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Abstract — An alternate boundary local time stepping
(ABLTS) method is proposed for the discontinuous
Galerkin time domain method for transient electromag-
netic simulations to reduce the computation complexity
of the local time stepping (LTS) method. The proposed
method exhibites lower storage and time complexity than
the conventional LF-LTS method . The stability, accu-
racy, and effectiveness of the ABLTS method are verified
by applying it to the simulation of a resonator cavity and
multi-layer microstrip antenna. The numerical results re-
vealed that the developed method is effective for the tran-
sient electromagnetic simulation of antennas.

Index Terms — Antenna transient analysis, discontinuous
Galerkin time domain method, high-order time integra-
tion, local time stepping.

L. INTRODUCTION

The discontinuous Galerkin time domain (DGTD)
method is widely used in the transient simulation of an-
tennas and microwave devices because of its high accu-
racy. The DGTD method introduces numerical flux into
the finite element time domain (FETD) method [[1H8]] and
exhibits higher accuracy and modeling flexibility than
conventional time-domain methods such as finite differ-
ence time-domain (FDTD) method. The numerical flux
decomposes the common basis function between neigh-
boring elements, so that the governing equation can be
established in one element and avoid building and de-
composing large sparse matrices.

Runge-Kutta and leapfrog (LF) methods are the
widely used explicit time integration schemes based on
the DGTD method [6} 8, 9]. The LF scheme exhibits
limited iteration steps. In the Courant—Friedrichs—-Lewy
(CFL) stability condition, the maximum time step size of
explicit difference schemes is determined by the small-
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est element. However, unstructured meshes typically
produce some distorted and small-size elements, which
leads to a minimal global time step size [9]. Local time
stepping (LTS) methods are typically used to address the
multi-scale problem [10H12]. The LTS method classi-
fies elements into many parts according to their size in
space; fine and coarse regions have different time step
sizes [8H14]. However, if a fine region is adjacent to
a coarse region, the fine region requires the numerical
flux of the adjacent coarse region, and the coarse re-
gion cannot provide fields at the exact time because of
the large time step. The LTS method based on the arbi-
trary high order (ADER) scheme compensates for the er-
rors of different time steps through the high-order Taylor
expansion of time partial conductance in the coarse re-
gion. The ADER-LTS method is highly accurate but re-
quires time synchronization when it provides field infor-
mation as the output. Furthermore, frequent synchroniza-
tion leads to complications in time integration steps, the
ADER-LTS requires extra memory because of storing
fields at multiple time steps. Another LTS method based
on the leapfrog (LF) scheme is frequently discussed [8-
12]|. The LF scheme presents second-order time accuracy
and simpler iterations than the ADER scheme. When ad-
jacent element fields are not obtained at the exact time,
the accuracy of the LF scheme degrades to first-order and
some interpolation methods [8}[11], which increase itera-
tion complexity and memory, are used to compensate for
the accuracy. However the interpolation slows the solv-
ing speed and needs to meet a more stringent stability
condition.

In this study, we propose an alternate boundary LTS
(ABLTS) method based on the LF-LTS method reported
in [8]. The ABLTS method is applied to the DGTD
method with hierarchical vector basis functions, avoids
interpolation between coarse and fine regions, and main-
tains the concise iterations of the LF scheme. The storage
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and time complexity of this method are lower than those
of the interpolation LF-LTS method, which improves the
universality of the LTS method. The simulation of a res-
onator cavity and patch antenna showed that the ABLTS
method presents the high accuracy, fast speed, and low
memory as the interpolation LF-LTS method.

II. PRINCIPLE AND FORMULATIONS
A. Numerical discretization of LTS-DGTD

The isotropic Maxwell’s curl equations in 3-D space
without sources and lossless are

Vtzeaa—f
VB 37H7 (D
T

where € is the permittivity,  is the permeability. E and H
are expended with the second-order hierarchical vector
basis function reported in [6].

Using the Galerkin finite elements approach re-
ported in [1], (I)) can be expressed as the weak form with
integration by parts as follows:
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where Q is the computational domain divided into tetra-
hedrons Q;, I'; is the boundary of Q;, and # is the normal
vector located on I'; and points to the outside, NV; is the
weight functions of ;. The DGTD method introduces
numerical fluxes to evaluate the integration over tetrahe-
dron interfaces. As a common numerical flux with ex-
cellent convergence, the upwind flux is introduced into
@]), and the semi-discrete form with the upwind flux is
expressed as follows [1]]:
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where k., ve, ki, and v, are the upwind flux coefficients
[5], M is the mass matrix, S is the stiffness matrix, and
Fr and Gr are the flux matrices.
(3) can be expressed in a highly concise form as fol-
lows:
du

o =AW, ©

where u = [E, H]", A denotes the terms of (3) other than
the time partial term. According to the ADER scheme
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reported in [12], # can be expanded into Taylor series as
follows:
N’ At? 9Pu (¢

(t +Ar) = 7
+ = D! (9ﬂ’

(&)

where N, is the order in the ADER scheme. The first or-
der ADER scheme is expressed as follows:
du(t) u(t+At)—u(r)
or At

+0(*) =Am). (6)

For isotropic media, A (1) = Au(t), this scheme be-
comes an explicit format and can be derived into the LF
scheme using () as follows:
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where At is the size of the time step, and f (u) denotes
the flux term:
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The half step between E and H proves that (8) has

the second-order time accuracy [8]. The CFL condition
constrains the At size [8,19]:
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where A is the eigenvalue, and Az r is the time step size
of LF scheme.

