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Abstract – The key to the suppression of vibration and
noise for PMSM is the optimization of electromagnetic
excitation force. The method of motor body optimiza-
tion can effectively reduce the radial excitation force of
the motor, so as to suppress the vibration and noise of
the motor. Firstly, the stator structure of the motor is
optimized with V-shape skew slot based on the analyt-
ical modeling of the radial electromagnetic excitation
force of the motor. Then, the structural parameters of
the motor that affect the electromagnetic excitation force
of the motor are determined, and the average torque,
torque ripple and radial electromagnetic excitation force
generated by tangential electromagnetic excitation force
are taken as the optimization objectives. The sensitivity
analysis and classification of the structural parameters
of the motor are carried out. The multi-objective genetic
algorithm and response surface method are combined to
optimize the structural parameters of the motor. Finally,
the finite element analysis, modal analysis, multi-speed
vibration and noise analysis of the optimized motor are
done. The performance comparisons before and after
optimization have proved that the peak of equivalent
sound power level have decreased by 8.65% after the
optimization of V-shaped skewed slot structure. After the
optimization of structural parameters, the power level of
permanent magnet synchronous motor has been reduced
by 9.22%. For the vibration noise caused by resonance
and the main frequency of vibration noise harmonics,
the suppression effects are also better than those of V-
shape skewed slots optimization, and the ERPL values
are reduced by 9.22% and 10.12%, respectively, in two
cases. The results show that the vibration and noise of
permanent magnet synchronous motor are effectively
suppressed.

Index Terms – genetic optimization algorithm, multi-
objective hierarchical optimization, PMSM, skewed slots
optimization, vibration and noise suppression.

I. INTRODUCTION
The problem of Noise, Vibration, Harshness (NVH)

of vehicles is one of the issues of great concern to major
new energy vehicle manufacturers. The NVH problem
involves all parts of the vehicle, but as a new energy
electric vehicle, the motor is the core component of the
power system and the most important incentive source
of NVH. The interior permanent magnet synchronous
motor (IPMSM) has the advantages of small size, light
weight, high efficiency and high power density, and the
electric drive system with it as the core has the charac-
teristics of excellent comprehensive performance indica-
tors. Therefore, vibration and noise suppression of the
IPMSM is one of the hot spots in the field of electric
vehicle research at present [1].

Electromagnetic stress and modal parameters are
two key factors affecting electromagnetic vibration noise
of motor. Electromagnetic waves include tangential and
radial electromagnetic waves, and tangential force waves
can cause torque pulsation, resulting in vibration noise
[2]. The radial electromagnetic wave will cause periodic
deformation of the motor core and cause vibration, which
is the main source of vibration noise [3]. The influence
of motor mode and radial electromagnetic force on noise
was studied in [4–5], showing that larger vibration noise
would be caused when the frequency of radial electro-
magnetic wave was close to the mode frequency.

The main method to suppress the electromagnetic
vibration noise of PMSM is to optimize the motor body
at present. It can be divided into two categories. One is
to suppress the noise by optimizing the air gap shape,
permanent magnet structure and structure of stator and
rotor. In [6], segmented skew pole optimization was
carried out for the motor, but only for a step skew
pole optimization, and no further optimization was car-
ried out. The IPMSM using single and double perma-
nent magnet rotors was analyzed, which showed that the
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electromagnetic noise performance of double permanent
magnet yoke was better in [7]. In [8], a virtual tooth
structure between poles was used to weaken the six fre-
quency vibration noise of the surface mounted perma-
nent magnet motor, and the third, fifth and seventh har-
monics were weakened at the same time, but the weaken-
ing effect on other harmonics was missing. NVH could
be optimized by means of stator tooth chamfering [9]. In
[10], a method was proposed to cut auxiliary slots in the
top of the stator teeth and to optimize the parameters of
the slots. In [11], the magnetic amplitude was reduced to
near the resonant frequency by optimizing the slot width.
However, only the optimization of radial electromagnetic
excitation force was considered, and the tangential elec-
tromagnetic torque was not analyzed in [7–11].

