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Abstract – Compared with the traditional finite differ-
ence time-domain (FDTD) method, the discontinuous
Galerkin time-domain (DGTD) method may face the is-
sue of intense computation. In this paper, a novel 3-D
DGTD-FDTD hybrid method is proposed to dramati-
cally reduce the unknowns of the DGTD method. In-
stead of the common mass-lumped elements, this virtual
layer of the Yee grid is implemented on the intersecting
boundary, which simplifies the mesh generation and re-
duces the number of unknowns. To validate the proposed
method, two examples of sphere scattering and horn an-
tenna are considered. The simulation results demonstrate
the effectiveness of the proposed method.

Index Terms – Discontinuous Galerkin time-domain
method, finite-difference time-domain method, hybrid
method, transient analysis.

I. INTRODUCTION
The discontinuous Galerkin time-domain (DGTD)

method is a transient numerical method with high accu-
racy and has been reported extensively in recent years
[1–3]. The DGTD method is capable of using unstruc-
tured meshes resembling the finite-element time-domain
(FETD) method [4], which enables it to solve models
with complex structures and maintain high accuracy at
the same time. Numerical fluxes are employed in the
DGTD method to separate unknowns shared among ad-
jacent elements, allowing them to be independent. There-
fore, explicit time integration schemes such as leapfrog
scheme can be used in the DGTD method [5] as in the
FDTD method [6, 20]. However, with an increase in
the number of computing elements, the unknowns of the
DGTD method will inevitably rise, and consequently the
computational efficiency will decrease.

The traditional way to reduce the unknowns of
DGTD method is to use the hybrid mesh instead of the
unstructured mesh in single form [7]. An alternative ap-
proach is using different forms of basis functions for
different types of meshes to reduce the total number
of unknowns [8]. However, in most cases, the resulting
computational efficiency is still limited. A more recent

novel idea is to use the FDTD method to deal with hex-
ahedral elements in hybrid mesh [9]. This idea makes
use of the fast and simple characteristics of the FDTD
method, and avoids the staircasing error of the FDTD
method, which is more direct and effective than the tra-
ditional method of reducing unknowns. This scheme has
been verified by comparing the results with those ob-
tained by FETD [9–13]. The standard procedure requires
the grids in the common area should be divided into tetra-
hedral elements for the FETD method. A similar op-
eration was introduced into the solution of the DGTD
method [14] in recent years. It achieves good results by
one common buffer. However, the existence of instance
buffer [14–16] hinders the generation of hybrid meshes
and efficiency.

In this paper, a novel three-dimension explicit
DGTD-FDTD hybrid method is proposed. There is only
one overlapping virtual layer of the FDTD zone be-
tween the DGTD and the FDTD zone to replace the
buffer zone. Thereby the calculation of electromagnetic
fields towards FDTD zone shares similarities with the
domain decomposition FDTD (DD-FDTD) method de-
tailed in [17, 18]. The electromagnetic fields from the
FDTD zone are converted to numerical fluxes and added
into DGTD’s formulations. Moreover, the tetrahedral el-
ements used in the DGTD zone can be generated more
freely, and it is not required to generate additional ele-
ments [13] to meet the mass-lumped element’s standard.
Such a procedure saves considerable computation time
compared with traditional hybrid strategy. To validate the
proposed strategy, two examples are presented in this pa-
per. The comparison of different methods’ results vali-
dates this method’s accuracy and high performance.

II. THE FORMULATION OF DGTD
After testing by the discontinuous Galerkin method,

the weighted integral form of source free Maxwell equa-
tions are 

∫
v
[
ε

∂E
∂ t −∇×H

]
dΩ = 0,∫

v
[
µ

∂H
∂ t +∇×E

]
dΩ=0.

(1)
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Here, v is the weight function, ε represents the per-
mittivity, µ is permeability, and Ω denotes the space of
the tetrahedral element.

The numerical fluxes with respect to element I is de-
fined at the element boundary. j represents the adjacent
element of element i.

n̂×H∗ = n̂×Hi +
Z j

Zi +Z j n̂× (H j −Hi)

− 1
Zi +Z j n̂× (n̂× (E j −Ei)),

n̂×E∗ = n̂×Ei +
Y j

Y i +Y j n̂× (E j −Ei)

+
1

Y i +Y j n̂× (n̂× (H j −Hi)). (2)

Here, n̂ is the unit outward normal vector of face of
the element i. E∗ and H∗ represent the numerical fluxes,
Z is the impedance and Y is the admittance.

