
377 ACES JOURNAL, Vol. 38, No. 6, June 2023

Improved and Easy-to-implement HFSS-MATLAB Interface without VBA
Scripts: An Insightful Application to the Numerical Design of Patch Antennas

Giacomo Giannetti

Department of Information Engineering
Università degli Studi di Firenze, Florence, Italy

giacomo.giannetti@unifi.it

Abstract – An improved and easy-to-implement HFSS-
MATLAB interface is presented. Because the interface
is realized without the use of VBA scripts, it is eas-
ier to implement for beginners and practitioners. This
advantage allows more dissemination of the code in the
HFSS community. The interface is applied to the numer-
ical design of a patch antenna, showing the capabilities
it enables. Practical details about the implementation are
provided, enabling the reader to implement the interface
on their own.

Index Terms – application programming interface,
HFSS, hierarchical optimization, MATLAB, patch
antenna.

I. INTRODUCTION
Modern programs for computer-aided design (CAD)

are extremely useful tools for the design of complex
structures. However, they are difficult to manage when
they have to be interfaced with other software or when
complex operations are necessary [1, 2].

In order to manage complex operations involv-
ing CAD software in a straightforward way, it is of
paramount importance to be able to interface CAD soft-
ware with a numeric computing environment (NCE). In
the following, we refer to HFSS [3] and MATLAB [4].

The development of an HFSS-MATLAB interface
is not new. It is described in [5–8], and a library for
the interface between MATLAB and HFSS is available
online [9]. In [1, 2], FEKO [10] is interfaced with MAT-
LAB. Python has also been used recently to launch EM
simulators [11, 12]. However, the mentioned works use
the Visual Basic for Applications (VBA) scripting lan-
guage to interface HFSS and MATLAB. VBA scripts
require large libraries, since each feature in the HFSS
model requires a specific command with a specific syn-
tax. Then, even if HFSS commands can be recorded to a
script exploiting a useful feature of HFSS [6], writing a
script is a slow and tedious task, especially for beginners.
Another possibility to interface HFSS and MATLAB is

to call the latter during the execution of the former. How-
ever, this interface is much less flexible than the one in
which MATLAB drives HFSS. Not to be forgotten, stu-
dents and experienced designers can feel pain when they
have to learn a further programming language [13].

This paper presents and describes an improved
and easy-to-implement HFSS-MATLAB interface that
makes no use of VBA scripts. To achieve this goal, vari-
ables are updated in the ASCII file describing the HFSS
model to simulate. Practical details are provided for the
implementation of the application programming inter-
face (API). Moreover, for easier reproducibility of the
API, working examples are also available at [14]. Thanks
to the API, there is no need to learn VBA to script HFSS.
This CAD is then treated like a black box that returns
the output of a simulation once it is called from MAT-
LAB. The working principles of the API are presented
in a practical example: the numerical design of a patch
antenna resonating at 2 GHz.

II. DESIGN EXAMPLE
The example considered for illustrating the pro-

posed interface is the numerical design of a rectangular
patch antenna working at f0 = 2 GHz. The substrate of
the antenna is characterized by a height of 1.6 mm, a met-
allization thickness of 0.035 mm, and a relative dielec-
tric constant of 2.2. The technical drawing of the pro-
posed antenna is depicted in Fig. 1. The patch is charac-
terized by a width W and a length L. The feed is a λ/4
transformer whose length is a. To have more degrees of
freedom, the transformer has a trapezoidal shape whose
bases are M - 2b and M - 2c, where M = 4.943 mm,
the width of the microstrip with a 50 Ω characteristic
impedance. The distance between the patch and the sides
of the substrate is Le = 8 mm and the length of the 50 Ω

microstrip is Lm = 10 mm. In the following, only param-
eters a, b, c, W , and L are variable, the others being con-
stants.

An analytical design procedure for rectangular patch
antennas is possible [15], and the values of the geomet-
rical parameters for this design are listed in Table 1.

Submitted On: April 6, 2023
Accepted On: July 3, 2023

https://doi.org/10.13052/2023.ACES.J.380601
1054-4887 © ACES

https://doi.org/10.13052/2023.ACES.J.380601

GIANNETTI: IMPROVED AND EASY-TO-IMPLEMENT HFSS-MATLAB INTERFACE WITHOUT VBA SCRIPTS 378

W

L

M

L e

Le

a
L m

b

c

Fig. 1. Technical drawing of the patch antenna.

