalenses
[10–11], perfect absorbers [12–13], holograms [14–15],
polarization controllers [16–17], anomalous reflection
[18–19], and radar cross-section (RCS) reduction
[20–21]. As an important type of metasurface, phase
gradient metasurface (PGM) consists of a series of
phase discontinue cells, which were first mentioned
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by Yu [22]. In [22], it generates an optical vertices
beam by constructing eight different reflection angles.
Thenceforth, PGM has gained extensive attention
[23–25]. By regulating the phase gradient of PGM, the
wavefront of the electromagnetic wave can be changed
as needed, so that PGM provides another method for the
scattering control of the dihedral corner. However, the
research on RCS reduction of PGM is mainly focused
on the flat [23–25]. As far as we know, PGM is hardly
ever used for the RCS reduction design of the dihedral
corner [9]. An approach to achieve RCS reduction
of the dihedral corner where the RCS is determined
by multiple-bounce mechanisms is proposed [9]. The
suggested method additionally makes use of array theory
to specify precise guidelines to avoid grating lobes [9].
Nevertheless, they ignored the issue of the wave path
difference that the dihedral corner itself introduced.
According to the related researches, the wave path
difference is particularly important to solve the RCS
reduction of the dihedral corner, and it is necessary to
carry out this research in-depth.

In this paper, the method of phase cancellation,
by combining the wave path difference between two
planes of the dihedral corner with the phase gradient
of the PGM was presented to control the RCS of
the dihedral corner. The formula of the low-detectable
dihedral corner, which directly addresses the wave path
difference issue that the dihedral corner itself introduces,
is derived based on phase cancellation mechanism for
the first time. The working principle is given in detail.
The RCS reduction of the dihedral corner with PGM
achieves over 10 dB between 4.9 GHz and 5.14 GHz at
a 45◦ incidence angle. In particular, the RCS reduction
of the low-detectable dihedral corner is 13.97 dB at 5
GHz. Furthermore, the suggested dihedral corner with
PGM shows outstanding property in terms of angle
insensitivity between 0◦ and 75◦. Above all, simulation
and measurement demonstrate that our method can
reduce the dihedral corner’s RCS. The dihedral corner
with PGM has potential applications in reducing the RCS
of the dihedral corner.

II. DESIGN AND SIMULATION
The dihedral corner usually consists of two perfect

electric conductors (PECs) in xoy and yoz planes, as
shown in Fig. 1. When the plane wave is incident on
PEC along yoz at 45◦, it will be reflected onto the
xoy plane according to generalized Snell’s law. Due
to differing propagation pathways, the phase difference
will appear, resulting in a strong scattering far-field, this
will increase the possibility of detecting. To solve this
problem, PGM is intended to replace PEC in the xoy
plane to compensate for wave path difference, providing
a sequence of continuous phase abrupt of variable
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where n is the position of the nth unit cell.
The plane wave incidences dihedral corner at 45◦.

Using the principle of phase cancellation, we can derive
Equation 2,

φMSn + k0dn−φPEC = π +2Mπ, (2)
where φ MSn and φ PEC are the phases of the metasurface
and PEC of the nth cell, respectively, k0 = 2π/λ 0 is the
propagation constant, λ 0 is the wavelength in free space,
and M is an integer.

The reflection phase of PEC is –π , the
corresponding phase of the unit cell of the PGM
that needs to be designed is deduced as
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The phase shift between adjacent cells of PGM can
be derived
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It can be seen from Equation (3) that we can reduce
the RCS of the dihedral corner by adjusting the phase
of PGM, and the phase difference between adjacent sub-
units can be determined by Equation (4).

A reflective low-profile metasurface is chosen here,
which is a typical sandwich structure. The proposed
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To get the desired phase gradient, parameter m is
swept by the numerical calculation software CST Studio
Suite. In the simulation setup, the EM waves are incident
at a 45◦ angle. The boundary condition is unit cell along
the x- and y-axis, and open (add space) boundary along
the z-direction. The reflection phase and the detailed
geometrical parameters m of six sub-cells are listed at
5 GHz in Table 1. From Table 1, it can be seen that the
phase difference between adjacent cells is almost 60◦. In
the local enlarged image of Fig. 3, the supercell of PGM
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Fig. 4. Simulated reflection coefficients for the unit cells with the change of m, at 5 GHz, (a) amplitude and (b) phase.