The integral procedure results in

∫
v(∇×E∗)dΩ=

∫
v(∇×Ei)dΩ

+
∫

v
[

Y j

Y i+Y j n̂× (E j −Ei)
]

dΩ

+
∫

v
[

1
Y i+Y j n̂× (n̂× (H j −Hi))

]
dΩ,∫

v(∇×H∗)dΩ=
∫

v(∇×Hi)dΩ

+
∫

v
[

Z j

Zi+Z j n̂× (H j −Hi)
]

dΩ

−
∫

v
[

1
Zi+Z j n̂× (n̂× (E j −Ei))

]
dΩ.

(3)

By substituting equation (3) into equation (1) we ob-
tain the Maxwell-DGTD equation in matrix form{

εM ∂Ei
∂ t = SHi +∑

4
p=1 (Feh(H j −Hi)−Fee(E j −Ei)) ,

µM ∂Hi
∂ t =−SEi −∑

4
p=1 (Fhe(E j −Ei)+Fhh(H j −Hi)) .

(4)
Here, E and H are expanded by the 2nd-order hier-

archical basis function, defined in [19], M denotes the
mass matrix, S denotes the stiffness matrix, Fee, Feh, Fhh
and Fhe are the numerical flux matrices, ε represents the
permittivity, µ is permeability, j represents the adjacent
element of element i, and p is the number of the surface
of the tetrahedral elements.

The leapfrog scheme has been adopted in the itera-
tion process. Furthermore, Equation (1) can be converted
into the explicit scheme as follows:

Ei
n+1−Ei

n

∆t

= SH
n+ 1

2
i + ε−1M−1

∑
4
p=1

(
Feh(H

n+ 1
2

j −H
n+ 1

2
i )−Fee(En

j −En
i )

)
,

H
n+

1
2

i −H
n− 1

2
i

∆t

=−SEn
i −µ−1M−1

∑
4
p=1

(
Fhe(En

j −En
i )+Fhh(H

n− 1
2

j −H
n− 1

2
i )

)
.

(5)
M−1 represents the inverse of the mass matrix. ε−1

and µ−1 denote the reciprocals of permittivity and per-
meability.

III. VIRTUAL LAYER STRATEGY FOR
DGTD-FDTD HYBRID METHOD

A. DGTD-FDTD hybrid strategy
As shown in Fig. 1 (a), a hybrid strategy is pro-

posed. One layer of FDTD Yee grids will be set as the
virtual layer, and the virtual layer overlaps the tetrahe-
dral DGTD elements. Since the generation of tetrahedral
mesh in the DGTD zone will not be affected by the vir-
tual layer, the tetrahedron elements can be directly con-
nected. While the conventional needs one extra hybrid
region, the grid needs to be split into six tetrahedral el-
ements. As a result, the split elements will add obvious
unknowns.

0,

= 0.

v d
t

v d
t
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
−  =




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                   (1) 

Here, v is the weight function,  represents the 
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of the tetrahedral element. 
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Here, n̂  is the unit outward normal vector of face of 

the element i. E* and H* represent the numerical fluxes, 
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
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By substituting equation (3) into equation (1) we 

obtain the Maxwell-DGTD equation in matrix form  

         

( )

( )

4

1

4

1

( ) ( ) ,

( ) ( ) .

i

i eh j i ee j i

p

i

i he j i hh j i

p

t

t





=

=


= + − − − 


 = − − − + −

 





M S F F

M S F F

E
H H H E E

H
E E E H H

 (4) 

Here, E and H are expanded by the 2nd-order 
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
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

−
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

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          (5) 

1−
M  represents the inverse of the mass matrix. 
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Fig. 1. Two types of hybrid mesh: (a) The virtual layer
hybrid mesh and (b) the conventional hybrid mesh.

In the conventional hybrid method, the hybrid region
is calculated by a new algorithm merged from DGTD
and FDTD method. A new mass matrix is built by both
basis functions in DGTD and the field-components in
FDTD. [

MDGT D Mhybrid
Mhybrid MFDT D

][
NDGT D
lFDT D

]
. (6)

In Equation (6), MDGT D and MFDT D represent the
respective mass matrix. And the Mhybrid is calculated by
the projection of the overlapped basis functions and field-
components. The FDTD method is simple and fast. So
we convert the 3-D hybrid problem into two 2-D prob-
lems and keep the characteristics of FDTD at the same
time.