The other is to reduce the vibration noise of
PMSM from the structural parameters. In [12], a three-
dimensional finite element analysis method was pro-
posed to analyze the influence of parameters of stator
and rotor on the resonant frequencies of reducing the
total sound power, so as to avoid the occurrence of res-
onance phenomenon. However, only single-stage opti-
mization of structural parameters was carried out, which
was inferior to hierarchical optimization in terms of opti-
mization efficiency and optimization fitness. In [13], the
electromagnetic force density of the air gap is analyzed
and derived, and the minimum peak value of the elec-
tromagnetic force density distributed along the air gap
circumference of the motor was taken as the optimiza-
tion objective, and the optimization values of the sta-
tor skew-slot shape, magnetic steel size and air gap size
were determined based on the sensitivity analysis results,
but only a single objective optimization was carried out
without comprehensive analysis of multiple objectives.
As the complexity of motor structure increases, it is pro-
posed that the randomness and global nature of multiple
samples in optimization have a great impact on the global
nature of optimization results, so a multi-objective opti-
mization algorithm is adopted to comprehensively con-
sider the optimization effect of multiple objectives [14].
In [15], the multi-objective optimization of the torque
ripple and the peak value of radial electromagnetic force
distributed along the circumference of the air gap was
carried out for the structural parameters of the motor,
and the parameters were graded according to the sensitiv-
ity analysis results, so as to obtain a better optimization
effect. However, only the angle of the step skewed slots
was optimized as a structural parameter.

A 40 kW 48-slot 8-pole IPMSM are taken as an
example in this paper. Two aspects of optimization are
adopted at the same time based on the analytical model-
ing of the radial electromagnetic force of the motor. On
the one hand, the skewed slot structure optimization is
carried out, and the effects of various skewed slot opti-
mization structures are compared and analyzed, and the

best skewed slots structure scheme is selected. On the
other hand, multi-objective optimization of motor struc-
ture parameters affecting electromagnetic vibration noise
is carried out with the objectives of minimum radial
electromagnetic force peak, minimum torque ripple and
maximum average torque. Based on the sensitivity anal-
ysis of motor structure parameters, the motor structure
parameters are divided into three levels: high sensitiv-
ity parameters, low sensitivity parameters and irrelevant
parameters. The multi-objective genetic algorithm and
response surface method are combined to optimize the
high and low structural parameters of the motor. The
effectiveness of the proposed method is verified by com-
paring the radial electromagnetic force space harmon-
ics, torque pulsation and equivalent radiated power level
(ERPL) of the IPMSM before and after optimization.

II. RADIAL ELECTROMAGNETIC FORCE
THEORY OF IPMSM

A. Radial electromagnetic excitation stress model of
IPMSM

The radial electromagnetic force, the main source
of electromagnetic vibration and noise, is mainly
generated by a series of stator and rotor magnetic
field harmonics [16]. The magnetic field established by
synchronous motor armature reaction magnetomotive
force is:

b1(θ , t) = ∑
υ

Bυ cos[ω1t −υθ − (ψ +90◦)], (1)

where ψ + 90◦ is the initial phase, ω1 is the frequency
of three-phase current in the stator winding, and Bυ

is the υ-order harmonic magnetic density amplitude
of the armature reaction magnetic field, and can be
expressed as:

Bυ =
p
υ

∣∣∣∣kdpυ

kdp1

∣∣∣∣X∗
adBδ I∗, (2)

where Bδ is the air gap magnetic density for no load,
considering the salient pole effect of the rotor, X∗

ad is the
per-unit value of direct axis armature reaction reactance,
I∗ is per-unit value of load current, p is the number of
pole pairs of the fundamental wave of the stator magne-
tomotive force (number of motor rotor pole pairs), and
the order of harmonics υ = (6k+1)p, k = 0,±1,±2 · · · .

The magnetic field established by the rotor magne-
tomotive force of the synchronous motor, that is, the no-
load airgap magnetic field is:

b2(θ , t) = ∑µ Bµ Λ0 cos[µ ω1
p t −µθ ]

+∑µ ∑k(−1)k+1 1
2 B

µ
Λk cos[µ ω1

p t − (µ ± kZ1)θ ]
, (3)

where Bµ is the magnetic density amplitude of the µ-
order harmonic of the main pole magnetic field under
load.