Table 1: Variable history (dimensions in millimeters,
abbreviation a.a. stands for as above)

Variables
L W a b c

Min 46 57 26 1.500 1.500
Max 50 61 32 2.370 2.370
Anal. 49.830 59.290 28.510 2.070 2.070
Opt. (i) 48.472 a.a. a.a. a.a. a.a.
Opt. (ii) a.a. 59.225 28.440 2.014 1.999

However, once the geometrical values from the analyt-
ical design are simulated, the antenna results do not
match them at the desired working frequency, as shown
in Fig. 2. The resonant frequency fr (the frequency at
which the minimum of the return loss occurs), the min-
imum of the return loss |S11|m and the return loss at
f0 = 2 GHz, |S11(f0)|, are gathered in Table 2.

To have an antenna working at the desired fre-
quency, an optimization is performed. Since the magni-
tude of the reflection coefficient is not a smooth function
of the geometrical parameters [16], it is not wise to con-
sider a unique goal for the optimization of the return loss.
Then, the problem is tackled by means of a hierarchical
optimization with these two goals:

min
L
(fr − f0)

2 (1a)

min
a,b,c,W

|S11|m, (1b)

where min stands for minimize. The reasons behind the
definitions of these two optimizations derive from the
theory of the problem. Indeed, it is known from theory

Fig. 2. Magnitude of S11 for the patch antenna during the
different steps of the design.

Table 2: Result summary
Step f r (GHz) |S11|m (dB) |S11(f0)| (dB)
Anal. 1.890 -22.68 -0.35

Opt. (i) 1.999 -22.37 -21.83
Opt. (ii) 1.999 -30.70 -29.99

[15] that a) the resonant frequency depends primarily on
the patch length, and b) matching depends primarily on
the feed dimensions and patch width. Then the two opti-
mizations of the hierarchical optimization are (1a) for
point a and (1b) for point b. Note that while improving
matching in (1b) we do not care about the resonant fre-
quency of the antenna, assuming that it does not change
remarkably. However, if the change in the resonant fre-
quency after solving (1b) is remarkable, then optimiza-
tion (1a) can be repeated to re-center the resonant fre-
quency at the desired value.

For the above optimizations, the MATLAB opti-
mization functions are fminbnd for (1a), and fmincon for
(1b). Function fminbnd is especially useful for minimiza-
tion problems with a single variable. As starting point
for the hierarchical optimization, the analytical design is
considered. The minimum and maximum values for the
variables being optimized are listed in Table 1.

III. DESCRIPTION OF THE API
In the following, the filenames indicated in Table 3

are considered. Obviously, only the file extension must
be the one indicated while the filename could be differ-
ent, provided that all occurrences change accordingly.

The MATLAB commands are in HFSS API.m. The
HFSS model to simulate is base.aedt, while base.txt is
the same as base.aedt, but with the variables substituted
by univocal signposts. The file modified.aedt is the HFSS
model to simulate with updated variables. Eventually,

379 ACES JOURNAL, Vol. 38, No. 6, June 2023

Table 3: Files for the API
Filename Description
HFSS API.m MATLAB script for the interface
base.aedt Model to simulate
base.txt Model with signposts
modified.aedt Model with updated variables
ExportToFile.py Python script for data extraction
res.csv Exported results

ExportToFile.py is the Python script for the export of the
results and res.csv the exported results.

The flow chart for the proposed API is presented
in Fig. 3. The proposed API is made of steps to be
done once, called Preliminary steps, and steps that have
to be done before each simulation, called Steps to be
repeated. The preliminary steps are done manually by
the designer, while the API automatically performs the
others. Furthermore, the blocks with rounded corners
refer to the steps performed in MATLAB, while those
without rounded corners to those of the API.

A. Preliminary steps
The preliminary steps are:

• build the model in HFSS and save it as base.aedt;
• copy the previous file and open it as a text file. Sub-

stitute the numerical values of the variables to be
varied with unique character combinations (‘sign-
posts’, one for each variable), and save the file as
base.txt;

• generate the file ExportToFile.py to export the
results of the simulation.