In our proposed method, we apply a concise strat-
egy to communicate DGTD and FDTD zones. The fields
from the FDTD zone will be transmitted through the
boundary of two types of meshes to the DGTD zone.
The fields from the DGTD zone will be transmitted on
the red face of the virtual layer to the FDTD zone. Con-
sequently, there will be no mutual interference during the
communication of the two methods based on the virtual
layer hybrid strategy.
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red face of the virtual layer to the FDTD zone. 
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Fig. 3. The assembly of FDTD EH-fields for DGTD 

zone: (a) The constituent components of E+, (b) the 

constituent components of H+. 
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In Fig. 2, when the FDTD zone needs to update the
fields, it will use the electric field (E-field) from the face
(indicated with red). The E-field for FDTD method on
the face of the virtual layer, meanwhile inside the over-
lapping DGTD zone, can be directly calculated by the
DGTD method in explicit scheme, using E = ∑

n
i=1 eiNi.

E represents the vector field in the DGTD zone, Ni stands
for the basis functions, and ei is the expansion coeffi-
cients [19].
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C. The marching-on-in-time algorithm
To ensure that the combination of the two methods is

self-consistent, the following process of explicit iteration
has been implemented:

FDTD and DGTD method will iterate normally
when they are not in the overlapping zone.

In the overlapping zone, updating of the E-field for
two methods is as follows:

1) DGTD should update the E-field on the inner face
of the virtual layer.

2) FDTD method updates the E-fields.
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3) Fields from the FDTD zone should be combined
and converted to the form of numerical fluxes for
the updated H-field in the DGTD zone.

Updating of the H-field for two methods:

1) DGTD should update the H-field on the inner face
of the virtual layer.

2) FDTD method updates the H-fields.
3) Fields from the FDTD zone should be combined

and converted to the form of numerical fluxes for
the next iteration’s updated E-field in the DGTD
zone.

Since the explicit iteration scheme is employed here,
the ∆t in the presented work is chosen based on the fol-
lowing rule:

∆t = min{∆tDGT D,∆tFDT D} . (7)
The choice of ∆tFDT D follows the rule in [6], The

selection of ∆tDGT D satisfies the Lemma 2.9 in [21]:
1

√
µiεi

∆tDGT D

[
2αi +βi max

(√
εi

ε+
,

√
µi

µ+

)]
<

4Vi

Pi
.

(8)
In Eq. (8), α i and β i are coefficients obtained by

[21], Vi and Pi are the volume and the total area of the el-
ement i, respectively, ε i is the permittivity of the element
i, µ i is the permeability of the element i, the superscript
”+” indicates the adjacent elements of the element i.

Because the calculation of hybrid region doesn’t
involve new algorithms, the selection of ∆t just needs
to satisfy the CFL (Courant-Friedrichs-Lewy) condi-
tions [6].

IV. NUMERICAL RESULTS
All of the numerical simulations were carried out

on the Intel Xeon Gold 6140 CPU @ 2.30 GHz with 64
GB of RAM. And the programming language is imple-
mented in Fortran 95.

A. Sphere scattering
In this example, a perfect electric conductor (PEC)

sphere’s bistatic scattering is computed by differ-
ent methods. This sphere’s radius is 0.5 m, and the
planewave’s propagation direction is -z. Figure 5 repre-
sents the grids and tetrahedrons of the sphere model. The
outermost five layers of the FDTD zone are set as the uni-
axial perfectly matched layer (UPML) boundary. Corre-
spondingly, the comparison model of the DGTD method
is truncated by five UMPL layers, too, as illustrated in
Fig. 5. The mesh size of both models’ tetrahedral ele-
ments is λ /10; the Yee grids in all models are generated
with mesh size λ /15. In addition, the FDTD method used
a conformal algorithm [22] to improve accuracy.

The comparison of bistatic scattering of different
methods at the frequency of 400 MHz is highlighted in
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Fig. 5. Mesh of different methods: (a) The mesh of hy-
brid method and (b) the mesh of conventional DGTD
method.