Bµ =
µ0Fµ

δ
=

p
υ

∣∣∣∣∣ sin µ

p •
απ

2

sin απ

2

∣∣∣∣∣B1, (4)

where B1 is the magnetic density amplitude of the funda-
mental wave, α is the polar arc coefficient, and Z1 is the
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number of stator slots. The first term in (3) is the mag-
netic field generated by the rotor magnetomotive force
in the uniform air gap, the second term is the additional
magnetic field caused by the stator slots.

When the synchronous motor is running under load,
the air gap magnetic field is the sum of the armature reac-
tion magnetic field and the rotor magnetomotive force
magnetic field, that is:

b(θ , t) = b1(θ , t)+b2(θ , t)

= ∑
v

Bv cos [ω1t − vθ − (ψ +90◦)]

+∑
µ

Bµ Λ̄0 cos
[

µ
ω1

p
t −µθ

]
+∑

µ

∑
k
(−1)k+1 1

2
Bµ Λ̄k cos

[
µ

ω1
p t

−(µ ± kZ1)θ

]
.

(5)

According to Maxwell stress tensor, the radial force
under load is:

pn ≈
1

2µ0
b2(θ , t)

=
1

2µ0



∑v Bv cos [ω1t − vθ − (ψ +90◦)]

+∑µ Bµ Λ̄0 cos
[
µ

ω1
p t −µθ

]
+∑µk(−1)k+1 1

2 Bµ Λ̄k cos
[
µ

ω1
p t − (µ ± kZ1)θ

]



2

.

(6)
After expansion of (6), the term that has a greater

impact on electromagnetic noise is retained, so (6) can
be simplified as:

pn ≈
1

2µ0



∑µ
1
2 Bµ

2Λ̄0
2 cos

[
2µ

ω1
p t −2µθ

]
+∑µ1 ∑µ2 ∑k

1
2 Bµ1Bµ2Λ̄0Λ̄k cos

{
(µ2 ±µ1)

ω1
p t − [(µ2 ±µ1)± kZ1]θ

}
+∑v ∑µ BvBµ Λ̄0 cos

[
(µ ± p)ω1

p t − (µ ± v)θ − (±ψ ±90◦)
]

+∑v ∑µ ∑k(−1)k+1 1
2 BvBµ Λ̄k cos

{
(µ ± p)ω1

p t − [(µ ± kZ1)± v]θ − (±ψ ±90◦)
}


. (7)

The orders of each force wave are 2µ , (µ2 ± µ1)±
kZ1, (µ ± υ) and (µ ± kZ1)± υ . µ , µ1 and µ2 can be
expressed as:

µ = (2r+1) p
µ1 = (2r1 +1) p
µ2 = (2r2 +1) p

 , (8)

where r, r1, r2 = 0,1,2,3 · · · .
The first item in (7) is the force waves generated by

the alone action of the same order harmonics of the rotor
magnetic field itself. The second term is the force waves
generated by the combined modulation of different order
harmonics of the rotor magnetic field itself. The third and
fourth terms are the force waves generated by the inter-
action between the stator and rotor harmonic magnetic
fields.

B. Force waves that may cause strong vibration noise
of the motor

When the motor is running under load, whether a
series of force waves included by radial force can cause
strong vibration and noise of the motor depends on the
three elements of force wave, including size, order and
change frequency [17]. It can be seen from (8) that the
frequency of radial force wave during load operation of
synchronous motor is an integer multiple of twice the
frequency of power supply, that is:

f = 2r f1, (9)
where f1 is the power supply frequency, and r =
1,2,3 · · · .

Accordingly, the vibration frequency caused by
radial force wave is also an integer multiple of twice the
power supply frequency f1. Relative to the rotor rotation
frequency, the frequency of the radial force wave is the
2rp times the rotor rotation frequency, that is, the time
order of the radial force wave is 2rp order, namely, the
number of vibrations of the rotor rotating a full circle
is an integer multiple of the number of poles. In addi-
tion, according to each order of radial force wave in (6),
the lowest non-zero order of spatial force wave of syn-
chronous motor is 2p during load operation.

