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Abstract – In this paper, we present a dual-polarized
broadband low side lobe array designed for operation in
the Ku-band. The antenna array operates within the fre-
quency range of 14.0 GHz to 15.2 GHz, covering a band-
width of over 8%. To realize this wide operational fre-
quency, we have selected broadband microstrip antenna
elements as the units of the array. In order to fulfill the
demanding criteria of broadband performance and low
sidelobe characteristics, we introduce a broadband low-
sidelobe feeding network based on a directional coupler
design. This feeding network ensures connectivity with
the antenna units, resulting in a voltage standing wave
ratio (VSWR) < 2 within the 14.0 GHz to 15.2 GHz fre-
quency range. Furthermore, our antenna array achieves
an array gain exceeding 21 dBi and keeps array side-
lobes below -20 dB across the entire operating frequency
band. Our research breakthrough addresses the critical
design challenge of creating large-scale array antennas
that combine broadband capabilities with high gain and
minimal sidelobe interference.

Index Terms – broadband low sidelobe, dual-
polarization, high-isolation, multi-layer.

I. INTRODUCTION
In recent years, the rapid advancement of elec-

tronic information technology has ushered in a com-
pelling demand for enhanced antenna performance.
Conventional single antennas are often inadequate in
meeting the evolving requirements of modern electronic
systems, which necessitate higher gain and broader
bandwidth coverage. To address these challenges, array
antennas have emerged as a prominent solution due
to their ability to deliver increased gain. In addition
to heightened gain, array antennas possess the distinct
advantage of offering reduced sidelobes. The reduction
in sidelobe radiation is of paramount importance in con-
temporary electronic systems, especially in the face of
ever-growing electromagnetic complexity. Lower side-
lobes equate to improved anti-interference capabilities,
which are increasingly critical in ensuring the reliable
operation of electronic systems within our intricate and
crowded electromagnetic environment.

In the realm of synthetic array networks, there exist
two predominant feeding configurations: series feed and
parallel feed. Both configurations can achieve low side-
lobe distributions through differential amplitude power
divisions [1–2]. Arrays that utilize a series feed configu-
ration present notable advantages such as high efficiency
and structural simplicity. Nonetheless, intrinsic limita-
tions in their feed structures typically confine them to
a working bandwidth of less than 3% [3–7]. For appli-
cations necessitating broader bandwidths, it becomes
imperative to employ a composite network that utilizes
parallel feeding mechanisms [8–12]. Yet, as the scale of
the array expands and sidelobe constraints become more
stringent, the imperative to meet specified power ratios
demands the use of T-type power dividers with larger
power divisions. Notably, these T-type power dividers,
when designed for larger power ratios, inherently possess
wider microstrip line widths. This presents a significant
design challenge and often results in compromised sta-
bility. Consequently, the realization of a wideband, high-
gain, low-sidelobe array remains an intricate task.

Aside from the synthesis network with low side
lobes for broadband, the broadband antenna unit has also
become a key device. As resonant antennas, microstrip
antennas inherently lack broadband characteristics due
to their physical features. Traditional methods to widen
the bandwidth, such as increasing thickness, coupling
feed, and adding parasitic units, have proven effective.
However, with the recent in-depth research on the reso-
nant technology of microstrip antennas, multi-mode has
emerged as a new method to effectively widen the band-
width [12–18]. This approach can achieve various novel
effects, such as achieving broader characteristics at a
lower profile and manipulating radiation patterns.

In this paper, we introduce a high-power spe-
cific power divider designed around a directional cou-
pler. This novel design attains a directional bandwidth
exceeding 8%, maintains a sidelobe suppression of less
than -25 dB within the operational frequency range, and
exhibits an array gain surpassing 21 dB. Consequently,
it enables the realization of a wideband, low-sidelobe,
high-gain array, holding significant importance.
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II. GEOMETRY AND WORING PRINCIPLE
The schematic representation of the antenna’s over-

all structure is presented in Fig. 1. This high-gain, wide-
band, and low-sidelobe antenna array comprises a dual-
polarized antenna array integrated with a wideband, low-
sidelobe synthesis network. The inter-element separation
in the array is set at 14 mm, resulting in a compact array
with overall dimensions measuring 220×62 mm.

In order to extend the operational bandwidth of
the microstrip antenna, a coupling feeding technique is
employed within the antenna’s radiation layer. Fabri-
cation of the antenna, as well as the dual-polarization
wideband, low-sidelobe array feed network, is achieved
through the utilization of multilayer media printing tech-
nology. The antenna is printed on two layers of Rogers
4350B substrate, each with distinct thicknesses of 0.724
mm and 0.508 mm, respectively. Additionally, two lay-
ers of Rogers 4450F substrate, each 0.1 mm thick, are
utilized for adhesion purposes.

feed network, is achieved through the utilization of multilayer 
media printing technology. The antenna is printed on two layers 
of Rogers 4350B substrate, each with distinct thicknesses of 
0.724 mm and 0.508 mm, respectively. Additionally, two layers 
of Rogers 4450F substrate, each 0.1 mm thick, are utilized for 
adhesion purposes. 
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Fig. 1. Configuration of the proposed dual-polarized broadband 
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Fig. 2. Schematic diagram of multilayer laminated structure. 

