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Abstract – In solving the monostatic electromagnetic
scattering problem, the traditional improved primary
characteristic basis function method (IPCBFM) often
encounters difficulties in constructing the reduced matrix
due to the long computation time and low accuracy.
Therefore, a new method combining the compressed
sensing (CS) technique with IPCBFM is proposed and
applied to solve the monostatic electromagnetic scatter-
ing problem. The proposed method utilizes the charac-
teristic basis functions (CBFs) generated by the IPCBFM
to achieve a sparse transformation of the surface-induced
currents. Several rows in the impedance matrix and exci-
tation vector are selected as the observation matrix and
observation vector. The QR decomposition is adopted as
the recovery algorithm to realize the recovery of surface-
induced currents. Numerical simulations are performed
for cylinder, cube, and almond models, and the results
show that the new method has higher solution accuracy,
shorter computation time, and stronger solution stabil-
ity than the traditional IPCBFM. It is worth mentioning
that the new method reduces the recovery matrix size
and the number of CBFs quantitatively, and provides a
novel solution for solving monostatic RCS of complex
targets.

Index Terms – compressing sensing, characteristic basis
functions, monostatic electromagnetic scattering.

I. INTRODUCTION
The method of moments (MOM) [1] has been a

powerful numerical technique widely used for solving
electromagnetic scattering problems. However, as the
electrical size of the computed target increases, the com-
putational cost becomes unacceptably high. To address
this issue, several improved methods have been pro-
posed, including the fast multipole method (FMM) [2],

the characteristic basis function method (CBFM) [3–
4], the adaptive integration method (AIM) [5], and
the adaptive cross approximation (ACA) algorithm [6].
Recently, compressive sensing (CS) technology has been
applied to MOM, offering a new solution method. The
CS technique in the analysis of electromagnetic scat-
tering problems contains two traditional computational
models. The first model is used to decrease the num-
ber of incident angles, compressing only the excitation
sources [7–8]. The second model involves transform-
ing the dense matrix equation into an underdetermined
equation that satisfies the CS framework [9–10]. An
underdetermined equation is a system of linear equa-
tions with more unknowns than equations. For example,
Wang proposed two methods to efficiently analyze the
three-dimensional bistatic scattering problem [11–12].
The conventional underdetermined equation [13] com-
putation model is not suited for analyzing monostatic
electromagnetic scattering problems. The core problem
is that traditional recovery algorithms, such as gener-
alized orthogonal matching pursuit (GOMP) [14] and
orthogonal matching pursuit (OMP) [15], are not suitable
for the analysis of such problems. When using GOMP
or OMP as the recovery algorithm to analyze the monos-
tatic scattering problem, it is necessary to repeat the solu-
tion for each incident angle, which increases the com-
putation time. If we can find a suitable recovery algo-
rithm to overcome the repeated solution at each angle,
we can fully utilize the advantages of constructing an
underdetermined equation computational model, reduce
the complexity of the algorithm, and reduce the compu-
tation time by compressing the impedance matrix.

The CBFM [4] is an effective method for solv-
ing monostatic electromagnetic scattering problems. In
[16], the ACA-SVD has been adapted to efficiently gen-
erate the characteristic basis functions (CBFs), which

Submitted On: August 16, 2023
Accepted On: November 15, 2023

https://doi.org/10.13052/2023.ACES.J.380809
1054-4887 © ACES

https://doi.org/10.13052/2023.ACES.J.380809


617 ACES JOURNAL, Vol. 38, No. 8, August 2023

reduces both the time of generating the initial CBFs
and the singular value decomposition (SVD) time of ini-
tial CBFs. In [17], high-level CBFs have been proposed
to improve the iterative solution efficiency of CBFM.
In [18], a new method of constructing reduced matrix
equations is proposed to reduce the time of constructing
CBFs. In [19], an improved primary CBFM (IPCBFM)
has been proposed to reduce the amount of memory used
for the reduced matrix by combining the secondary CBFs
with the primary CBFs. While these methods aim to
address the monostatic electromagnetic scattering prob-
lem by constructing a reduced matrix, the solution often
encounters difficulties in solving monostatic electromag-
netic scattering problems due to the long computation
time and low accuracy.