The radial force waves that need to be paid attention
to when the synchronous motor is loaded are as follows:

(1) Radial force waves with frequency 2 f1 produced
by the main wave magnetic field

Namely, the first force wave in (7), when r = 1, cor-
responds to the radial force wave caused by the main
wave magnetic field (harmonic order p) with the pole
pairs p.

(2) Lower order force wave generated by the inter-
action between the first order tooth-harmonic mag-
netic field of stator and the µ-order harmonic mag-
netic field of rotor

When the synchronous motor is running without
load, the radial force wave generated by the interaction
between the µ-order harmonic of the rotor main pole
magnetic field with the pole number µ and frequency
µ •ω1/p and the first order tooth-harmonic of the rotor
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main wave with the pole number p±Z1 and frequency
ω1, is the main source of electromagnetic vibration noise
which corresponds to the radial force wave of the 2nd
term of (7) when µ2 = µµ1 = pk = 1.

When r or r+ 1 is the integer closest to Z1/2p, the
number of slots per pole, the orders of two lower order
dangerous force waves, i.e., n = 2rp−Z1 or n = 2(r +
1)p−Z1, appears as a minimum.

In the case of the synchronous motor load opera-
tion, the radial force wave generated by the interaction
between the stator first order teeth harmonic magnetic
field of the armature winding and the µ-order harmonic
magnetic field of the rotor is the 3rd term of (7) when
υ = p±Z1.

When r or r+ 1 is the integer closest to Z1/2p, the
number of slots per pole, the 3rd term in (7) contains two
low-order dangerous force waves. The minimum value
of the orders of these two force waves, i.e., n = 2rp−Z1
or n= 2(r+1)p−Z1, is most likely to cause electromag-
netic vibration noise of synchronous motor load.

(3) Radial force wave generated by the interaction
between the stator and the rotor harmonic magnetic
field

When the synchronous motor is running under
load, the radial force wave generated by the interaction
between the stator υ-order harmonic magnetic field and
the rotor µ-order harmonic magnetic field is the 3rd term
of (7), and the orders of dangerous force waves with
lower order are:

n = µ −υ=

{
(2r−6k) p Integer slot winding
(2r− 6k

d )p Fractional slot winding
,

(10)
where d is the denominator of the number of slots of per
pole per phase.

When r is closest to 3k or 3k/d, the minimum value
of n appears, and the generated force wave is most
likely to cause electromagnetic vibration noise of the
synchronous motor load.

(4) Radial force waves generated by interaction
between stator tooth-harmonic magnetic field and
permanent magnet rotor field

The 4th term of (7) contains the lower order dan-
gerous force waves generated by interaction between sta-
tor tooth-harmonic magnetic field and permanent magnet
rotor field and the orders of dangerous force waves are,
respectively:

n =

{
(2r−6k)p+ kZ1 Integer slot winding
(2r− 6k

d )p+ kZ1 Fractional slot winding
, (11)

and

n =

{
(2r+6k+2)p− kZ1 Integer slot winding
(2r+ 6k

d +2)p− kZ1 Fractional slot winding
.

(12)
For the integer slot winding, when r and −kZ1/2p+

3k are closest, or r and kZ1/2p − 3k − 1 are closest,
n appears the minimum value, and the generated force
wave is most likely to cause the electromagnetic vibra-
tion noise of the synchronous motor load.

III. NUMERICAL ANALYSIS OF RADIAL
ELECTROMAGNETIC FORCE

A. Initialization design of IPMSM
In order to reduce the electromagnetic noise of the

motor, a 48-slot 8-pole IPMSM is selected. The working
parameters of the motor are shown in Table 1, includ-
ing rated power, rated speed and rated voltage. Motor
structure parameters are shown in Table 2. They are sta-
tor outer diameter Dso, stator inner diameter Dsi, slot
Angle Ske, slot height Hs0, slot shoulder height Hs1,
slot width height Hs2, slot width Bs0, slot center width
Bs1, slot bottom width Bs2, rotor outer diameterDro,
rotor inner diameter Dri, pole arc coefficient Emb, mag-
netic bridge thickness Bridge, cross axis magnetic path
width rib, cross axis magnetic path height Hrib, mag-
netic steel thickness T hi, core length Length, and the
distance between rotating shaft and magnetic steel o2,
respectively. The motor model is established based on
the parameters above, and the cross section and main
structural parameters of the motor are shown in Fig. 1.