To optimize gain performance, the vertically polarized 
wideband low sidelobe feed network is fabricated on a 0.254 
mm Rogers 3003 substrate, securely affixed between two layers 
of 0.1 mm FR28 substrate. In addition, the horizontally 
polarized wideband network is manufactured on a 0.127 mm 
Rogers’s 3003 substrate, firmly attached to a single layer of 0.1 
mm FR28 substrate. 

In line with this construction methodology, the overall 
configuration of the wideband, high-gain, and low-sidelobe 
antenna, as proposed in this paper, can be segmented from top 
to bottom into distinct layers: the antenna radiation layer, a 
metallic base plate, the vertically polarized feed network, 
another metallic base plate, and the horizontally polarized feed 
network. The stratified composition of this multilayer board is 
visually depicted in Fig. 2. 

A. Analysis of wideband antenna unit 
Square patches serve as radiators, and their overall side 

length is illustrated in Fig. 3. Coupled feeders are employed to 
expand the operational bandwidth, and feed probes are utilized 
to connect the antenna radiation elements with the feed network. 
In order to validate the antenna element design, simulations are 
conducted on the wideband array antenna element. The 
simulated S-parameters and the radiation pattern of the 
broadband antenna unit are depicted in Figs. 4 and 5, 
respectively. 

B. Analysis of wideband low sidelobe network 
The wideband low sidelobe synthesis network is configured 

for parallel feeding, employing the Taylor low sidelobe 
distribution. To attain ultra-low sidelobes and a heightened 
power ratio, the conventional T-junction power splitter's 
impedance conversion section necessitates an exceedingly fine 
high-impedance microstrip line, which may pose practical 

challenges. As delineated in Fig. 6, we introduce a novel 16-unit 
wideband low-sidelobe synthesis network based on a two-stage 
directional coupler. 
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Fig. 3.  Schematic diagram of the 2D structure antenna unit. 
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Fig. 4.  (a) Antenna unit VSWR, (b) isolation between the dual-
polarized ports. 
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Fig. 5. The radiation patterns of the antenna unit at the center 

frequency points: (a) Vertical polarization 14.0 GHz E plan 

antenna pattern, (b) horizontal polarization 14.0 GHz E plan 

antenna pattern. 
To further optimize the performance of the wideband low 

sidelobe feed network and mitigate coupling effects between 
transmission lines, we implement a coupling elimination 
strategy using metal holes. The interface diagram for the feed 
network, catering to both vertical and horizontal polarizations, 
is presented below. Short-circuit pins are precisely positioned at 
a distance of 0.31 mm from the signal transmission lines, and 
the surrounding dimensions around the feed position are also 
provided. 

Additionally, due to spatial constraints, feed synthesis 
networks with differing polarizations are segregated into distinct 
layers. Concurrently, the vertical polarization wideband low 
sidelobe feed network is positioned as a strip line beneath the 
antenna array radiation layer, while the horizontal polarization 
wideband low sidelobe feed network is located as a microstrip 
line at the lowermost layer. 

Drawing upon the principles of unequal amplitude power 
splitting and directional coupling, we have devised a wideband 
low sidelobe feed network tailored for horizontal and vertical 
polarization. The specific dimensional parameters are 
meticulously documented in Tables 1 and 2. It's noteworthy that 

Fig. 1. Configuration of the proposed dual-polarized
broadband low-sidelobe array antenna.

feed network, is achieved through the utilization of multilayer 
media printing technology. The antenna is printed on two layers 
of Rogers 4350B substrate, each with distinct thicknesses of 
0.724 mm and 0.508 mm, respectively. Additionally, two layers 
of Rogers 4450F substrate, each 0.1 mm thick, are utilized for 
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challenges. As delineated in Fig. 6, we introduce a novel 16-unit 
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To optimize gain performance, the vertically polar-
ized wideband low sidelobe feed network is fabricated
on a 0.254 mm Rogers 3003 substrate, securely affixed
between two layers of 0.1 mm FR28 substrate. In addi-
tion, the horizontally polarized wideband network is
manufactured on a 0.127 mm Rogers’s 3003 substrate,
firmly attached to a single layer of 0.1 mm FR28 sub-
strate.

In line with this construction methodology, the over-
all configuration of the wideband, high-gain, and low-
sidelobe antenna, as proposed in this paper, can be
segmented from top to bottom into distinct layers: the

antenna radiation layer, a metallic base plate, the verti-
cally polarized feed network, another metallic base plate,
and the horizontally polarized feed network. The strat-
ified composition of this multilayer board is visually
depicted in Fig. 2.

