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Abstract – A polarization agile patch antenna resonat-
ing at 2.4 GHz ISM band is presented. The antenna
is based on a rectangular radiating element along with
reconfigurable parasitic patches located at its periph-
ery of the radiating element. Two switching diodes are
used to reconfigure the geometry of the radiating ele-
ment. Upon proper biasing of the switching diodes the
antenna attains linear or circular (LHCP/RHCP) polar-
ization states. The entire antenna is modelled using a
high-frequency structure simulator and is validated using
an Agilent network analyser (N9925A) and antenna test
systems for measuring impedance and radiation char-
acteristics. Over the entire operating band, the antenna
shows better impedance matching and achieves −10 dB
impedance bandwidth of 100 MHz (2.40-2.5 GHz) in
linear state and 85 MHz (2.41-2.495 GHz) in the circu-
larly polarization states along with peak gain of 5.61 dBi
for LP state and 4.98 dBi for CP state in the operating
range.

Index Terms – impedance matching, microstrip patch,
polarization reconfiguration, radiation pattern.

I. INTRODUCTION
Patch antennas play a crucial role in biomedical

communications with external devices for monitoring

patients due to their miniaturization and low weight.
These antennas come with various geometries and mate-
rials according to the requirement of monitoring patients.
In order to have a better signal link, orientation between
transmitter and receiver antenna must be maintained.
However, it is always possible for both the antennas to
maintain line of sight orientation. Hence the need for
circular polarized antennas replacing traditional anten-
nas becomes important [1–2]. These on-body wearable
antennas for monitoring patients health issues must have
low back radiation with reduced specific absorption rate
(SAR) values and also must perform well on mov-
ing bodies [3]. A wideband circularly polarized patch
antenna for bio telemetric application is presented in
[4]. The antenna utilizes 2×2 multiple-input multiple-
output (MIMO) radiating patches with defected ground
structures which leads to back radiation towards patients
tissue. Moreover, these MIMO antennas are densely
packed which increases the mutual coupling between
the antenna elements. The isolation can be improved
by placing adjacent radiating elements perpendicular to
each other [5]. In order to improve the antenna perfor-
mances, different structures, including electromagnetic
band-gap (EBG) and high impedance surfaces, are uti-
lized. A compact monopole based on EBG structure for
wearable applications [6] and a high impedance surface-
based patch [7] are presented. However, these structures
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require complexity of the antenna design and also a
number of substrate layers required for the antenna. In
order to reduce cross talks between the antenna, a fil-
tering antenna is incorporated along with traditional cir-
cularly polarized antennas [8], which requires additional
design space for a filtering antenna and also increases
the complexity of the design. A 3D printed ultraw-
ideband antenna system with stable impedance match-
ing has been proposed in [9]. Polarization reconfig-
urable antennas are widely used due to their ability
to switch polarization in real time [10]. The reconfig-
urable antennas have better cross polarization isolation
and mitigate the multipath reception of signals, which
improves signal quality. This reconfiguration can also be
achieved by means of MEMS switches [11] with better
miniaturization.

Most of the literature utilizes fixed circularly polar-
ized state patch antennas with increased number of
switching elements for switching polarization states.
This reduces efficiency of the antenna greatly. In this
paper, a polarization agile patch with reduced number
of switching elements modelled on single layer sub-
strate is designed. The bottom side of the antenna is
fully grounded to arrest the undesired back radiation.
The antenna is operating at 2.4 GHz ISM band, and
its impedance and radiation characteristics are validated
through measured results.

II. GEOMETRY OF THE PROPOSED
ANTENNA

The geometry of the proposed patch is shown in
Fig. 1. The rectangular patch is taken for its simplic-

Fig. 1. Antenna geometry.

ity and better control over its dimensions on design per-
formances. Moreover, the geometry is symmetrical and
hence avoids undesired frequency shifts between the fre-
quencies between polarizations states, which makes it
ideal for biomedical applications. The antenna is mod-
elled on low-cost fire-retardant substrate with permittiv-
ity of 4.4 and loss tangent of 0.02. The overall antenna
is modelled on single lay substrate having a dimension
of 50×50 mm with thickness of 1.6 mm. Two para-
sitic patches are placed on either side of the antenna
geometry in order to reconfigure the antenna structure,
thereby modifying the surface current distribution over
the antenna radiating element. A shorting via is made in
the parasitic patch to complete the DC bias path. Two
switching diodes are placed between the parasitic ele-
ment and the radiating element. Upon proper biasing,
the diodes bridge the parasitic element with radiating
patch and thereby makes the path for the surface current
to flow through parasitic elements, which leads to addi-
tional phases for achieving different polarization recon-
figuration.