Table 1: Operating parameters of motor
Parameters Value Parameters Value
Rated power

/kW
40 Rated speed/

Maximum
speed/ rpm

3000/6000

Rated
torque/

Maximum
torque/N.m

127.3/318.3 Efficiency (at
rated speed)

>85%

Rated
voltage/V

126 Operating
temperature

/cel

120

Material of
iron core

DW310 35 Material of
magnetic steel

NdFe35

Table 2: Structure parameter of motor
Parameters Value Parameters Value

Dso/mm 220 Dro/mm 142
Dsi/mm 144 Dri/mm 48
Ske/deg 7.5 Emb 0.73
Hs0/mm 0.5 Bridge/mm 1.5
Hs1/mm 0.5 Rib/mm 10
Hs2/mm 23 Thi/mm 5
Bs0/mm 2.5 Length/mm 149
Bs1/mm 5.2 Hrib/mm 4.6466
Bs2/mm 7.5 o2/mm 37.6638
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When the stator slots are skewed, and the rotor slots 

are straight, the radial exciting force np  generated by 

the interaction between the stator  -order harmonic 

magnetic field and the  -order harmonic magnetic field 

generated by the fundamental wave current of the rotor 

is integrated along the direction of core length l  and then 

the average radial force, that is, the axial zero-order 

vibration radial force n0p , can be expressed as: 

Fig. 4. Distribution of magnetic induction intensity and
field line of motor.

are set, respectively. In order to improve the running
accuracy of the model, the model is discretized by mesh
generation and the finite element solution is carried out.
The current source excitation of the motor finite element
model is 275.0076sin(2π ×200t).

The distribution of magnetic induction intensity and
magnetic field line of the motor are shown in Fig. 4,
which shows the density of magnetic field line A at each
position of the stator and rotor and the magnetic induc-
tion intensity B at different positions at a certain time. It
can be seen more intuitively that the magnetic field line
always passes along the path with small magnetoresis-
tance.

B. Calculation and analysis of radial excitation force
The Cartesian coordinate system is used to simu-

late and solve the motor, and then the field calculator is
adopted to post-process the results. The radial magnetic
induction intensity Br is converted according to the fol-
lowing formula:

Br = Bx cosϕ +By sinϕ, (13)

where ϕ is the angle between the x axis and the column
coordinate, Bx and By are the components of the mag-
netic induction intensity B in the direction of x axis and
y axis, respectively.

The variation of radial electromagnetic waves along
the air gap circumference of the motor model with time
and space is shown in Fig. 5. Due to the influence of
stator teeth and slots, the radial electromagnetic force
changes periodically with the space position, and it is
also a periodic function of time. Therefore, the harmonic
response analysis of the radial electromagnetic force
can further analyze its influence on electromagnetic
vibration.
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IV. OPTIMIZATION OF SKEWED SLOTS
STRUCTURE OF IPMSM

A. Skewed slots optimization method

(1) Step skewed slots
When the stator slots are skewed, the tooth-

harmonics of the stator and rotor magnetic fields are
weakened, and the radial force wave has phase displace-
ment along the axial direction. Therefore, the average
radial force along the axial direction is reduced, reducing
the electromagnetic vibration and noise of the motor
effectively [18]. The skewed slots structure of stator is
shown in Fig. 6. The relevant parameters are identified
in the figure, where Z is the identification of the stator
axial direction, bsk = θsk ·R is the skewed slots distance,
i.e., arc length, R is the outer radius of the stator, θsk is
the angle of the skewed slots, and l is the length of stator
core.