A. Analysis of wideband antenna unit
Square patches serve as radiators, and their overall

side length is illustrated in Fig. 3. Coupled feeders are
employed to expand the operational bandwidth, and feed
probes are utilized to connect the antenna radiation ele-
ments with the feed network. In order to validate the
antenna element design, simulations are conducted on
the wideband array antenna element. The simulated S-
parameters and the radiation pattern of the broadband
antenna unit are depicted in Figs. 4 and 5, respectively.
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of Rogers 4450F substrate, each 0.1 mm thick, are utilized for 
adhesion purposes. 
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Fig. 1. Configuration of the proposed dual-polarized broadband 
low-sidelobe array antenna. 
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Fig. 2. Schematic diagram of multilayer laminated structure. 

To optimize gain performance, the vertically polarized 
wideband low sidelobe feed network is fabricated on a 0.254 
mm Rogers 3003 substrate, securely affixed between two layers 
of 0.1 mm FR28 substrate. In addition, the horizontally 
polarized wideband network is manufactured on a 0.127 mm 
Rogers’s 3003 substrate, firmly attached to a single layer of 0.1 
mm FR28 substrate. 

In line with this construction methodology, the overall 
configuration of the wideband, high-gain, and low-sidelobe 
antenna, as proposed in this paper, can be segmented from top 
to bottom into distinct layers: the antenna radiation layer, a 
metallic base plate, the vertically polarized feed network, 
another metallic base plate, and the horizontally polarized feed 
network. The stratified composition of this multilayer board is 
visually depicted in Fig. 2. 

A. Analysis of wideband antenna unit 
Square patches serve as radiators, and their overall side 

length is illustrated in Fig. 3. Coupled feeders are employed to 
expand the operational bandwidth, and feed probes are utilized 
to connect the antenna radiation elements with the feed network. 
In order to validate the antenna element design, simulations are 
conducted on the wideband array antenna element. The 
simulated S-parameters and the radiation pattern of the 
broadband antenna unit are depicted in Figs. 4 and 5, 
respectively. 

B. Analysis of wideband low sidelobe network 
The wideband low sidelobe synthesis network is configured 

for parallel feeding, employing the Taylor low sidelobe 
distribution. To attain ultra-low sidelobes and a heightened 
power ratio, the conventional T-junction power splitter's 
impedance conversion section necessitates an exceedingly fine 
high-impedance microstrip line, which may pose practical 

challenges. As delineated in Fig. 6, we introduce a novel 16-unit 
wideband low-sidelobe synthesis network based on a two-stage 
directional coupler. 
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Fig. 3.  Schematic diagram of the 2D structure antenna unit. 
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(a)                                            (b) 
Fig. 4.  (a) Antenna unit VSWR, (b) isolation between the dual-
polarized ports. 
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(a)                                   (b) 

Fig. 5. The radiation patterns of the antenna unit at the center 

frequency points: (a) Vertical polarization 14.0 GHz E plan 

antenna pattern, (b) horizontal polarization 14.0 GHz E plan 

antenna pattern. 
To further optimize the performance of the wideband low 

sidelobe feed network and mitigate coupling effects between 
transmission lines, we implement a coupling elimination 
strategy using metal holes. The interface diagram for the feed 
network, catering to both vertical and horizontal polarizations, 
is presented below. Short-circuit pins are precisely positioned at 
a distance of 0.31 mm from the signal transmission lines, and 
the surrounding dimensions around the feed position are also 
provided. 

Additionally, due to spatial constraints, feed synthesis 
networks with differing polarizations are segregated into distinct 
layers. Concurrently, the vertical polarization wideband low 
sidelobe feed network is positioned as a strip line beneath the 
antenna array radiation layer, while the horizontal polarization 
wideband low sidelobe feed network is located as a microstrip 
line at the lowermost layer. 

Drawing upon the principles of unequal amplitude power 
splitting and directional coupling, we have devised a wideband 
low sidelobe feed network tailored for horizontal and vertical 
polarization. The specific dimensional parameters are 
meticulously documented in Tables 1 and 2. It's noteworthy that 

(a) (b)

Fig. 4. (a) Antenna unit VSWR and (b) isolation between
the dual-polarized ports.
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(a)

(b)

Fig. 5. The radiation patterns of the antenna unit at the
center frequency points: (a) Vertical polarization 14.0
GHz E plan antenna pattern and (b) horizontal polariza-
tion 14.0 GHz E plan antenna pattern.

low sidelobe distribution. To attain ultra-low side-
lobes and a heightened power ratio, the conven-
tional T-junction power splitter’s impedance conversion
section necessitates an exceedingly fine high-impedance
microstrip line, which may pose practical challenges. As
delineated in Fig. 6, we introduce a novel 16-unit wide-
band low-sidelobe synthesis network based on a two-
stage directional coupler.

To further optimize the performance of the wide-
band low sidelobe feed network and mitigate coupling
effects between transmission lines, we implement a cou-
pling elimination strategy using metal holes. The inter-
face diagram for the feed network, catering to both ver-
tical and horizontal polarizations, is presented below.
Short-circuit pins are precisely positioned at a distance
of 0.31 mm from the signal transmission lines, and the
surrounding dimensions around the feed position are also
provided.