To overcome the aforementioned issues, a new
method called CS-IPCBFM is proposed in this paper.
The proposed approach utilizes IPCBFM to generate
fewer CBFs that serve as a sparse transformation matrix
[10], thereby reducing the dimension of the recovery
matrix and accelerating the solution process. Using the
QR decomposition [20] algorithm instead of the tra-
ditional GOMP algorithm, the recovery matrix equa-
tion can be decomposed once, and other incident angles
can be solved directly. Therefore, the problem that too
many incident angles cause too long solving time can
be solved. Several numerical experiments of differently
shaped targets are conducted to verify the better com-
putation accuracy and shorter computation time of the
CS-IPCBFM.

II. COMPRESSIVE SENSING THEORY
In signal processing and numerous other application

domains, signal recovery plays a pivotal role. Success-
ful signal recovery not only effectively suppresses noise
but also simplifies the data processing and transmission
workflow, and helps to extract the original information,
which has a high value in various fields.

If a signal exhibits sparsity in the transform domain,
it can be represented using an observation matrix that
is uncorrelated with the sparse transformation basis [10].
The signal recovery process primarily consists of the fol-
lowing three parts:

A. Sparse representation
Sparse representation means that the signal has very

few non-zero elements in a certain representation, which
makes it possible to accurately recover the signal with
much less data than traditional sampling, thus achieving
efficient signal acquisition and transmission.

Consider a signal X of dimension N × 1. If X is
inherently sparse, we can proceed directly to the next
phase. For non-sparse signals, it’s crucial to find an
optimal sparse transformation matrix, denoted as Ψ to

represent X in its sparse form:
XN×1 = ΨN×NαN×1, (1)

where, Ψ represents the sparse transformation matrix.
and α represents the coefficient vector.

B. Measurement matrix design
If the signal XN×1 is sparse, it can be directly

observed using the measurement matrix Φ ∈ RM×N(M <
N) to obtain a low-dimensional measurement vector
Y M×1, which can be expressed as

Y M×1 = ΦM×NXN×1. (2)
If the signal XN×1 is non-sparse, substituting equa-

tion (1) into equation (2), the following expression is
obtained:

Y M×1 = ΦM×NΨN×NαN×1 = ΘM×NαN×1 (3)
where ΘM×N is the recovery matrix.

C. Signal recovery
If the projection of the signal XN×1 onto ΨN×N has

only k non-zero elements, signal XN×1 is referred to as
k sparse. The high-dimensional original signal XN×1 is
reconstructed by utilizing a low-dimensional observa-
tion vector Y M×1. when the restricted isometry prop-
erty (RIP) [21] is satisfied and the value of M satis-
fies M ⩾ O(k log(N/k)), α can be recovered with high
probability by solving an l1-norm optimization problem
denoted as

α̂ = argmin∥α∥1 s.t Θα = Y , (4)
where ∥ · ∥1 denotes the l1 norm [22]. In this paper, the
QR decomposition is chosen as the recovery algorithm
for solving α̂ . Finally, the original signal X is obtained
by substituting α̂ into equation (1).

A simple example is provided here for illustra-
tion. Consider a signal x = [2,3,1,4,2]. Upon apply-
ing the discrete cosine transform (DCT) to x, we
obtain s=DCT [x] = [12,−1.4,0.6,−3.7,−1.5]. Assum-
ing that the threshold is 1.5, the coefficient whose
absolute value is higher than the threshold is retained,
thus ŝ = [12,0,0,−3.7,0]. Applying the inverse DCT
to these coefficients, we reconstruct the signal as x̂ =
[2.2,2.9,1.2,3.8,1.9].

III. THE APPLICATION OF CS IN THE
CONSTRUCTION OF AN UNDERMINED

EQUATION
The CBFM divides the target into M blocks, with

each block discretized into Ni units. Using Npws plane
waves as excitations to generate primary characteris-
tic basis functions (PCBFs). Let Pθ and Pϕ represent
the number of samples in the θ and ϕ directions,
respectively. The total number of plane waves is Npws =
2Pθ Pϕ . The PCBFs JP

ii for the block i is defined as
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follows:

ZiiJP
ii(θ) = ENpws

i (θ)(i = 1,2, . . . ,M), (5)

where Zii is the Ni × Ni impedance matrix of self-
interaction within the block i,ENpws

i is the matrix contain-
ing excitation vectors with size Ni ×Npws,θ is the inci-
dent angle, and JP

ii is the Ni×Npws matrix to be obtained.
The secondary characteristic basis functions JS

i j indicates
the mutual interaction component between block i and j.
The definition of JS

i j for block i is as follows:

ZiiJS
i j(θ) =−Zi jJP

i j(θ)( j = 1,2, . . . ,M) (6)

where, Zi j is the Ni ×N j mutual impedance between the
subdomains i and j,JS

i j is the Ni ×Npws matrix. Combin-
ing equation (6) and equation (7), the IPCBFs JIP

i can be
obtained and represented as

ZiiJP
ii(θ)+

M

∑
j=1( j ̸=i)

ZiiJS
i j(θ)

= Zii

M

∑
j=1

JP,S
i j (θ) = ZiiJIP

i (θ),

= ENpws
i (θ)−

M

∑
j=1( j ̸=i)

Zi jJP
j j(θ) (7)

where JIP
i is the Ni ×Npws matrix, JP,S

i j includes both JP
ii

and JS
i j. In the IPCBFM [19], due to the selection of

a large number of incident waves Npws, the generated
matrix JIP

i contains redundant information. The singu-
lar value decomposition (SVD) technique is employed
to decompose JIP

i . After SVD processing, a set of Ĵ
IP
i is

generated that is independent of the incident angle. The
JIP

i can be represented as

JIP
i =U ∑V T , (8)

where U and V are unitary matrices, Σ is a semi-positive
definite diagonal matrix. SVD is performed on matrix
JIP

i using a threshold value ε = σM/σ1. Singular values
greater than ε are retained, while values less than that are
discarded, resulting in the matrix Ĵ

IP
i . Assuming there

are Ki retained IPCBFs in the i-th subdomain, Ĵ
IP
i can be

denoted as

Ĵ
IP
i =

Ki

∑
k=1

α
k
i Jk

i ,(i = 1,2, . . . ,M), (9)

where αk
i is the undetermined coefficient of the IPCBFs.

The surface-induced current of the entire target can be
denoted as

J =



Ĵ
IP
1

Ĵ
IP
2

...

Ĵ
IP
M


=

K1

∑
k=1

α
k
1


Jk

1
[0]
...
[0]

+ · · ·+
KM

∑
k=1

α
k
M


[0]
[0]
...

Jk
M



=



JC
1 · · · 0 · · · 0
...

. . .
...

. . .
...

[0] · · · JC
i · · · [0]

...
. . .

...
. . .

...
[0] · · · [0] · · · JC

M





αC
1
...

αC
1
...

αC
M

= Ĵ
C

α, (10)

where αC
i =

[
α1

i α2
i · · · α

Ki
i

]
,JC

i =
[

J1
i J2

i · · · JKi
i

]
.

In the MOM, the surface integral equation is dis-
cretized by the Rao-Wilton-Glisson (RWG) basis func-
tion into a matrix equation as follows:

ZN×N · JN×1(θ) = EN×1(θ) (11)
where ZN×N is the impedance matrix, JN×1 is the
surface-induced currents, EN×1 is an excitation vector,
N represents the number of the RWG basis functions.
The measurement matrix Z̃L×N and measurement vector
ẼL×1 are created by randomly selecting L(L < N) rows
from matrices ZN×N and EN×1, respectively. An under-
determined equation is created as

Z̃L×NJN×1(θ) = ẼL×1(θ). (12)
By substituting equation (10) into equation (12), an

overdetermined system of equations is obtained:

Z̃L×N Ĵ
C
N×KaK×1 = ΘL×KaK×1 = ẼL×1(θ), (13)

where ΘL×K is the recovery matrix, Ĵ
C
N×K is the sparse

transformation matrix. K(K < L) represents the total
number of retained IPCBFs across all subdomains.

Firstly, the conventional GOMP is employed as
the recovery algorithm to solve equation (13), and this
method is referred to as CS-IPCBFM-1 in this paper.
Where the GOMP algorithm is as follows:
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The RCS solution process of IPCBFM involves 

constructing and solving the reduced matrix equation, 

As described in Algorithm 3, the QR decomposition
method is used to decompose the recovery matrix θ and
then solve it, avoiding repeated solutions at each incident
angle.