When the stator slots are skewed, and the rotor slots
are straight, the radial exciting force pn generated by the
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interaction between the stator υ-order harmonic mag-
netic field and the µ-order harmonic magnetic field gen-
erated by the fundamental wave current of the rotor is
integrated along the direction of core length l and then
the average radial force, that is, the axial zero-order
vibration radial force pn0, can be expressed as:

pn0 =
1
l

1/2∫
−1/2

pndZ

=
1
l

1/2∫
−1/2

Pnm cos
(

ωnt −nθ −ϕn − v
bsk

R
Z
l

)
dZ, (14)

= Pnm
sin(vbsk/2R)

vbsk/2R
cos(ωnt −nθ −ϕn)

where Pnm refers to the amplitude of 0-order radial force
when no skewed slots.

The skewed slots coefficient is defined as:

Ksk =
sin(υbsk/2R)

υbsk/2R
=

sin(υπbsk/Z1t1)
υπbsk/Z1t1

, (15)

where t1 is the slot distance of stator.
The theoretical analysis shows that the average

amplitude of the 0-order radial force wave along the axial
direction is:

Pn0 = Pnm ·Ksk. (16)
In addition, due to the role of the skewed slots,

the skewed slots coefficient of the tooth-harmonics, that
is, the most important magnetic field harmonics in the
motor, is very small or even 0, which greatly reduces the
vibration noise caused by tooth-harmonics.

(2) V-shape skewed slot
Although the unidirectional skewed slots can reduce

the vibration noise caused by tooth-harmonics, it will
cause transverse current and torsional moment, thus
increasing the additional loss, generating additional axial
force and torsional vibration [18]. In order to avoid the
above side effects, V-shape skewed slots measures can
also be used. Its structure is characterized by dividing
the stator into two halves along the axial length, each half
is equivalent to a skewed slots stator, and two parts are
twisted in the opposite directions, forming a ”V” shape,
as shown in Fig. 7. The relative tooth-harmonics of the
two parts of the stator are just in reverse phase, and the
harmonic torque generated by the first-order and odd-
order tooth-harmonics in the two stator segments can-
cels each other, which is more conducive to reducing the
vibration and noise of the motor.

B. Motor skewed slots optimization design
The skewed slots are set based on the initial design

of motor model. The structure of the segment skewed
slots are adopted, the motor stator is divided into five
sections, and two skewed slots schemes of step and
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The skewed slots are set based on the initial design 

of motor model. The structure of the segment skewed 

slots are adopted, the motor stator is divided into five 

sections, and two skewed slots schemes of step and V-
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Slots 

V-shape 
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Slots 
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skewed slots angle 
7.5 7.5 
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Twist angle of 

segment 1 
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Twist angle of 

segment 2 
1.5 0.5 

Twist angle of 

segment 3 
0 - 3 

Twist angle of 

segment 4 
1.5 0.5 

Twist angle of 

segment 5 
3 2 
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The peak value nmP  of radial electromagnetic 

stress np  distributed along the circumference of air gap 

under different skewed slots schemes is taken as the 

evaluation index. The smaller nmP  is, the smaller 

vibration noise caused by the radial force is, and the 

better the optimization effect.  

The expression of radial electromagnetic stress 
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V-shape are used, respectively. The parameter settings of
each scheme are shown in Table 3.

Table 3: Parameters settings of skewed slots
Mode of Skewed Slots Step Skewed

Slots
V-shape
Skewed

Slots
Number of segments 5 5

Best equivalent skewed
slots angle

7.5 7.5

Angle set actually 6 5
Twist angle of segment 1 - 3 2
Twist angle of segment 2 1.5 0.5
Twist angle of segment 3 0 - 3
Twist angle of segment 4 1.5 0.5
Twist angle of segment 5 3 2

C. Evaluation index of motor skewed slots optimiza-
tion scheme

The peak value Pnm of radial electromagnetic stress
pn distributed along the circumference of air gap under
different skewed slots schemes is taken as the evalua-
tion index. The smaller Pnm is, the smaller vibration noise
caused by the radial force is, and the better the optimiza-
tion effect.