Additionally, due to spatial constraints, feed synthe-
sis networks with differing polarizations are segregated
into distinct layers. Concurrently, the vertical polariza-
tion wideband low sidelobe feed network is positioned
as a strip line beneath the antenna array radiation layer,
while the horizontal polarization wideband low sidelobe
feed network is located as a microstrip line at the lower-
most layer.

the vertical polarization feed network exhibits a comparable 
topology to its horizontal polarization counterpart, albeit with 
distinct width specifications, meticulously delineated in Table 2 

In pursuit of the design's validation for the comprehensive 
low sidelobe feed network, we have undertaken simulation and 
verification efforts, focusing on half of the 16-unit low sidelobe 
composite network. The resulting S-parameter data is visually 
represented in Figs. 7 and 8. 
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Fig. 6. Schematic diagram of half of a 16-unit synthetic 

horizontal polarization network based on directional coupler. 
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Fig. 7. Power distribution ratio of half of a 16-unit synthetic 

horizontal polarization network based on directional coupler. 
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Fig. 8. Power distribution ratio of half of a 16-unit synthetic 

horizontal polarization network based on directional coupler. 

 

 

 

 

Table 1: Value of the corresponding parameter in the horizontal 

polarization feed network 

Parameter 
Value 

(mm) 
Parameter 

Value 

(mm) 

L1 6.28 W7 0.16 

W1 0.48 W8 0.29 

W2 0.27 W9 0.18 

W3 0.21 W10 0.28 

W4 0.29 W11 0.18 

W5 0.19 W12 0.1 

W6 0.31   

 

Table 2: Value of the corresponding parameter in the horizontal 

polarization feed network 

Parameter 
Value 

(mm) 
Parameter 

Value 

(mm) 

L1 6.28 W7 0.16 

W1 0.48 W8 0.29 

W2 0.27 W9 0.18 

W3 0.21 W10 0.28 

W4 0.29 W11 0.18 

W5 0.19 W12 0.1 

W6 0.31   

The wideband low sidelobe feed network, utilizing a 
directional coupler, exhibits consistent and stable power 
distribution ratios across a broad bandwidth. This facilitates the 
realization of high-gain, wideband, low sidelobe technology. 
Notably, the achieved power distribution ratio effectively 
adheres to the amplitude distribution specifications prescribed 
by the Taylor distribution. Moreover, it maintains consistent 
phase characteristics over the wide frequency spectrum, 
highlighting its potential for broadband low sidelobe 
performance. It's worth noting that the design principles 
governing the vertical polarization wideband feed network 
closely parallel those of the horizontal polarization network. 

C. Analysis of wideband low sidelobe network 
By analyzing both the microstrip radiation unit and the 

broadband low sidelobe feed network, the combined effect of 
the distributed amplitude-phase characteristics of the broadband 
low sidelobe feed network enables the microstrip radiation unit 
to exhibit high-gain, broadband, low sidelobe characteristics 
within the specified frequency band. 

III. RESULTS AND EXPERIMENTAL 

VALIDATION 
Based on the operational principles of the antenna unit and 

the low sidelobe feed synthesis network, the connection of the 
antenna to the feed network via the feed probe yields a 
synthesized beam for the array. This beam exhibits a low 
sidelobe direction pattern across a broad spectrum. To 
rigorously validate the aforementioned design, comprehensive 
simulations and processing of the array antenna are performed. 

(a)

the vertical polarization feed network exhibits a comparable 
topology to its horizontal polarization counterpart, albeit with 
distinct width specifications, meticulously delineated in Table 2 

In pursuit of the design's validation for the comprehensive 
low sidelobe feed network, we have undertaken simulation and 
verification efforts, focusing on half of the 16-unit low sidelobe 
composite network. The resulting S-parameter data is visually 
represented in Figs. 7 and 8. 
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Fig. 6. Schematic diagram of half of a 16-unit synthetic 

horizontal polarization network based on directional coupler. 
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Fig. 7. Power distribution ratio of half of a 16-unit synthetic 

horizontal polarization network based on directional coupler. 
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Fig. 8. Power distribution ratio of half of a 16-unit synthetic 

horizontal polarization network based on directional coupler. 

 

 

 

 

Table 1: Value of the corresponding parameter in the horizontal 

polarization feed network 

Parameter 
Value 

(mm) 
Parameter 

Value 

(mm) 

L1 6.28 W7 0.16 

W1 0.48 W8 0.29 

W2 0.27 W9 0.18 

W3 0.21 W10 0.28 

W4 0.29 W11 0.18 

W5 0.19 W12 0.1 

W6 0.31   

 

Table 2: Value of the corresponding parameter in the horizontal 

polarization feed network 

Parameter 
Value 

(mm) 
Parameter 

Value 

(mm) 

L1 6.28 W7 0.16 

W1 0.48 W8 0.29 

W2 0.27 W9 0.18 

W3 0.21 W10 0.28 

W4 0.29 W11 0.18 

W5 0.19 W12 0.1 

W6 0.31   

The wideband low sidelobe feed network, utilizing a 
directional coupler, exhibits consistent and stable power 
distribution ratios across a broad bandwidth. This facilitates the 
realization of high-gain, wideband, low sidelobe technology. 
Notably, the achieved power distribution ratio effectively 
adheres to the amplitude distribution specifications prescribed 
by the Taylor distribution. Moreover, it maintains consistent 
phase characteristics over the wide frequency spectrum, 
highlighting its potential for broadband low sidelobe 
performance. It's worth noting that the design principles 
governing the vertical polarization wideband feed network 
closely parallel those of the horizontal polarization network. 