The feed position is chosen in such a way that
it matches the impedance of the radiating element by
means of using a quarter-wave transformer between the
radiating elements and the feed point.

III. PRINCIPLE OF OPERATION
Polarization reconfiguration is achieved by prop-

erly biasing the pin diodes (NXP BAP50-03, 50 mA,
50 V). The resistance of the diodes during its opera-
tion plays a crucial role in the radiation efficiency of
the antenna. The pin diodes are chosen in such a way
that it must have a minimum forward resistance dur-
ing ON condition. The pin diodes used in the model
will have a series resistance and inductance of 5 Ω

and 1.8 nH during ON state and shunt capacitance 0.35
pF with the reverse resistance of 500 kΩ during OFF
state. The equivalent circuit model of the pin diode
used is given in Fig. 2. Figures 2 (a), (b) show the
diode equivalent circuit model during ON and OFF state.
Figure 2 (c) shows the equivalent circuit corresponding
to the biasing circuit. It comprises a DC block capac-
itor and RF choke inductor for isolating the bias net-
work from the antenna elements and hence avoids direct
coupling.

The diodes are placed in such a way that the cath-
ode of the diode D1 points towards the radiating patch
while the anode points towards the parasitic patch, which
has shorting vias with the ground for the DC path.
Similarly, the anode of the diode D2 points towards
the radiating patch while the cathode points towards
the parasitic patch, which has shorting vias with the
ground for the DC path. A Tee- Bias network is used for
properly biasing the pin diodes to achieve polarization
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Fig. 2. Equivalent circuit model of the pin diode and bias-
ing circuit.

reconfiguration. Table 1 shows the different operating
modes of the proposed antenna model.

Table 1: Different operating modes
S. No. DC Bias

Voltage
Diode D1 Diode

D2
Polarization

State
1 0 V OFF OFF LP
2 +2 V OFF ON RHCP
3 -2 V ON OFF LHCP

When no bias voltage (0 V) is given, both diodes
are in OFF state, and the geometry resembles a sim-
ple rectangular patch antenna and gives a linear polar-
ization state that resonates at center frequency. When
DC bias voltage of +2 V is given, diode D2 turns
into ON state as the anode of the diode D2 points
towards the radiating patch while the cathode points
towards the parasitic patch, which has shorting vias
with the ground and hence closes the DC path. Thus,
the length of the patch in the right symmetry increases
slightly, which introduces additional phase shift between
the electric currents (Ex and Ey) . This generates two
orthogonal modes with same amplitude with −900

phase difference and hence attains right-hand circular
polarization.

Similarly, when DC bias voltage of -2 V is given,
diode D1 turns into ON state as the cathode of the
diode D2 points towards the radiating patch while the
cathode points towards the parasitic patch, which has
shorting vias with the ground and hence closes the DC
path. Thus, the length of the patch in the left symme-
try increases slightly, which introduces additional phase
shift between the electric currents (Ex and Ey) . This gen-
erates two orthogonal modes with the same amplitude
with +90◦ phase difference and hence attains left-hand
circular polarization. The surface current distribution
corresponding to different polarization states are shown
in Fig. 3.
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IV. RESULTS AND DISCUSSION
The performance of the proposed antenna is vali-

dated by measuring its impedance and its radiation char-
acteristics. The antennas are fabricated on FR4 substrate
and are connected with 50 ω SMA connector, as shown
in Fig. 4. The diodes are placed to bridge the radiating
patch with the outer parasitic elements. A standard T bias
switch is coupled with SMA connector input for biasing
the RF switch to switch its polarization characteristics.
The shorting pin is punched at its radiating patch center
for providing a DC path during biasing of the diodes.

The impedance characteristics are measured with
Agilent network analyzer (N9925A) and are compared
with simulated results, as shown in Fig. 5. From Fig. 5 it
is inferred that the antenna attains a −10 dB impedance
bandwidth of 100 MHz (2.40-2.5 GHz) in linear state and
85 MHz (2.41-2.495 GHz) in the circularly polarization
states respectively.

