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Abstract – The utilization of physics-informed deep
learning (PI-DL) methodologies provides an approach
to augment the predictive capabilities of deep learning
(DL) models by constraining them with known physi-
cal principles. We utilize a PI-DL model called the deep
operator network (DeepONet) to solve two-dimensional
(2D) electromagnetic (EM) scattering problems. Numer-
ical results demonstrate that the discrepancy between the
DeepONet and conventional method of moments (MoM)
is small, while maintaining computational efficiency.

Index Terms – Electromagnetic scattering, physics-
informed deep learning, the method of moments.

I. INTRODUCTION
Machine learning (ML) has emerged as a promis-

ing alternative for solving electromagnetic (EM) scatter-
ing problems [1–4] through an offline training - online
prediction pattern. In the current landscape, two primary
categories of ML approachs have been identified for EM
scattering problems. The first approach treats ML as a
“black box” and employs it as an alternative to tradi-
tional solvers [5–7]. Alternatively, the second approach
involves replacing a module of a traditional solver with
an ML-based solution [8–10]. Among these methodolo-
gies, physics-informed ML (PI-ML) [11] has attracted
significant attention since it can gracefully incorporate
both empirical data and prior physical knowledge. This
integration of physical laws and data-driven approaches
has been shown to improve the accuracy, reliability,
and interpretability of predictions in various applications
related to physical mechanisms. In [12], the physics-
informed neural network (PINN) [13] was developed to
solve time domain EM problems, where initial condi-
tions, boundary conditions, as well as Maxwell’s equa-
tions, were encoded as the constraints during the training
process of the network.

Among many deep learning (DL) networks, the deep
operator network (DeepONet) has the attractive ability
to break the “curse of dimensionality” [14]. For the first
time, to the best of our knowledge, this work utilizes
the DeepONet to solve dynamic EM scattering prob-
lems. The performance of the DeepONet is investigated
in terms of different configurations.

The rest of the paper is as follows. In Section II,
we review the process of EM scattering, using a two-
dimensional (2D) dielectric scatterer as an illustrative
example. In Section III, we show how to use the Deep-
ONet to solve EM scattering problems. In Section IV,
several numerical results are given to verify the good
performance of the DeepONet. Conclusions are given in
Section V.

II. PROBLEM STATEMENT
In this section, we consider a 2D nonmagnetic trans-

verse magnetic (TM) case, as shown in Fig. 1. The un-
known scatterers are positioned in a domain D ∈R2 with
homogeneous background, i.e., the free space. Harmonic
incident waves are excited by the transmitter with the
time-factor being e jwt . The scattered fields can be mea-
sured by the receivers in the domain S ∈ R2.

The EM scattering problem aims to determine the
scattered fields generated by the illumination of incident
fields on scatterers. The method of moments (MoM) [1,
4] is widely adopted to solve this problem. After dis-
cretizing the computational domain D into M = M1×M2
sub-domains, we can obtain the matrix system

J = χ ·
(

Ei
+GD ·J

)
, (1)

where J and Ei are vectors of the equivalent electric cur-
rents and incident fields, GD is the matrix of the free
space Green’s function in the domain D, and χ is the
diagonal matrix storing the contrast of each sub-domain.
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Fig. 1. Setup of EM scattering problems in the 2D case.

After J is obtained by solving Eq. (1), the discrete total
fields Et in the domain D can be obtained:

Et
= Ei

+GD ·J. (2)
Similarly, the scattered fields of any observation re-

gion can be calculated:

Es
= GS ·J, (3)

where GS is the matrix of the free space Green’s function
in the domain S.

III. PHYSICS-INFORMED DEEP LEARNING
The DeepONet [15] is a physics-informed DL (PI-

DL) model, learning a variety of explicit operators
that map from one function space to another, which is
based on the universal approximation theorem for oper-
ators [16]. The theorem portrays a structure that consists
of two sub-networks: one is the branch network for en-
coding the discrete input function space while the other
is the trunk network for encoding the output function
space, and shows that this particular network structure
is capable of approximating a class of physical opera-
tors with arbitrary accuracy, which suggests its signifi-
cant implications for the accurate modeling of complex
physical systems. Essentially, the underlying mathemat-
ical foundation distinguishes the DeepONet from other
neural networks.