Fig. 6. Based on the results of this comparison, it can
be inferred that the results of the hybrid method and
method of moment (MoM) are in good agreement, and
it has prominently better results than the FDTD method.
It can be found that the hybrid method has an obvious im-
provement on accuracy when compared with the FDTD
method. Results of the comparison between the conven-
tional DGTD method and the proposed method are listed
in Table 1. It is evident that the proposed method has a
tremendous advantage compared with the conventional
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Fig. 6. Comparison of bistatic RCS computed by 

different method:s (a) xoz plane, (b) yoz plane. 
 

Table 1: Performance of Different Methods. 
Method 

Memory 

(MB) 
Unknowns 

Solution 

time (s) 

DGTD 9283 11,435,600 10,901 

Conventional method (with 

buffer zone) 
1504 1,190,454 757 

Proposed method 1037 861,134 522 

 

B. Horn antenna 

The second example is a horn antenna. It is one kind 

of broadband antenna. Because of its opening structure, 

it is quite suitable for computation with the proposed 

hybrid method. Figure 7 represents the hybrid mesh of 

the horn antenna model. The mesh size of both models’ 

tetrahedral elements is / 10 ; the mesh size of the Yee 

grids for FDTD method in both models is / 15 . 
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Fig. 7. The horn antenna model: (a) The model with the 

geometric size of the horn antenna, (b) the hybrid mesh 

for DGTD-FDTD method. 

 

A coaxial wave port is used to excite the antenna, 

which is inside the DGTD zone. The exciting signal is 
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Fig. 6. Comparison of bistatic RCS computed by differ-
ent methods: (a) xoz plane and (b) yoz plane.
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Table 1: Performance of Different Methods
Method Memory

(MB)
Unknowns Solution

Time (s)
DGTD 9283 11,435,600 10,901

Conventional
method (with
buffer zone)

1504 1,190,454 757

Proposed
method

1037 861,134 522

DGTD method. The proposed method is 20 times faster
than the DGTD method, which significantly reduces the
computation memory and improves the efficiency. On
the other hand, due to the virtual layer, the proposed
method can save calculation time significantly compared
with the conventional strategy.

B. Horn antenna
The second example is a horn antenna. It is one kind

of broadband antenna. Because of its opening structure,
it is quite suitable for computation with the proposed
hybrid method. Figure 7 represents the hybrid mesh of

(a)

(b)

Fig. 7. The horn antenna model: (a) The model with the
geometric size of the horn antenna and (b) the hybrid
mesh for DGTD-FDTD method.

the horn antenna model. The mesh size of both models’
tetrahedral elements is λ/10; the mesh size of the Yee
grids for FDTD method in both models is λ/15.

A coaxial wave port is used to excite the antenna,
which is inside the DGTD zone. The exciting signal is
chosen as a modulated Gaussian pulse with bandwidth of
5∼15 GHz. From Figs. 8 (a)-(c), we can find that the gain
pattern and S-parameter of the proposed DGTD-FDTD
hybrid method is in good agreement with the finite ele-
ment method (FEM) and DGTD method. In Fig. 8 (d),
the comparison of port’s voltage of DGTD and DGTD-
FDTD method is given to prove the stability of hybrid
method. From Table 2, the results demonstrate that the
hybrid method still has a significant advantage in the
unknowns compared with the DGTD method. From the
comparison, the proposed method exhibits a 15.28 times
improvement in overall computing efficiency and nearly
13 times improvement in memory usage.
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Fig. 8. Continued.
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Fig. 8. The comparison of different methods: (a) The 

gain pattern of xoz-plane, (b) the gain pattern of yoz-

plane, (c) the result of S-parameter, (d) the time-domain 

result of port’s voltage. 

 

Table 2: Performance of different methods 

Method 
Memory 

(MB) 
Unknowns 

Solution time 

(s) 

FEM 5431 1,359,660 1523 

DGTD 26,150 8,377,240 14,732 

The conventional 

method 
2340 751,330 1315 

The proposed method 2132 626,944 964 

 

V. CONCLUSION 
In this paper, a novel 3-D hybrid method of the 

DGTD and FDTD method is introduced. One virtual 

layer of FDTD has been adapted to maintain the 

independence of the communication between the two 

methods. On this premise, it is not necessary to add 

additional elements for the actual common buffer as it is 

the conventional hybrid method. Consequently the 

unknowns will obviously be reduced. As a result, there 

will be a significant improvement in memory usage and 

computational efficiency compared with the 

conventional DGTD method and hybrid method. 
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