C. Analysis of wideband low sidelobe network 
By analyzing both the microstrip radiation unit and the 

broadband low sidelobe feed network, the combined effect of 
the distributed amplitude-phase characteristics of the broadband 
low sidelobe feed network enables the microstrip radiation unit 
to exhibit high-gain, broadband, low sidelobe characteristics 
within the specified frequency band. 

III. RESULTS AND EXPERIMENTAL 

VALIDATION 
Based on the operational principles of the antenna unit and 

the low sidelobe feed synthesis network, the connection of the 
antenna to the feed network via the feed probe yields a 
synthesized beam for the array. This beam exhibits a low 
sidelobe direction pattern across a broad spectrum. To 
rigorously validate the aforementioned design, comprehensive 
simulations and processing of the array antenna are performed. 

(b)

Fig. 6. Schematic diagram of half of a 16-unit syn-
thetic horizontal polarization network based on direc-
tional coupler.

Drawing upon the principles of unequal ampli-
tude power splitting and directional coupling, we have
devised a wideband low sidelobe feed network tailored
for horizontal and vertical polarization. The specific
dimensional parameters are meticulously documented in
Tables 1 and 2. It’s noteworthy that the vertical polariza-
tion feed network exhibits a comparable topology to its
horizontal polarization counterpart, albeit with distinct
width specifications, meticulously delineated in Table 2

Table 1: Value of the corresponding parameter in the hor-
izontal polarization feed network
Parameter Value (mm) Parameter Value (mm)

L1 6.28 W7 0.16
W1 0.48 W8 0.29
W2 0.27 W9 0.18
W3 0.21 W10 0.28
W4 0.29 W11 0.18
W5 0.19 W12 0.1
W6 0.31

Table 2: Value of the corresponding parameter in the hor-
izontal polarization feed network
Parameter Value (mm) Parameter Value (mm)

L1 6.28 W7 0.16
W1 0.48 W8 0.29
W2 0.27 W9 0.18
W3 0.21 W10 0.28
W4 0.29 W11 0.18
W5 0.19 W12 0.1
W6 0.31
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In pursuit of the design’s validation for the compre-
hensive low sidelobe feed network, we have undertaken
simulation and verification efforts, focusing on half of
the 16-unit low sidelobe composite network. The result-
ing S-parameter data is visually represented in Figs. 7
and 8.

the vertical polarization feed network exhibits a comparable 
topology to its horizontal polarization counterpart, albeit with 
distinct width specifications, meticulously delineated in Table 2 

In pursuit of the design's validation for the comprehensive 
low sidelobe feed network, we have undertaken simulation and 
verification efforts, focusing on half of the 16-unit low sidelobe 
composite network. The resulting S-parameter data is visually 
represented in Figs. 7 and 8. 
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Fig. 6. Schematic diagram of half of a 16-unit synthetic 

horizontal polarization network based on directional coupler. 
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Fig. 7. Power distribution ratio of half of a 16-unit synthetic 

horizontal polarization network based on directional coupler. 
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Fig. 8. Power distribution ratio of half of a 16-unit synthetic 

horizontal polarization network based on directional coupler. 

 

 

 

 

Table 1: Value of the corresponding parameter in the horizontal 

polarization feed network 

Parameter 
Value 

(mm) 
Parameter 

Value 

(mm) 

L1 6.28 W7 0.16 

W1 0.48 W8 0.29 

W2 0.27 W9 0.18 

W3 0.21 W10 0.28 

W4 0.29 W11 0.18 

W5 0.19 W12 0.1 

W6 0.31   

 

Table 2: Value of the corresponding parameter in the horizontal 

polarization feed network 

Parameter 
Value 

(mm) 
Parameter 

Value 

(mm) 

L1 6.28 W7 0.16 

W1 0.48 W8 0.29 

W2 0.27 W9 0.18 

W3 0.21 W10 0.28 

W4 0.29 W11 0.18 

W5 0.19 W12 0.1 

W6 0.31   

The wideband low sidelobe feed network, utilizing a 
directional coupler, exhibits consistent and stable power 
distribution ratios across a broad bandwidth. This facilitates the 
realization of high-gain, wideband, low sidelobe technology. 
Notably, the achieved power distribution ratio effectively 
adheres to the amplitude distribution specifications prescribed 
by the Taylor distribution. Moreover, it maintains consistent 
phase characteristics over the wide frequency spectrum, 
highlighting its potential for broadband low sidelobe 
performance. It's worth noting that the design principles 
governing the vertical polarization wideband feed network 
closely parallel those of the horizontal polarization network. 