Since all setups are run by the command used to exe-
cute the simulations, the designer, while preparing the
HFSS model, should follow these directions: a) insert
only one design, called Design in the following; b) insert
only the required setups.

Here is the part of file base.txt defining the variables
of the design: the signposts inserted to substitute for the
variables are shown in bold:

$begin ‘Properties’
VariableProp(‘A’, ‘UD’, ‘’, ‘1A1Amm’)
VariableProp(‘B’, ‘UD’, ‘’, ‘1B1Bmm’)
VariableProp(‘a’, ‘UD’, ‘’, ‘2A2Amm’)
VariableProp(‘b’, ‘UD’, ‘’, ‘2B2Bmm’)
VariableProp(‘c’, ‘UD’, ‘’, ‘2C2Cmm’)
VariableProp(‘ts’, ‘UD’, ‘’, ‘1.6mm’)
VariableProp(‘tc’, ‘UD’, ‘’, ‘0.035mm’)
VariableProp(‘Le’, ‘UD’, ‘’, ‘8mm’)
VariableProp(‘Lm’, ‘UD’, ‘’, ‘10mm’)
VariableProp(‘M’, ‘UD’, ‘’, ‘4.942869528525mm’)
$end ‘Properties’.

Preliminary steps
- Generation of the model (base.aedt)
- Substitution of the variables with
 signposts (base.txt)

Steps to be repeated
- Substitution of the signposts with the
 updated numerical value (modified.aedt)
- Run of the updated model (modified.aedt)
- Export of the results (ExportToFile.py)

- Generation of the
 variable combinations
- Call of the HFSS API

- Processing of the data

YES

NO
FINISH

- Are new variable
 combinations needed?

Fig. 3. Flow chart of the proposed API. The rectangles
with rounded corners refer to the steps performed in
MATLAB, while those without rounded corners relate
to the proposed API.

Here is the Python file ExportToFile.py to export the
results of the simulation:

oDesktop.RestoreWindow()
oProject = oDesktop.SetActiveProject(“Modified”)
oDesign = oProject.SetActiveDesign(“Design”)
oModule = oDesign.GetModule(“ReportSetup”)
oModule.UpdateReports([“S11mag”])
oModule.ExportToFile(“S11mag”, “res.csv”),

where Design is the name of the design in modified.aedt
and S11mag is the name of the report displaying the
results. The file ExportToFile.py could even be generated
automatically in MATLAB.

B. Steps to be repeated
The steps to be repeated for each parameter combi-

nation request by the MATLAB script are:

• read file base.txt containing signposts, substitute
each signpost with the numerical values indicated
by the MATLAB script, and save the new file as
modified.aedt;

GIANNETTI: IMPROVED AND EASY-TO-IMPLEMENT HFSS-MATLAB INTERFACE WITHOUT VBA SCRIPTS 380

• run file modified.aedt to simulate the model;
• run file ExportToFile.py to export results;
• read the results exported in file res.csv.

While substituting the numerical values with sign-
posts, the designer must be aware of the right correspon-
dence between the substituted variables and the actual
variables in the model. Therefore, it is helpful to note a
correspondence table while inserting the signposts. For
example, after having substituted the numerical vari-
ables, the file modified.aedt appears as

$begin ‘Properties’
VariableProp(‘L’, ‘UD’, ‘’, ‘48.47213595500mm’)
VariableProp(‘W’, ‘UD’, ‘’, ‘59.22459629087mm’)
VariableProp(‘a’, ‘UD’, ‘’, ‘28.44027653740mm’)
VariableProp(‘b’, ‘UD’, ‘’, ‘2.013573376324mm’)
VariableProp(‘c’, ‘UD’, ‘’, ‘1.999106250004mm’)
VariableProp(‘ts’, ‘UD’, ‘’, ‘1.6mm’)
VariableProp(‘tc’, ‘UD’, ‘’, ‘0.035mm’)
VariableProp(‘Le’, ‘UD’, ‘’, ‘8mm’)
VariableProp(‘Lm’, ‘UD’, ‘’, ‘10mm’)
VariableProp(‘M’, ‘UD’, ‘’, ‘4.942869528525mm’)
$end ‘Properties’.