IV. COMPLEXITY ANALYSIS
To provide a clear comparison of the complexity

between IPCBFM and CS-IPCBFM, a focused analy-
sis was conducted solely on these two methods. CS-
IPCBFM-1 and CS-IPCBFM-2, on the other hand, were
validated via numerical simulations. The calculation
processes for IPCBFM and CS-IPCBFM consist of
three steps: filling the impedance matrix, constructing
IPCBFs, and solving the radar cross section (RCS).

Since both filling the impedance matrix and con-
structing IPCBFs are identical for IPCBFM and CS-
IPCBFM, this section focuses solely on comparing the
complexities of the RCS-solving steps.

The RCS solution process of IPCBFM involves
constructing and solving the reduced matrix equation,
whose combined complexity is O

(
K2N2

i +K3
)
. In

CS-IPCBFM, the RCS solution process includes the
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construction of the recovery matrix and the solu-
tion of equation (13), whose combined complexity is
O
(
NLK +K2 +LK

)
. Since NL < KN2

i , and K+L < K2,
the RCS calculation time of CS-IPCBFM will be shorter
than that of IPCBFM.

V. NUMERICAL RESULTS
To validate the effectiveness of the proposed

method, three models of cylinder, cube, and almond
are simulated. Where, the cylinder model with fewer
unknowns was used to compare IPCBFM, CS-IPCBFM-
1, and CS-IPCBFM methods. While the cube and
almond models with more unknowns were used to com-
pare IPCBFM, CS-IPCBFM-2, and CS-IPCBFM meth-
ods. The results were computed using an AMD Ryzen
75800H with Radeon Graphics 3.20 GHz and 64.0 GB
RAM, and the simulations were compiled using Visual
Studio 2022RC. Additionally, all examples utilized a
double-precision floating point. The root-meant-square
error of the target monostatic RCS is defined as

Err(%) = 100%

×

√
1
N

N

∑
i=1

∣∣RCSi −RCSMOM
i

∣∣2 / ∣∣RCSMOM
i

∣∣2. (14)

Firstly, the monostatic RCS of a perfect electrical
conductor (PEC) cylinder with a length of 2 m and radius
of 0.3 m at 800MHz is calculated. The angle of inci-
dence is set to θ = 0◦−180◦,ϕ = 0◦. The geometry was
divided into 5046 triangular patches, resulting in 14,161
unknowns. Subsequently, the cylinder was segmented
into 12 blocks, with each block extending ∆ = 0.15λ in
all directions, which increased the number of unknowns
to 25,966. When the threshold ε is set to 0.01, a total
of 755 IPCBFs are obtained. The monostatic RCS values
of MOM, IPCBFM, CSIPCBFM-1, and CS-IPCBFM are
found to be highly consistent, as depicted in Fig. 1.
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Next, the monostatic RCS of a PEC cube with a
length of 1 m at 800MHz is calculated. The angle of inci-
dence is set to θ = 0◦− 180◦,ϕ = 0◦. The cube is dis-
cretized into 13,980 triangular patches producing 25,981
unknowns. When the target is divided into 8 blocks, with
each block extending by ∆ = 0.15λ in all directions, the
number of unknowns increases to 46,951. Furthermore, a
total of 789 IPCBFs are obtained when the SVD thresh-
old is set to ε = 0.02. The monostatic RCS values of
MOM, IPCBFM, CS-IPCBFM-2, and CS-IPCBFM are
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found to be highly consistent, as depicted in Fig. 5. As
the SVD threshold ε increases, the RCS error and com-
putation time of IPCBFM and CSIPCBFM is shown in
Figs. 6 and 7. From these figures, it can be seen that CS-
IPCBFM has a shorter computation time and lower RCS
error compared to IPCBFM. As the number of rows L
increases, the RCS error and computation time of the CS-
IPCBFM and CS-IPCBFM-2 are shown in Figs. 8 and 9.
While the RCS error and computation time of IPCBFM
are 2.0632% and 189.657s, as depicted in Figs. 8 and 9,
respectively. As can be seen from Figs. 8 and 9, when
20 L/N is less than 15, the CS-IPCBFM has a shorter
computation time compared to IPCBFM. When 20 L/N
is greater than 3, the accuracy of CS-IPCBFM is com-
parable to that of IPCBFM and better than that of CS-
IPCBFM-2.