C. Analysis of wideband low sidelobe network 
By analyzing both the microstrip radiation unit and the 

broadband low sidelobe feed network, the combined effect of 
the distributed amplitude-phase characteristics of the broadband 
low sidelobe feed network enables the microstrip radiation unit 
to exhibit high-gain, broadband, low sidelobe characteristics 
within the specified frequency band. 

III. RESULTS AND EXPERIMENTAL 

VALIDATION 
Based on the operational principles of the antenna unit and 

the low sidelobe feed synthesis network, the connection of the 
antenna to the feed network via the feed probe yields a 
synthesized beam for the array. This beam exhibits a low 
sidelobe direction pattern across a broad spectrum. To 
rigorously validate the aforementioned design, comprehensive 
simulations and processing of the array antenna are performed. 

Fig. 7. Power distribution ratio of half of a 16-unit syn-
thetic horizontal polarization network based on direc-
tional coupler.

the vertical polarization feed network exhibits a comparable 
topology to its horizontal polarization counterpart, albeit with 
distinct width specifications, meticulously delineated in Table 2 

In pursuit of the design's validation for the comprehensive 
low sidelobe feed network, we have undertaken simulation and 
verification efforts, focusing on half of the 16-unit low sidelobe 
composite network. The resulting S-parameter data is visually 
represented in Figs. 7 and 8. 
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Fig. 6. Schematic diagram of half of a 16-unit synthetic 

horizontal polarization network based on directional coupler. 
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Fig. 7. Power distribution ratio of half of a 16-unit synthetic 

horizontal polarization network based on directional coupler. 
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Fig. 8. Power distribution ratio of half of a 16-unit synthetic 

horizontal polarization network based on directional coupler. 

 

 

 

 

Table 1: Value of the corresponding parameter in the horizontal 

polarization feed network 

Parameter 
Value 

(mm) 
Parameter 

Value 

(mm) 

L1 6.28 W7 0.16 

W1 0.48 W8 0.29 

W2 0.27 W9 0.18 

W3 0.21 W10 0.28 

W4 0.29 W11 0.18 

W5 0.19 W12 0.1 

W6 0.31   

 

Table 2: Value of the corresponding parameter in the horizontal 

polarization feed network 

Parameter 
Value 

(mm) 
Parameter 

Value 

(mm) 

L1 6.28 W7 0.16 

W1 0.48 W8 0.29 

W2 0.27 W9 0.18 

W3 0.21 W10 0.28 

W4 0.29 W11 0.18 

W5 0.19 W12 0.1 

W6 0.31   

The wideband low sidelobe feed network, utilizing a 
directional coupler, exhibits consistent and stable power 
distribution ratios across a broad bandwidth. This facilitates the 
realization of high-gain, wideband, low sidelobe technology. 
Notably, the achieved power distribution ratio effectively 
adheres to the amplitude distribution specifications prescribed 
by the Taylor distribution. Moreover, it maintains consistent 
phase characteristics over the wide frequency spectrum, 
highlighting its potential for broadband low sidelobe 
performance. It's worth noting that the design principles 
governing the vertical polarization wideband feed network 
closely parallel those of the horizontal polarization network. 

C. Analysis of wideband low sidelobe network 
By analyzing both the microstrip radiation unit and the 

broadband low sidelobe feed network, the combined effect of 
the distributed amplitude-phase characteristics of the broadband 
low sidelobe feed network enables the microstrip radiation unit 
to exhibit high-gain, broadband, low sidelobe characteristics 
within the specified frequency band. 

III. RESULTS AND EXPERIMENTAL 

VALIDATION 
Based on the operational principles of the antenna unit and 

the low sidelobe feed synthesis network, the connection of the 
antenna to the feed network via the feed probe yields a 
synthesized beam for the array. This beam exhibits a low 
sidelobe direction pattern across a broad spectrum. To 
rigorously validate the aforementioned design, comprehensive 
simulations and processing of the array antenna are performed. 

Fig. 8. Power distribution ratio of half of a 16-unit syn-
thetic horizontal polarization network based on direc-
tional coupler.

The wideband low sidelobe feed network, utiliz-
ing a directional coupler, exhibits consistent and stable
power distribution ratios across a broad bandwidth. This
facilitates the realization of high-gain, wideband, low
sidelobe technology. Notably, the achieved power distri-
bution ratio effectively adheres to the amplitude distribu-
tion specifications prescribed by the Taylor distribution.
Moreover, it maintains consistent phase characteristics

over the wide frequency spectrum, highlighting its poten-
tial for broadband low sidelobe performance. It’s worth
noting that the design principles governing the verti-
cal polarization wideband feed network closely parallel
those of the horizontal polarization network.

C. Analysis of wideband low sidelobe network
By analyzing both the microstrip radiation unit and

the broadband low sidelobe feed network, the combined
effect of the distributed amplitude-phase characteristics
of the broadband low sidelobe feed network enables
the microstrip radiation unit to exhibit high-gain, broad-
band, low sidelobe characteristics within the specified
frequency band.