The MATLAB command that executes a string in
the command window is system(StringToExecute). The
string for simulating the HFSS model is

“PathExe\ansysedt.exe” /Ng /BatchSolve
“Path\modified.aedt”,

while the string for exporting the results is

“PathExe\ansysedt.exe” /Ng /BatchExtract
“Path\ExportToFile.py” “Path\modified.aedt”,

where ansysedt.exe is the executable for HFSS, PathExe
is the folder where the executable file ansysedt.exe is
stored, /Ng is the setting enabling the non-graphical
mode, and Path is the folder where the files listed in
Table 3 are saved.

IV. RESULTS
After running optimizations (1a) and (1b), the

results for the reflection coefficient are presented in
Fig. 2, and the values of the variables are listed in
Table 1. Data summarizing the optimization are gathered
in Table 2.

We note that it is sufficient to operate only on
the length of the patch to have it resonating at the
desired frequency. Additionally, optimization (1b) on the
other parameters successfully improves matching with-
out affecting the resonant frequency. Eventually, the first
optimization requires only 2 function evaluations while
the second requires 13, thus proving the effectiveness of
the hierarchical optimization over indiscriminate global
optimization algorithms like genetic ones [17, 18].

V. CONCLUSIONS
A useful interface between a CAD software, HFSS,

and a software for technical computing, MATLAB, is
outlined. Unlike other approaches performing the same
task, the proposed one makes no use of VBA scripts to
drive HFSS, hence being easier to implement and allow-
ing the execution of simulations in non-graphical mode.

A glance into the interesting features enabled by this
interface is provided by means of an example: the tuning
of a resonant patch antenna. Despite this rather simple
problem, it shows how the proposed API interface can
realize complex procedures. Indeed, without the API, the
designer would launch the different optimizations man-
ually, with a high risk of errors and the need to keep up
with the execution. On the contrary, with the proposed
API, all steps of the hierarchical optimization can be han-
dled automatically in MATLAB with much more flexi-
bility.

Even though this interface is developed to drive
HFSS, its working principles are of general validity and
can be adapted to drive other simulators or software. For
instance, the author applied the proposed method to drive
GPT [19], a code for particle simulations.

Here what we learned from this lesson. Firstly, for
the happiness of many, there is no need to learn VBA.
Secondly, despite the computation capabilities we are
experiencing nowadays, a good knowledge of the the-
ory behind what we are studying is fundamental. The
analyzed example shows how a hierarchical optimization
approach can tune a patch antenna with only few 3D full-
wave simulations.

ACKNOWLEDGEMENTS
The author thanks Prof. Pelosi for having prompted

him to publish a single-author paper and to Eng. Mad-
dio for having verified the proposed interface with more
complex designs. The author is grateful also to Prof. Sel-
leri and Eng. Righini for hints on how to run HFSS sim-
ulations from the command window. All acknowledged
persons are from the University of Florence.

REFERENCES
[1] R. L. Haupt, “Using MATLAB to control com-

mercial computational electromagnetics software,”
Applied Computational Electromagnetics Society
(ACES) Journal, vol. 23, no. 1, pp. 98-103, 2008.

[2] A. Farahbakhsh, D. Zarifi, and A. Abdolali, “Using
MATLAB to model inhomogeneous media in com-
mercial computational electromagnetics software,”
Applied Computational Electromagnetics Society
(ACES) Journal, vol. 30, no. 9, pp. 1003-1007,
2015.

[3] “Ansys — Engineering Simulation Software,”
[Online] Available: https://www.ansys.com/, 2022.

381 ACES JOURNAL, Vol. 38, No. 6, June 2023

[4] “MathWorks,” [Online] Available: https://www.
mathworks.com/, 2022.

[5] Q. Tan, K. Fan, W. Yang, and G. Luo, “Low side-
lobe series-fed patch planar array with AMC struc-
ture to suppress parasitic radiation,” Remote Sens-
ing, vol. 14, no. 15, p. 3597, 2022.