The overall flow of employing the DeepONet to
solve EM scattering problems is shown in Fig. 2. Firstly,
we approximate the unknown current generation opera-

tor, i.e., the map from χ(r) to J(r), utilizing the Deep-
ONet. Then the total and scattered fields are computed
through a simple matrix-vector multiplication process
using the predicted results acquired by the DeepONet.
Specifically, the branch network of the DeepONet is a
complex-valued (CV) ResNet [17] consisting of a con-
volutional input layer, followed by four residual blocks,
and a fully connected output layer to generate modules
of the real and imaginary parts. The setup of the CV
network is similar to that in [18]. Here, we are deal-
ing with images, or data matrices, of size 64 × 64. In
the forward calculation, the number of channels is first
changed to 64 through the input layer while the size of
each channel is halved. The four residual blocks are then
connected in turn. Assume that the input of one resid-
ual block has Nin channels and the size of each channel
is M3 ×M3. After the forward calculation of this block,
the number of channels becomes 2Nin, and the size of
each channel is halved to M3

2 × M3
2 . After that, we flatten

the 1×1 matrix over 1024 channels and connect a fully
connected layer to output the result. The trunk networks
are two real-valued fully connected networks to encode
respectively the real and imaginary parts of the equiva-
lent electric current function. They both have six hidden
layers.

The input of the branch network is χ ⊕χ ◦E
i
, where

⊕ means to put the matrices on both sides of the symbol
into the two channels of the tensor, and ◦ denotes the
Hadamard product. The inputs to both trunk networks
are the coordinates of one sub-domain, i.e. (x,y), for the
2D problem in this paper.

The output of the DeepONet is the real and imag-
inary part of the equivalent electric current within the
sub-domain based on the input coordinates of the trunk
networks, derived by computing the dot product between
the real and imaginary components of the branch net-
work output with the corresponding elements of the two
trunk network outputs.

Trainable biases θbias are added to the final output
of the DeepONet to improve generalization performance.
The number and size of channels or the number of neu-
rons is indicated below each layer.

According to the universal approximation theorem,
the output layer of the branch network does not need to
employ an activation function, while the output layer of
the trunk network requires the use of it. Apparently, the
background region with a contrast of zero does not con-
tribute to equivalent electric currents. We incorporate this
prior knowledge into the training process of the Deep-
ONet, i.e., we only need to predict equivalent electric
currents on sub-domains with non-zero contrasts.

The loss function of the DeepONet can be expressed
in terms of the mean absolute error as
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Fig. 2. The overall flow of employing the DeepONet to solve EM scattering problems.
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(4)

where B is the batch size, Nb is the number of non-zero
contrast sub-domains for the bth scatterer, JPred

b is equiv-
alent electric currents for the bth scatterer obtained from
the DeepONet while JMoM

b is equivalent electric currents
calculated by the MoM, and ℜ(·) and ℑ(·) denote taking
the real and imaginary part respectively.

IV. NUMERICAL RESULTS
In this section, we use several numerical examples

to verify our approach. The DeepONet in this paper is
built by Pytorch [19] and written in Python. We use the
MoM to generate labels of training, validation and test-
ing sets, i.e., equivalent electric currents. Specifically, the
generalized minimal residual (GMRES) algorithm [20]
is employed, with the aid of the fast Fourier transform
(FFT) acceleration. The performance of the DeepONet is
investigated on a server with two Intel Xeon CPUs and
NVIDIA RTX 3090 GPU.

The data employed in our work is obtained by
the MoM. In particular, 2D dielectric scatterers are
generated according to handwritten numbers from the
MNIST [21], which range from 0 to 9. Each scatterer
has the computational domain D with a dimension of
2 × 2 m2, centering at (0, 0). The real and imaginary
parts of the relative permittivity of the training samples
are randomly selected from 1.10-2.00 and 0.00-1.00, re-
spectively. The number of scatterers in the training, val-
idation and testing set are respectively, 20,000, 500, and
1000. We limit our analysis to the scenario of a single
incident angle of 90◦. The incident field operates at a fre-
quency of 300 MHz. The scattered fields are sampled at

360 points that are uniformly located on a circle with a
radius of 5 m. Figure 3 depicts some inputs of the branch
network as well as their corresponding labels.

In the training stage, the adaptive moment estima-
tion method (Adam) [22] is employed to minimize the
loss function shown in Eq. (4). The learning rates of all
sub-networks are set to 0.0002 at the beginning and are
halved sequentially at the 100th, 140th, and 170th itera-
tions. Each training batch contains 40 samples. The to-
tal number of iterations is 201. In the testing stage, to
quantify the difference between the DeepONet predic-
tions and true values generated by the MoM, we define
the relative error (REq) for the qth obstacle as follows:

REq =

∥∥∥JPred
q −JMoM

q

∥∥∥
2∥∥∥JMoM

q

∥∥∥
2

. (5)

For the entire testing set, we define the mean relative
error (MRE)

MRE =
1
Q

Q

∑
q=1

REq, (6)

where Q is the number of samples in the testing set.