III. RESULTS AND EXPERIMENTAL
VALIDATION

Based on the operational principles of the antenna
unit and the low sidelobe feed synthesis network, the
connection of the antenna to the feed network via the
feed probe yields a synthesized beam for the array. This
beam exhibits a low sidelobe direction pattern across
a broad spectrum. To rigorously validate the aforemen-
tioned design, comprehensive simulations and process-
ing of the array antenna are performed.

Figure 9 shows a photograph of the prepared
antenna, while Fig. 10 illustrates the measurement envi-
ronment utilized during the antenna testing process. The
initial evaluation of the proposed antenna involves both
simulation and voltage standing wave measurements,
as presented in Fig. 11. Notably, the simulation results
closely align with the measured data, demonstrating
good agreement.

       

Fig. 9    Photograph of the fabricated antenna in Fig. 1. 

 
Figure 9 shows a photograph of the prepared antenna, while 

Fig. 10 illustrates the measurement environment utilized during 
the antenna testing process. The initial evaluation of the 
proposed antenna involves both simulation and voltage standing 
wave measurements, as presented in Fig. 11. Notably, the 
simulation results closely align with the measured data, 
demonstrating good agreement. 
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Fig. 10. Photograph of  measuring the fabricated antenna in Fig. 

1. 

Furthermore, the measured results indicate that the antenna 

possesses an impedance bandwidth (VSWR < 2) of 

approximately 8%, spanning the frequency range from 14 GHz 

to 15.2 GHz. Within this frequency band, sidelobes are 

effectively suppressed to levels lower than -25 dB. The radiation 

patterns of the proposed wideband, low sidelobe array antenna 

are visualized in Fig. 12. In this figure, subfigures (a) and (b) 

depict the 14 GHz vertical polarization YOZ-plane radiation 

pattern, (c) and  (d) illustrate the 14GHz vertical polarization 

XOZ-plane radiation pattern, while (e) and (f) portray the 

horizontal polarization YOZ-plane radiation pattern at 15.2 GHz. 

Additionally, (g) and (h) exhibit the horizontal polarization 

XOZ-plane radiation pattern. These visualizations underscore 

the antenna array's capacity to maintain ultra-low sidelobes over 

a broad bandwidth, with high consistency observed between 

antenna testing and simulation results. 
Moreover, it's important to note that the antenna achieves a 

maximum gain exceeding 21 dB within this operational 
frequency band, and this gain behavior in both simulation and 
testing is depicted in Fig. 12. 
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Fig. 11.   Simulation and measurement of wideband low side 
lobe array antenna voltage standing wave ratio. 
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Fig. 12. (a) Horizontal polarization radiation pattern of the 

antenna array at 14.0 GHz in YOZ plane, (b) horizontal 

polarization radiation pattern of the antenna array at 15.2 GHz 

in YOZ plane, (c) horizontal polarization radiation pattern of the 

antenna array at 14.0 GHz in XOZ plane, (d) horizontal 

polarization radiation pattern of the antenna array at 15.2 GHz 

Fig. 9. Photograph of the fabricated antenna in Fig. 1.

Fig. 10. Photograph of measuring the fabricated antenna
in Fig. 1.
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Fig. 9    Photograph of the fabricated antenna in Fig. 1. 

 
Figure 9 shows a photograph of the prepared antenna, while 

Fig. 10 illustrates the measurement environment utilized during 
the antenna testing process. The initial evaluation of the 
proposed antenna involves both simulation and voltage standing 
wave measurements, as presented in Fig. 11. Notably, the 
simulation results closely align with the measured data, 
demonstrating good agreement. 

 

X

Y

Z

 

Fig. 10. Photograph of  measuring the fabricated antenna in Fig. 

1. 

Furthermore, the measured results indicate that the antenna 

possesses an impedance bandwidth (VSWR < 2) of 

approximately 8%, spanning the frequency range from 14 GHz 

to 15.2 GHz. Within this frequency band, sidelobes are 

effectively suppressed to levels lower than -25 dB. The radiation 

patterns of the proposed wideband, low sidelobe array antenna 

are visualized in Fig. 12. In this figure, subfigures (a) and (b) 

depict the 14 GHz vertical polarization YOZ-plane radiation 

pattern, (c) and  (d) illustrate the 14GHz vertical polarization 

XOZ-plane radiation pattern, while (e) and (f) portray the 

horizontal polarization YOZ-plane radiation pattern at 15.2 GHz. 

Additionally, (g) and (h) exhibit the horizontal polarization 

XOZ-plane radiation pattern. These visualizations underscore 

the antenna array's capacity to maintain ultra-low sidelobes over 

a broad bandwidth, with high consistency observed between 

antenna testing and simulation results. 
Moreover, it's important to note that the antenna achieves a 

maximum gain exceeding 21 dB within this operational 
frequency band, and this gain behavior in both simulation and 
testing is depicted in Fig. 12. 
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Fig. 11.   Simulation and measurement of wideband low side 
lobe array antenna voltage standing wave ratio. 
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Fig. 12. (a) Horizontal polarization radiation pattern of the 

antenna array at 14.0 GHz in YOZ plane, (b) horizontal 

polarization radiation pattern of the antenna array at 15.2 GHz 

in YOZ plane, (c) horizontal polarization radiation pattern of the 

antenna array at 14.0 GHz in XOZ plane, (d) horizontal 

polarization radiation pattern of the antenna array at 15.2 GHz 

Fig. 11. Simulation and measurement of wideband low
side lobe array antenna voltage standing wave ratio.