Finally, the monostatic RCS of a PEC almond with
a length of 252.374 mm at a frequency of 7GHz is
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Table 1: Calculation time and RCS error of the almond 
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Method  
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time (s) 

RCS 

Err (%) 

IPCBFM 
(5,5) 

95.439 47.8028 

CS-IPCBFM 48.922 26.3877 
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(6,6) 

145.945 43.1824 

CS-IPCBFM 67.16 24.8070 

IPCBFM 
(7,7) 

200.084 31.4387 

CS-IPCBFM 84.298 7.9510 

IPCBFM 
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CS-IPCBFM 99.567 4.9569 

IPCBFM 
(9,9) 

265.909 6.9566 

CS-IPCBFM 107.044 3.0830 
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(10,10) 

291.401 3.7763 

CS-IPCBFM 114.989 2.1990 
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computed. The target is divided into 8 blocks, and each
block is extended by ∆ = 0.15λ in all directions, increas-
ing the number of unknowns to 62,653. A total of 710
IPCBFs are obtained when the threshold ε = 0.01. The
monostatic RCS of MOM, IPCBFM, and CS-IPCBFM
under horizontal polarizations are found to be highly
consistent, and the monostatic RCS of CS-IPCBFM-2
is poor, as depicted in Fig. 10. Finally, the influence of
different incident plane wave numbers on the stability of
IPCBFM and CS-IPCBFM is investigated. The calcula-
tion time and RCS error for various numbers of incident
waves are shown in Table 1.

Table 1: Calculation time and RCS error of the almond
for various numbers of incident waves

Method
(
Pθ ,Pϕ

) Computation
Time (s)

RCS
Err (%)

IPCBFM
(5,5) 95.439 47.8028

CS-IPCBFM 48.922 26.3877
IPCBFM

(6,6) 145.945 43.1824
CS-IPCBFM 67.16 24.8070

IPCBFM
(7,7) 200.084 31.4387

CS-IPCBFM 84.298 7.9510
IPCBFM

(8,8) 255.595 7.8126
CS-IPCBFM 99.567 4.9569

IPCBFM
(9,9) 265.909 6.9566

CS-IPCBFM 107.044 3.0830
IPCBFM

(10,10) 291.401 3.7763
CS-IPCBFM 114.989 2.1990
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Table 2: Comparison of calculation time, RCS Err, and memory consumption

Model Method
Impedance

Matrix
Filling Time (s)

IPCBFs
Generation (s)

Solving
Time (s)

Total
Time (s)

RCS
Err (%)

Memory
(GB)

Cylinder IPCBFM 18.481 304.899 6.4736 4.876
CS-IPCBFM-1 23.194 263.224 2794.45 3080.868 11.5301 4.978
CS-IPCBFM 13.013 299.431 3.9032 4.473

Cube
IPCBFM 164.685 2367.29 6.6891 17.3826

CS-IPCBFM-2 72.884 2129.621 42.182 2244.33 36.0286 15.341
CS-IPCBFM 43.322 2245.93 4.7641 15.324

Almond
IPCBFM 291.401 5540.687 3.7763 39.918

CS-IPCBFM-2 153.876 5095.41 113.632 5362.918 14.8080 36.831
CS-IPCBFM 114.989 5364.275 2.1990 39.561
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It can be seen from Table 1 that the accuracy stability
of the method proposed in this paper is better than that
of IPCBFM. The computation time and RCS error of the
simulation examples in Figs. 1, 5, and 10 are shown in
Table 2. The results show that CS-IPCBFM has a shorter
computation time and the highest accuracy in calculating
the monostatic RCS.

VI. CONCLUSION
To improve the efficiency and accuracy of IPCBFM,

we integrated CS with IPCBFM and refined the con-
ventional CS recovery algorithm. In comparison to
IPCBFM, CS-IPCBFM-1 with traditional recovery algo-
rithm has some lag in speed and accuracy, CS-IPCBFM-
2 with the least square fitting achieves faster calculation,
but the accuracy is compromised, CS-IPCBFM with QR
decomposition not only excels in both speed and preci-
sion but also offers superior stability.
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