B. Alternate boundary LTS scheme
The LF-LTS scheme can be used to expand (8) into
the following:
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where er and e, are the fine and coarse regions, respec-
tively.

When the iteration steps of the fine region become
an integer multiple of 3, the coarse region updates fields.
According to the difference in the element scale, the
computing domain can be classified into multiple LTS
levels. The element of each level is coarse and fine for
the upper and lower levels, respectively. Elements in the
same LTS level Q;75 have the same time step Af;rs. A
report [15] proved that
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where Ag is the matrix established using elements in Q,
A i is the matrix established by employing elements in
the fine region.

If i is in the fine region and j is in the coarse region,

(TT) becomes
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The field obtained using j is not at the exact time
step and reduces the accuracy and stability; thus, the time
accuracy of (I3) has the first order. In general, efficient
methods, such as introduction of interpolation or exact
iteration in an interface, are used to refine this scheme [0,
OH11]], which increases the computing time and requires
additional memory.

To avoid introducing interpolation, the boundary of
fine and coarse elements is reconstructed so that the
difference scale of coarse elements on the boundary is
changed to be consistent with that of fine elements. The
changed elements are alternate boundary (AB) elements,
as displayed as Fig.[I}

Considering @, a different scheme of AB elements
can be transformed into the following expression as the
second-order scheme
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Fine elements

Coarse elements

Alternate boundary
elements

Fig. 1. Common case of alternate boundary method in
which the yellow elements are alternate boundary ele-
ments that belong to the coarse region.
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(T4) provides the exact field of the coarse region and
retains the second-order time accuracy in fine regions.

Different from the 2-D nodal basis function reported
in [8} 9], the contribution of 3-D hierarchical vector basis
functions to the upwind flux is mainly concentrated in the
adjacent face and edges, and the orders are 0.5, 1.5, and
2, which render the spatial accuracy consistent with the
time accuracy. The reciprocity of linear equations with
the same order in space and time was confirmed in [16].
(T4) of element i in the coarse region becomes:
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rewriting the equation in the LF scheme, we obtain
Hin+% _ Hl'rh%
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(T6) indicates that only two iterations of the AB element

are required to obtain a field with high-order accuracy,

according to (T3). (T6) also maintains the characteris-

tics of the explicit scheme; hence, the AB elements must

meet the CFL conditions of the fine region.

T
=Ay [Ei",Hinfé,EﬂHj"*%}

C. Computation work of ABLTS

It’s obvious that (T6) is able to suppress errors in
the coarse elements, and there will be an exact time step
from the adjacent fine elements when (I6) is applied in
the upwind flux. Therefore, AB elements only need to
maintain the same update scheme as adjacent fine ele-
ments to ensure that the accuracy of adjacent coarse ele-
ments is maintained at the second-order.

This feature makes the computation work of ABLTS
method simpler than interpolation methods in [15]. For
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Fig. 2. Computation work of ABLTS in the LF scheme,
The time step size has Ar, = 3Az;; the red dotted lines are
fields provided by Eq. (T6).

example, when the problem has 3 classes, the computa-
tion work of ABLTS is shown in Fig. |Zl

The update for electric field of AB elements at the
exact time is similar to (T6):

1
El_n+ 3 _ Ein

N Al )

+ A (B HES H o),
From (16) and (I7), the stability of the ABLTS
method remains explicitly dependent on Az, and the up-
wind flux ensures equation convergence. The order of
time in AB elements is the same as second-order inter-
polation. Therefore, the time step size of ABLTS follows

(12).

T
= A [BHG B H
(17)

III. NUMERICAL RESULTS AND
DISCUSSION
In this section, the simulation of a resonator cavity
and multi-layer antenna is presented to show the stability
and efficiency of the ABLTS method.

A. Resonator cavity

First, the characteristics of a resonator cavity are an-
alyzed to confirm the stability and accuracy of the pro-
posed method. The cavity is 1| m x 1 m x 1 m and is
terminated using a perfect electronic conductor (PEC)
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boundary. The interior of the resonant cavity is filled with
air, so that the resonant frequency obtained using the ana-
lytical solution is 212.132 MHz. The cavity is partitioned
to A, B, and C regions, and the mesh size ratio of these
regions is set to 1:3:9 for showing the multi-scale situa-
tion.
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Fig. 3. Geometry and meshes of the resonator cavity.