The expression of radial electromagnetic stress dis-
tribution Pn along the arc of the center of the air gap is:

Pn =
∫

2πRairgap

pndr, (17)

where Rairgap is the arc radius of the center of the air gap,
which can be expressed as:

Rairgap =
Dis−dr

2
, (18)

where Dis is the inner diameter of the stator and dr is the
length of the air gap.

So the peak value of Pn can be denoted by:
Pnm = max{Pn}. (19)
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noise is coupled to multiple physical fields, there is a 
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the indirect suppression process of independent 

magnetic field calculation with higher efficiency under 

the same computing power is adopted.  

Therefore, the indirect suppression of 

electromagnetic noise method has been adopted in this 

paper, and tangential electromagnetic torque has been 

taken into account to suppress electromagnetic noise. 

The optimization objective has been determined as 

follows. 

(i) The peak value nmP  of radial electromagnetic 

stress distribution along the circumference of the air gap 

is the smallest, that is: 

1 nm( )o min Pbj  .   (20) 

(ii) The torque ripple rippleT  is minimal, that is: 

2 ripple( )obj min T .  (21) 

rippleT  is indicated as: 

max min
ripple

avg

100%
T T

T
T


  , (22) 

where maxT , minT  and avgT  are the maximum, the 

minimum and the average of the output torque, 

respectively. 

(iii) The average of tangential electromagnetic 

torque is maximal, that is: 

 3 avg )max(obj T .  (23) 

avgT is denoted by: 

avg

0

1
( )T T t dt




  ,   (24) 

where   is the time of one cycle of the output torque 

waveform of the motor. ( )T t  is the output 

electromagnetic torque of the motor. 
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Parameters 

Initial 

Value 
Value Range 

0
Hs /mm  0.5 0.35 ~ 0.7 

1
Hs /mm  0.5 0.35 ~ 0.7 

2
Hs /mm  23 20 ~ 25 

0
Bs /mm  2.5 1.9 ~ 4.1 

1
Bs /mm  5.2 4 ~ 6 

2
Bs /mm  7.5 6-8.6 

dr/mm  1 0.7 ~ 1.3 

Thi/mm  5 2 ~ 8 

2
/mmo  37.6638 37.0136 ~ 38.1787 

/mmHrib  4.6466 4.0892 ~ 5.3504 

Fig. 8. Distribution diagram of radial force peak
Pnmunder different schemes.

D. Optimization effect comparison of different
skewed slots schemes

Figure 8 shows the Pnm distribution of stator in dif-
ferent segments of the motor under different skewed slots
schemes. When the stator has no skewed slots, Pnm is
567578.7660N, and the average Pnm of the five-segment
stator with step slots is 565186.2524N, which decreases
2392.5136N compared with that without skewed slots.
The average Pnm of the five-segment stator with a V-
shaped skewed slots is 552646.8741N, which decreases
14931.8919N compared with that without skewed slots.
Therefore, the improvement degree of electromagnetic
noise of IPMSM with stator V-shaped skewed slots struc-
ture is higher than that of the step skewed slots.

V. MULTI-OBJECTIVE HIERARCHICAL
OPTIMIZATION OF IPMSM STRUCTURE

PARAMETERS
The optimization principle of this paper is as fol-

lows: on the premise of not changing the external struc-
ture of the motor and not affecting other performance
of the motor, the structural parameters of the motor are
optimized based on V-shaped skewed slots optimization
to reduce the radial electromagnetic force and electro-
magnetic torque ripple of the motor, so as to suppress
the electromagnetic noise.

A. Determination of optimization objectives
The basis of optimization objectives selection is:
(i) The peak value of radial electromagnetic force

and tangential electromagnetic torque ripple are related
to the magnitude of vibration and noise directly, and
the suppression of these two targets can produce better
results;

(ii) Since the direct suppression process of vibra-
tion noise is coupled to multiple physical fields, there is
a high demand for computer processors and hard disks,
so the indirect suppression process of independent mag-
netic field calculation with higher efficiency under the
same computing power is adopted.
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Therefore, the indirect suppression of electromag-
netic noise method has been adopted in this paper, and
tangential electromagnetic torque has been taken into
account to suppress electromagnetic noise. The opti-
mization objective has been determined as follows.