Furthermore, the measured results indicate that the
antenna possesses an impedance bandwidth (VSWR <2)
of approximately 8%, spanning the frequency range from
14 GHz to 15.2 GHz. Within this frequency band, side-
lobes are effectively suppressed to levels lower than -
25 dB. The radiation patterns of the proposed wideband,
low sidelobe array antenna are visualized in Fig. 12. In

(a) (b)

(c) (d)

(e) (f)

Fig. 12. Continued.

(g) (h)

Fig. 12. (a) horizontal polarization radiation pattern of
the antenna array at 14.0 GHz in XOY plane, (b) hori-
zontal polarization radiation pattern of the antenna array
at 15.2 GHz in XOY plane, (c) horizontal polarization
radiation pattern of the antenna array at 14.0 GHz in
XOZ plane, (d) horizontal polarization radiation pattern
of the antenna array at 15.2 GHz in XOZ plane, (e) ver-
tical polarization radiation pattern of the antenna array
at 14.0 GHz in XOY plane, (f) polarization the radiation
patterns of the antenna array at 15.2 GHz in XOY plane,
(g) vertical polarization radiation pattern of the antenna
array at 14.0 GHz in XOZ plane, and (h) vertical polar-
ization radiation pattern of the antenna array at 15.2 GHz
in XOZ plane.

this figure, subfigures (a) and (b) depict the 14 GHz ver-
tical polarization YOZ-plane radiation pattern, (c) and
(d) illustrate the 14GHz vertical polarization XOZ-plane
radiation pattern, while (e) and (f) portray the horizontal
polarization YOZ-plane radiation pattern at 15.2 GHz.
Additionally, (g) and (h) exhibit the horizontal polariza-
tion XOZ-plane radiation pattern. These visualizations
underscore the antenna array’s capacity to maintain ultra-
low sidelobes over a broad bandwidth, with high consis-
tency observed between antenna testing and simulation
results.

Moreover, it’s important to note that the antenna
achieves a maximum gain exceeding 21 dB within this

in XOZ plane, (e) vertical polarization radiation pattern of the 

antenna array at 14.0 GHz in YOZ plane, (f) polarization of the 

radiation patterns of the antenna array at 15.2 GHz in YOZ plane, 

(g) vertical polarization radiation pattern of the antenna array at 

14.0 GHz in XOZ plane, (h) vertical polarization radiation 

pattern of the antenna array at 15.2 GHz in XOZ plane. 

 

In addition, the array antenna exhibits a gain of over 20 dB 

within the 14 GHz-15.2 GHz frequency range. The 

measurement results closely align with the simulation outcomes, 

demonstrating a strong correspondence between them. 
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Fig. 13. Simulation and measurement gain of proposed array 

antenna. 

 
Finally, Table 3 presents a comprehensive summary of 

performance metrics for various antenna arrays. The data reveals 
that this antenna configuration attains a broader bandwidth 
while operating at a high-gain condition compared to previous 
research efforts. 

 

Table 3: Comparison with previous  
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IV. CONCLUSION  
In this paper, a novel dual-polarized broadband low-sidelobe 

array antenna is proposed, in which the antenna elements are 
integrated with a novel directional coupler-based broadband 
low-sidelobe synthesis network through a multilayer board 
process. Over 21 dB of gain and less than 25 dB of side lobes 
can be achieved in over 8% of the bandwidth. 
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operational frequency band, and this gain behavior in
both simulation and testing is depicted in Fig. 12.

In addition, the array antenna exhibits a gain of over
20 dB within the 14 GHz-15.2 GHz frequency range.
The measurement results closely align with the simula-
tion outcomes, demonstrating a strong correspondence
between them.

Finally, Table 3 presents a comprehensive summary
of performance metrics for various antenna arrays. The
data reveals that this antenna configuration attains a
broader bandwidth while operating at a high-gain con-
dition compared to previous research efforts.

Table 3: Comparison with previous
Ref. Gain

(dB)
Sidelobe

Level
(dB)

Bandwidth Feed
Network

Mode

Radiation
Efficiency

Array
Size

[1] 16.0 -24.2 1% Series 67.0% 1×26
[2] 9.0 -26.0 13% Parallel Less than

50%
1×6
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IV. CONCLUSION
In this paper, a novel dual-polarized broadband

low-sidelobe array antenna is proposed, in which the
antenna elements are integrated with a novel direc-
tional coupler-based broadband low-sidelobe synthesis
network through a multilayer board process. Over 21 dB
of gain and less than 25 dB of side lobes can be achieved
in over 8% of the bandwidth.
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