The radiation measurement setup used to analyze
the radiation characteristics of the antenna is shown in
Fig. 6.

Figure 7 shows the radiation characteristics of the
antenna, which are measured using an antenna test sys-
tem that comprises a pyramidal horn antenna having
a standard gain of 9 dB placed inside the anechoic
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state that resonates at center frequency. When DC bias 

voltage of +2 V is given, diode D2 turns into ON state as 

the anode of the diode D2 points towards the radiating 

patch while the cathode points towards the parasitic 

patch, which has shorting vias with the ground and hence 

closes the DC path. Thus, the length of the patch in the 

right symmetry increases slightly, which introduces 

additional phase shift between the electric currents 

(𝐸𝑥 and 𝐸𝑦) . This generates two orthogonal modes with 

same amplitude with −900 phase difference and hence 

attains right-hand circular polarization. 
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chamber. The test antenna is placed at a far-field dis-
tance of 2D2/λ from the transmitter antenna, and the
gain of the test is calculated based on the Friis transmis-
sion equation:

Pr=PtGrGt

(
λ

4πR

)2

. (1)

The relative gain corresponding to the fabricated
prototype is measured for both the planes. The antenna
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Fig. 7. Radiation characteristics of the proposed antenna.

attains symmetrical radiation pattern in the direction of
propagation. The antenna attains maximum gain of 5.61
dBi for the LP state and 4.98 dBi for the LHCP/RHCP
state.

The axial ratio bandwidth corresponding to the pro-
posed model for LHCP and RHCP modes is given Fig. 8.
It is inferred that compared to impedance bandwidth, the
axial ratio bandwidth is lesser, since the tangential com-
ponents of the electric fields are attenuated closed to the
ground surface. The model attains axial ratio bandwidth
of 2.42-2.51 GHz in the operating band.

Specific absorption rate (SAR) is used to quantify
the electromagnetic radiation over human tissues, and
SAR is calculated by
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Fig. 8. Axial ratio bandwidth of the proposed antenna.

SAR =
σ
∣∣E2

∣∣
ρ

, (2)

where σ and ρ are thermal conductivity, (S/m) mass
density (kg/m3) of the tissue medium, and E is the elec-
tric field intensity (V/m), which is calculated from the
power input using the relation given here:

Power
(
W/m2)= (E (V/m))2

377
. (3)

An agar based homogenous tissue model is prepared
to mimic human tissue (palm) having a permittivity of
26.47 [12] to measure the SAR value of the proposed
model. The model achieves a minimum SAR value of
0.385 W/kg at its operating bands.

Performance comparison of the proposed model
with other conventional models is given in Table 2. Most
of the traditional antennas utilize linear polarization or
fixed circular polarization techniques, which limits their
application. The proposed model utilizes reconfigurable

Table 2: Performance comparison of the proposed
antenna

Ref Size
(mm3)

Operating
Freq.

Polariz
ation

Axial Ratio
Bandwidth

SAR
(W/kg)

[13] 25 × 20
× 0.07

2.45 GHz Linear 1.22% 1.0

[14] 14 × 14
× 05

2.45 GHz Circular 6.93% 0.494

[15] 24 × 22
× 0.7

2.45 GHz Linear 24.4% 0.719

[16] 21 ×
13.5 ×
0.254

2.45 GHz Circular 53.8% 0.78

Proposed 50 × 50
× 1.6

2.45 GHz Circular 44.8% 0.385

polarization characteristics with a minimum number of
electronically controlled switching diodes without sac-
rificing the impedance and radiation characteristics of
the antenna in its operating band. In addition to that,
the antenna attains minimum SAR value at the operat-
ing band, which makes it suitable for biomedical appli-
cations.

V. CONCLUSION
A polarization reconfigurable antenna based on

switching pin diodes is presented. The antenna is
designed at the 2.45 GHZ ISM band and attains three
different polarization states upon proper biasing of the
switching diodes. The model is validated by fabricating
on single FR4 substrate, and the measured results are
compared with simulated results. The antenna achieves -
10 dB impedance bandwidth of 100 MHz (2.40-2.5 GHz)
in linear state and 85 MHz (2.41-2.495 GHz) in the cir-
cularly polarization states along with a peak gain of 5.61
dBi for LP state and 4.98 dBi for CP state in the operating
range. The antenna attains maximum axial ratio band-
width of 44.8% in the operating band with a SAR value
of 0.385 W/kg.
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