Table 1: The reflection phase and the geometrical
parameters m of the six unit cells at 5 GHz

N 1 2 3 4 5 6
m (mm) 6.7 6.83 7.02 2.72 6.33 6.58
Phase (◦) 329.89 269.46 209.90 150.23 89.53 29.95
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by the numerical calculation software CST Studio Suite. In the 

simulation setup, the EM waves are incident at a 45° angle. 

The boundary condition is unit cell along the x- and y-axis, 

and open (add space) boundary along the z-direction. The 
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six sub-cells are listed at 5 GHz in Table 1. From Table 1, it 

can be seen that the phase difference between adjacent cells is 

almost 60°. In the local enlarged image of Fig. 3, the supercell 

of PGM is composed by these six sub-cells.  

All cells have a strong reflection due to the existence of 

PEC ground. As illustrated in Fig. 4 (a), the reflection 

amplitude of six sub-cells exceeds 0.8 in the simulation 

frequency band. Additionally, the reflection phase can cover 

360° by changing the values of m, as shown in Fig. 4 (b). 

The supercell is periodically arranged to form the PGM 

with the size of 254.52 mm × 254.52 mm, which is composed 

of 36 × 36 unit cells. In Fig. 3, we show the dihedral corner 

with PGM, which is composed of PGM in the xoy plane, and 

the copper plate is designed with the same size in the yoz 
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Fig. 3. Schematic diagram of the dihedral corner with 

metasurface. The local enlarged image corresponding to the 

red frame above the picture is the supercell of the designed 

metasurface. 

 

 

Table 1: The reflection phase and the geometrical parameters m of the six unit cells at 5 GHz  

N 1 2 3 4 5 6 

m (mm) 6.7 6.83 7.02 2.72 6.33 6.58 

Phase (°) 329.89 269.46 209.90 150.23 89.53 29.95 

 

 

 

Fig. 4. Simulated reflection coefficients  for the unit cells with the change of m, at 5 GHz, (a) amplitude, and (b) phase. 

 

.

III. SIMULATION RESULTS AND DISCUSSION 
To better validate the method mentioned above, the RCS 

of the dihedral corner with and without PGM are simulated. 

The dihedral corner without PGM serves as the comparison 

group, which only consists of metal plates. Fig. 5 shows the 

RCS of the dihedral corner with and without PGM under 

transverse electric (TE) polarization wave impinging at 45°. 

As seen in Fig. 5, the RCS of the dihedral corner with a low-

profile metasurface is significantly lower than the comparison 

group in the frequency range of 4.75 GHz to 5.25 GHz. The 

RCS reduction of the dihedral corner achieves over 10 dB 

from 4.9 GHz to 5.14 GHz. According to Fig. 5, the RCSs of 

the dihedral corner without and with PGM at 5 GHz are 13.1 

dB and -0.87 dB, respectively. This means the RCS reduction 

Fig. 3. Schematic diagram of the dihedral corner with
metasurface. The local enlarged image corresponding to
the red frame above the picture is the supercell of the
designed metasurface.

All cells have a strong reflection due to the existence
of PEC ground. As illustrated in Fig. 4 (a), the reflection
amplitude of six sub-cells exceeds 0.8 in the simulation
frequency band. Additionally, the reflection phase can
cover 360◦ by changing the values of m, as shown in
Fig. 4 (b).

The supercell is periodically arranged to form the
PGM with the size of 254.52 mm × 254.52 mm, which
is composed of 36× 36 unit cells. In Fig. 3, we show the



HE, XIE, LIU, YAO, WANG, CHEN, LI, DENG: A NOVEL METHOD LOW-DETECTABLE DIHEDRAL CORNER UTILIZING PHASE GRADIENT 272

dihedral corner with PGM, which is composed of PGM
in the xoy plane, and the copper plate is designed with
the same size in the yoz plane.