[6] I. Bouchachi, “Microstrip antenna synthesis using
an application programming interface,” Journal
of Mechanics of Continua and Mathematical Sci-
ences, vol. spl1, no. 4, 2019.

[7] J. B. Romdhane Hajri, D. Inserra, W. Gu, W. Hu,
Y. Huang, J. Li, and G. Wen, “Fast and auto-
matic RF design based on MATLAB-HFSS control
applied on magnetic absorber with metasurface,”
in 2019 Photonics and Electromagnetics Research
Symposium - Fall, PIERS - Fall 2019 - Proceedings,
2019.

[8] X. Yuan, Z. Li, D. Rodrigo, H. S. Mopidevi,
O. Kaynar, L. Jofre, and B. A. Cetiner, “A para-
sitic layer-based reconfigurable antenna design by
multi-objective optimization,” IEEE Transactions
on Antennas and Propagation, vol. 60, no. 6, 2012.

[9] V. Ramasami, “HFSS-API,” [Online] Available:
https://github.com/yuip/hfss-api, 2020.

[10] “FEKO,” [Online] Available: https://www.altair.
com/feko, 2023

[11] C. Fang, S. Xinyang, and X. Zeng, “Using Python
to launch electromagnetic scattering simulation
with FEKO,” in 2021 13th International Sympo-
sium on Antennas, Propagation and EM Theory
(ISAPE), pp. 1-3, IEEE, 2021.

[12] R. J. Sánchez-Mesa, D. M. Cortés-Hernández,
J. E. Rayas-Sánchez, Z. Brito-Brito, and L. De La
Mora-Hernández, “EM parametric study of length
matching elements exploiting an ANSYS HFSS
MATLAB-Python driver,” in 2018 IEEE MTT-S
Latin America Microwave Conference, LAMC 2018
- Proceedings, 2018.

[13] N. Shrestha, C. Botta, T. Barik, and C. Parnin,
“Here we go again: Why is it difficult for devel-
opers to learn another programming language?” in
Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pp. 691-701,
2020.

[14] G. Giannetti, “Gianne97/HFSS-MATLAB-API -
without-VBA-scripts: HFSS-MATLAB API with-
out VBA scripts - publication,” [Online] Available:
https://doi.org/10.5281/zenodo.8068428, 2023.

[15] C. A. Balanis, Antenna Theory: Analysis and
Design, Fourth Edition, John Wiley & Sons, 2016.

[16] S. Selleri, S. Manetti, and G. Pelosi, “Neural net-
work applications in microwave device design,”
International Journal of RF and Microwave
Computer-Aided Engineering, vol. 12, no. 1, 2002.

[17] D. Goldberg, Genetic Algorithms in Search, Opti-
mization, and Machine Learning, Addison Wesley
Series in Artificial Intelligence, Addison-Wesley,
1989.

[18] L. Tarricone, “A genetic approach for the efficient
numerical analysis of microwave circuits,” Applied
Computational Electromagnetics Society (ACES)
Journal, pp. 87-93, 2000.

[19] “GPT,” [Online] Available: https://www.pulsar.nl/
gpt/, 2023.

Giacomo Giannetti (ACES Stu-
dent Member and IEEE Graduate
Student Member) received the B.Sc.
degree (cum laude) in electronic
and telecommunications engineering
from the University of Florence, Flo-
rence, Italy, in 2019, and the M.Sc.
degree (cum laude) in electronic

engineering from the Sapienza University of Rome,
Rome, Italy, in 2021, with award as excellent graduate.
He is currently working toward a Ph.D. degree in elec-
tromagnetism with the University of Florence. He spent
a period as a student with the Technical University of
Vienna, Vienna, Austria, and the National Laboratory of
Frascati, Rome, Italy and a period as a Research Guest
with Kiel University, Kiel, Germany. His research inter-
ests include microwave devices and computational elec-
tromagnetics.

https://www.mathworks.com/
https://www.mathworks.com/
https://www.altair.com/feko
https://www.altair.com/feko
https://www.pulsar.nl/gpt/
https://www.pulsar.nl/gpt/

	INTRODUCTION
	DESIGN EXAMPLE
	DESCRIPTION OF THE API
	Preliminary steps
	Steps to be repeated

	RESULTS
	CONCLUSIONS