A. Feasibility validation
The testing set is set up in the same manner as the

training set. Trajectories of losses are shown in Fig. 4 (a)
and the histogram of REs for the testing set is shown in
Fig. 4 (b). The MRE is found to be 0.043 while the vari-
ance of REs is estimated to be 4.9e-04. The predicted
results are illustrated in Figs. 5 (a) and 5 (b), comprising
a test instance from the MNIST test set and another from
a distinct graphic type, respectively, to exhibit the feasi-
bility of the DeepONet. It can be found that the predicted
values match well with the true ones.

B. Generalization testing
In the context of the DeepONet framework, the size

of the input function space and the size of the output
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Fig. 3. Examples of the branch network input χ ⊕χ ◦E
i

and corresponding equivalent electric current labels.

(a) (b)

Fig. 4. (a) Trajectories of losses as a function of the number of epochs. (b) The RE histogram of the testing set with
1000 samples.

function space after discretization are found to be inde-
pendent. While fixing the input size of the branch net-
work, we can flexibly adjust the output of the Deep-
ONet by varying the coordinate input of the trunk net-
work during the testing stage. In this part, we explore the
potential of predicting equivalent electric currents with
grids of 32×32 and 96×96 using the DeepONet trained

on the training set of grid size 64× 64, with the posi-
tion and dimension of the domain D being held constant.
For each of the two aforementioned cases, we generate
1,000 scatterers for the testing set. The configuration of
the scatterers are set similarly to the previous example.
Figure 6 (a) and 6 (b) give histograms of REs for the
two cases. It is indicated that the DeepONet successfully
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(a)

(b)

(c)

Fig. 5. The predicted results. The 1st column is the real and imaginary parts of contrasts. The 2nd column gives the
real and imaginary parts of true equivalent electric currents computed by the MoM. The 3rd column is the real and
imaginary parts of predicted equivalent electric currents. The 4th and 7th columns show the differences between true
and predicted results. The 5th and 6th columns are the total fields calculated with the true and predicted equivalent
electric currents, respectively. The last column are the true and predicted scattered fields in φ ∈ [0◦,359◦]. (a) A sample
from the MNIST testing set with a grid size of 64× 64, (b) a sample in a different graphic type with a grid size of
64×64, (c) a sample from the MNIST testing set with a grid size of 1024×1024.

(a) (b)

Fig. 6. The RE histograms of the testing sets with different grids of the equivalent electric currents. Each testing set
contains 1000 samples. (a) 32×32 case. (b) 96×96 case.
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predicted multi-grid results, confirming its nice general-
ization capability as a grid-free EM numerical solver.

C. Computational time
Although the DeepONet is a picture-to-pixel model

that yields the equivalent electric current on a single
sub-domain per forward calculation, we can supply all
the coordinate data concurrently and utilize the graph-
ics processing unit (GPU) to expedite computations, thus
significantly reducing the computation time. Addition-
ally, the prediction of equivalent electric currents on sub-
domains with non-zero contrasts leads to further reduc-
tion of total prediction time. Notably, as the domain D
is divided into finer partitions, the traditional numerical
solver suffers from the “curse of dimensionality.” result-
ing in an exponential increase in computation time. Con-
versely, the DeepONet’s computation time remains rela-
tively unchanged. The reason is that the time increase in
the trunk network and dot product during the forward
calculation due to the increase in coordinate inputs is
negligible, while the cost of the branch network remains
constant.

Table 1: Comparison of computation time between the
DeepONet and MoM

Grid Size DeepONet (s) MoM (s)
64×64 0.018 0.014

256×256 0.018 0.38
1024×1024 0.024 6.39

Table 1 compares the DeepONet and MoM on
different grids in terms of the computational time to
obtain equivalent electric currents. The test obstacle is
configured in an identical manner as in previous experi-
ments. Using an example of grid size 1024× 1024, the
DeepONet predicts equivalent electric currents in just
0.024 s, compared to 6.39 s for the MoM to complete the
corresponding calculation. The predicted results of grid
size 1024× 1024 are shown in Fig. 5 (c). In this case,
both the total and scattered fields calculated with the
true equivalent electric currents and the predicted ones
match well.

V. CONCLUSION
Based on PI-DL, this paper utilizes the DeepONet

to solve 2D dynamic EM scattering problems from the
perspective of approximating the unknown current gen-
eration operator. The underlying mathematical founda-
tion distinguishes the DeepONet from other neural net-
works. The accuracy, efficiency, and generalization of
the DeepONet are verified through numerical examples.
Furthermore, the DeepONet exhibits the ability to per-
form multi-grid prediction and overcome the “curse of

dimensionality.” Since the DeepONet can be extended to
three-dimensional cases, the proposed approach has the
potential to solve 3D dynamic EM scattering problems.
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