III. SIMULATION RESULTS AND
DISCUSSION

To better validate the method mentioned above, the
RCS of the dihedral corner with and without PGM are
simulated. The dihedral corner without PGM serves as
the comparison group, which only consists of metal
plates. Figure 5 shows the RCS of the dihedral corner
with and without PGM under transverse electric (TE)
polarization wave impinging at 45◦. As seen in Fig. 5,
the RCS of the dihedral corner with a low-profile
metasurface is significantly lower than the comparison
group in the frequency range of 4.75 GHz to 5.25 GHz.
The RCS reduction of the dihedral corner achieves over
10 dB from 4.9 GHz to 5.14 GHz. According to Fig. 5,
the RCSs of the dihedral corner without and with PGM
at 5 GHz are 13.1 dB and -0.87 dB, respectively. This
means the RCS reduction of the low-detectable dihedral
corner is 13.97 dB at 5GHz. The simulation results
demonstrate that over 10 dB RCS reduction (RCSR) is
realized at 5 GHz, which is virtually in line with the
above estimate.
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and without PGM at 45◦ oblique incidence at different
frequencies.

To further evaluate the RCSR performance, the
monostatic RCS under oblique incidence is simulated at
5 GHz. As shown in Fig. 6, RCS is reduced with the
variation of the incident angle range from 0◦ to 75◦.
As a result, the proposed dihedral corner with PGM has
outstanding RCS reduced performance across a specific
angle range.
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dihedral corner with and without PGM are illustrated
when the incident angle is 45◦ and the operation
frequency is at 5 GHz, as shown in Fig. 7. The RCSs
of the dihedral corner without and with PGM are 13.1
dB and -0.87 dB, respectively. The reflected energy of
the dihedral corner without PGM is centered on the
main lobe, as shown in Fig. 7 (a). On the contrary, the
main lobe is split, and the magnitude has a significant
reduction when PGM is loaded, as seen in Fig. 7 (b).
According to the energy conservation principle, the main
lobe of the dihedral corner with PGM is effectively
suppressed. Therefore, the dihedral corner with the
purposed PGM has the property of RCS reduction.
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IV. MEASUREMENT RESULTS
To further verify our design, a sample with a size

of 254.52 mm × 254.52 mm is manufactured by low-
cost printing circuit board (PCB) technology. Figure 8
exhibits the photograph of the sample with a zoomed
view of the 1 × 6 array of PGM’s supercell. The RCS
of the sample is measured in the microwave anechoic
chamber. The measured results are compared at various
frequencies when the plane wave is incident at 45◦.
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Fig. 10. Simulated and measured RCS of the dihedral
corner with and without PGM at 5GHz at different
azimuth angles.

Similar to Fig. 9, we display the simulation results in
Fig. 10. The sample shows excellent angle insensitivity
performance in the range of 0◦ to 75◦, as illustrated
in Fig. 10. Both of them agree well with simulation
results, with slight deviations due to manufacturing
and measurement errors. Above all, the measurements
corroborate our method and demonstrate that our design
can reduce the RCS of the dihedral corner.

V. CONCLUSION
In this paper, a novel design method has been

proposed to reduce the RCS of the dihedral corner
according to the principle of phase cancellation
combined with PGM. With the loading of a low-
profile metasurface (0.05λ 0) on the dihedral corner,
phase cancellation is performed directly on the wave
path difference introduced by the dihedral structure
itself, to achieve RCS reduction of the dihedral corner.
The guidance formula of a low-detectable dihedral
corner based on phase cancellation mechanism is
derived for the first time, which directly solves the
wave path difference issue due to the dihedral corner
structure itself. According to the guiding formula,
six different phase reflection sub-cells are designed
with 60◦ phase differences. Low-detectable dihedral
corners are demonstrated to be effective in reducing
the backscattered power utilizing the simulation of RCS
and 3D bistatic scattering patterns. Both simulation and
experiment show an excellent RCS reduction over 10 dB
at 5 GHz with a 45◦ incident angle. Moreover, the PGM
is still effective when the incidence angle ranges from
0◦ to 75◦. This study provides a novel and meaningful
approach to design a low-RCS dihedral corner, which
can be applied to complex electromagnetic regulation
scenarios. The low-detectable dihedral corner also has
the benefit of being lightweight because it only requires
one-sided loading with the low-profile metasurface,
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which was manufactured by a low-cost PCB technique.
To verify the effectiveness of the method, we only show
its application in the microwave band. Actually, the
method can be used at any frequency. Furthermore, the
method does not entail absorbing materials. So, it has the
potential to be used in high-temperature settings.