To verify the stability and accuracy of the ABLTS
method, three control groups are used for testing. The
mesh size of region A in these control groups were 10,
15, and 20 mm. After mesh generation, the numbers of
elements of these groups are 75,351, 35,679, and 17,114
tetrahedrons; the number of degree of freedoms (Dofs)
are 3,014,040, 1,427,160, 684,560. A point source is ex-
cited at the center of the cavity with modulated Gaussian
pulse from 100 to 300 MHz. The DGTD method with LF,
LF-LTS presented in [9], and ABLTS methods are used
to simulate the wave propagation of 1000 ns in the cav-
ity. The minimum time step size of the above methods is
37.562 ps. Fig. 3] shows the geometry of the cavity.

Table[T] presents the performance comparison of the
relative error and solution time of LF, LTS, and ABLTS
methods, and the relative error is compared with the
result of analytical solution of 212.132 MHz (absolute
error/analytical solution). For the same mesh and exci-
tation and solution times, the accuracy of the ABLTS
method is the same as that of the LF method and higher
than that of the LF-LTS method. The speed of the
ABLTS method is similar to that of the LF-LTS method
and considerably higher than that of the LF method. In
this example, the spatial discretization at a maximum
scale of 0.127 wavelengths and following eq. (9) and eq.
(I2) to estimate the time step, three groups of experi-
ments at different scales all maintained stable working
for a long time as Fig. f] shows, demonstrating the sta-
bility of the proposed method. The electric field of the
cavity is shown in Fig.[3]
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Table 1: Performance comparison among different meth-
ods

Group |Performance| LF |LF-LTS|ABLTS
Group 1| Time (min) | 315.4 | 90.64 | 90.75
Speedup \ 3.48 3.48
Freq (MHz) |212.106|212.011|212.105
Relative error| 0.01% | 0.06% | 0.01%
Group 2| Time (min) | 69.12 | 22.35 | 22.07
Speedup \ 3.09 3.08
Freq (MHz) |212.095|212.003|212.093
Relative error| 0.02% | 0.06% | 0.02%
Group 3| Time (min) | 27.51 9.09 9.1
Speedup \ 3.02 3.02
Freq (MHz) |212.039|211.991|212.039
Relative error| 0.04% | 0.07% | 0.04%
1.0 -
05 '
g
2
< 00
=
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-0.5 ”l
-1.0 : ' : !
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Fig. 4. Nearfield of the proposed method.

B. Multi-layer microstrip antenna array

A multi-layer microstrip antenna array is analyzed
using the DGTD-ABLTS method to show its efficiency
and accuracy. The array had four layers (Fig. [6); the
first layer of the upper part is made of Rogers RO3203,
whose permittivity is 3.02. The second and forth layers
are composed of Arlon CuClad 250GT, whose permit-
tivity is 2.5. The third layer is a perfect electric conduc-
tor. The computation domain is terminated by the Silver-
Muller absorb boundary condition. Four lump ports ex-
cited the feed network through a modulated Gaussian
pulse from 13.5 GHz to 17.5 GHz. The number of tetra-
hedrons is 1,735,017, the number of Dofs is 69,400,680,
and the ABLTS method decomposes meshes into three
levels. The numbers of tetrahedron of each LTS levels are
42,264, 408,453, and 1,731,841. The pulse propagated in
the model in 4 ns.
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Fig. 5. Electric field (V/m) of the cavity at 28 ns, 40 ns,
44 ns, and 54 ns.

CuClad
X 250GT
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Fig. 6. Geometry of the multi-layer microstrip antenna
array.

3.00E-2 1.50E-2 0.00

Fig. 7. Electric field (V/m) in the XOZ plane at 0.8 ns.

Figure [7] shows the electric field distribution in the
XOZ plane at 0.8 ns, and Fig. [6] presents the Gain To-
tal in the YOZ plane in comparison with the result of
HFSS. Furthermore, Table [2] presents the computational
performance of the LF-DGTD and proposed methods,
in which & denotes the relative error. All the methods
are run on CPUs with 240 processors. The computation
efficiency of the DGTD method considerably improved
with ABLTS and the memory and accuracy are almost
unchanged.
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Fig. 8. GainTotal in YOZ plane calculated by the pro-
posed method and HFSS.

Table 2: Performance of the DGTD with ABLTS

Peak |Solution o Speedup
Memory| Time |(Compare|(Compare
(MB) | (min) | with LF) | with LF)
LF [29,264.1| 416.3 \ \
LTS [29,266.9| 54.2 0.0937 7.68
ABLTS |29,267.3| 54.7 0.0815 7.61

IV. CONCLUSIONS
An ABLTS method of DGTD is introduced for elec-
tromagnetic simulation of antennas. The DGTD-ABLTS
method is a noninterpolation local time stepping scheme
based on the leapfrog integration scheme, which reduces
the error of the LTS method by two iterations with the
second-order accuracy. The simulation of a resonator
cavity and multi-layer antenna array proved the accu-
racy and efficiency of the DGTD-ABLTS method. The
DGTD-ABLTS method is efficient for the large-scale

electromagnetic simulation of antennas.
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