ACKNOWLEDGMENT
This work was supported by the National Natural

Science Foundation of China (No. 52021001 and
51972046)) and Strategic research and consulting project
of Chinese Academy of Engineering (NO.2022-XY-
127), and partly supported by Program for Changjiang
Scholars and Innovative Research Team in University
(PCSIRT).

REFERENCES
[1] T. Griesser, C. A. Balanis, and K. Liu, “RCS

analysis and reduction for lossy dihedral corner
reflectors,” Proc. IEEE., vol. 77, pp. 806-814, 1989.

[2] Y. Hingcheng and H. Peikang, “Po analysis for
RCS of nonorthogonal dihedral corner reflectors
coated by RAM,” J. Syst. Eng. Electron., vol. 12,
pp. 1-6, 2001.

[3] E. Knott, “RCS reduction of dihedral corners,”
IEEE Trans. Antennas Propag., vol. 25, pp. 406-
409, 1977.

[4] D. K. Atwood and L. Thirion-Lefevre,
“Polarimetric phase and implications for urban
classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, pp. 1278-1289, 2018.

[5] A. Y. Modi, C. A. Balanis, C. R. Birtche, and
H. N. Shaman, “New class of RCS-reduction
metasurfaces based on scattering cancellation using
array theory,” IEEE Trans. Antennas Propag., vol.
67, pp. 298-308, 2019.

[6] A. Y. Modi, M. A. Alyahya, C. A. Balanis,
and C. R. Birtcher, “Metasurface-based method
for broadband RCS reduction of dihedral corner
reflectors with multiple bounces,” IEEE Trans.
Antennas Propag., vol. 68, pp. 1436-1447, 2020.

[7] G. Liu, J. Han, X. Gao, H. Liu, and L. Li,
“A novel frequency reconfigurable polarization
converter based on active metasurface,” Applied
Computational Electromagnetics Society (ACES)
Journal, vol. 34, pp. 1058-1063, 2019.

[8] L. N. Nguyen, “A new metasurface structure for
bandwidth improvement of antenna array,” Applied
Computational Electromagnetics Society (ACES)
Journal, vol. 36, pp. 139-144, 2021.

[9] A. A. Abbas and B. S. Samet, “A compact
high gain wideband metamaterial antenna for
sub-6 GHz applications,” Applied Computational
Electromagnetics Society (ACES) Journal, vol. 37,
pp. 886-89, 2022.

[10] Y. Meng, Y. Chen, L. Lu, Y. Ding, A. Cusano, J. A.
Fan, Q. Hu, K. Wang, Z. Xie, Z. Liu, Y. Yang, Q.
Liu, M. Gong, Q. Xiao, S. Sun, M. Zhang, X. Yuan,
and X. Ni, “Optical meta-waveguides for integrated
photonics and beyond,” Light Sci. Appl., vol. 10,
pp. 235, 2021.

[11] Y. Wang, Q. Chen, W. Yang, Z. Ji, L. Jin, X. Ma,
Q. Song, A. Boltasseva, J. Han, V. M. Shalaev, and
S. Xiao, “High-efficiency broadband achromatic
metalens for near-IR biological imaging window,”
Nat. Commun., vol. 12, pp. 5560, 2021.

[12] Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong,
M. Loncar, and F. Capasso, “Electrically tunable
metasurface perfect absorbers for ultrathin mid-
infrared optical modulators,” Nano Lett., vol. 14,
pp. 6526-6532, 2014.

[13] A. Tittl, A.-K. U. Michel, M. Schäferling, X.
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