(i) The peak value Pnm of radial electromagnetic
stress distribution along the circumference of the air gap
is the smallest, that is:

ob j1 = min(Pnm). (20)
(ii) The torque ripple Tripple is minimal, that is:

ob j2 = min(Tripple). (21)
Tripple is indicated as:

Tripple =
Tmax −Tmin

Tavg
×100%, (22)

where Tmax, Tmin and Tavg are the maximum, the mini-
mum and the average of the output torque, respectively.

(iii) The average of tangential electromagnetic
torque is maximal, that is:

ob j3 = max(Tavg). (23)
Tavg is denoted by:

Tavg =
1
τ

∫
τ

0
T (t)dt, (24)

where τ is the time of one cycle of the output torque
waveform of the motor. T (t) is the output electromag-
netic torque of the motor.

B. Determination of optimization variables
The magnitude of the radial excitation force har-

monics (especially tooth-harmonics) is closely related to
the size and shape of the pole arc, the length of the air gap
and the size of the magnetic permeability wave caused by
the slot of the stator and rotor. Therefore, these effective
methods, i.e., optimizing the size and shape of the pole
arc of IPMSM to make the radial excitation force density
waveform close to sine as much as possible and opti-
mizing the size of the stator and rotor slots (especially
the notch), so as to reduce the electromagnetic vibration
noise caused by the tooth and slot, can be used to reduce
the electromagnetic noise of the motor. Table 4 shows
the selected optimization variables and their correspond-
ing value ranges.

C. Sensitivity analysis and parameter classification
OptiSLang software is used to analyze the sensi-

tivity of structural parameters, and screen and grade
structural parameters based on the prediction coefficient.
IPMSM is analyzed and optimized under the V-shaped
skewed slots scheme, and Advanced Latin Hypercube
Sampling (ALHS) based on Monte Carlo sampling is
adopted for sampling. A total of 100 samples were col-
lected for the sample space composed of 10 structural
parameters and their variation ranges. This method can
not only ensure the accuracy of sensitivity analysis but
also reduce the amount of calculation, and is suitable

Table 4: Initial value and variation range of optimization
parameters
Optimization
Parameters

Initial
Value

Value Range

Hs0/mm 0.5 0.35 ∼ 0.7
Hs1/mm 0.5 0.35 ∼ 0.7
Hs2/mm 23 20 ∼ 25
Bs0/mm 2.5 1.9 ∼ 4.1
Bs1/mm 5.2 4 ∼ 6
Bs2/mm 7.5 6-8.6
dr/mm 1 0.7 ∼ 1.3

Thi/mm 5 2 ∼ 8
o2/mm 37.6638 37.0136 ∼ 38.1787

Hrib/mm 4.6466 4.0892 ∼ 5.3504

for sensitivity analysis when the number of parameters
is less than 50. Furthermore, the influence of the irrele-
vant relationship between parameters on the subsequent
sensitivity analysis results is minimized by introducing
a random evolutionary strategy, so that relatively accu-
rate results can still be obtained in the case of small
samples [15].

In order to calculate more efficiently, the Coefficient
of Prognosis (CoP), based on polynomial fitting, is used
to evaluate the sensitivity of the target. Based on the col-
lected samples and the corresponding solution results,
the polynomial regression equation fitting the objective
function y(Xi) to the analysis parameter Xi is:

y(Xi) = pT(Xi)β + εi, (25)

where β is the determinant of the polynomial coefficient,
εi is the fitting error, and pT(Xi) is the polynomial about
the structural parameters, which can be denoted by:
pT(Xi) = [1 X1 X2 X3 · · · X2

1 X2
2 X2

3 · · · X1X2 X1X3 · · · ]T.
(26)

We define the total variation of the output as:

SST =
M

∑
i=1

(yi −µy)
2, (27)

where yi is the actual value of the sample target, µy is
the average of the sample target, and M is the number of
samples.

We define the sum of squares of all prediction errors as:

SSE =
M

∑
i=1

(yi − ŷi)
2, (28)

where ŷi is the corresponding calculated value for the
y(Xi).

The prediction quality evaluation index CoP is:

CoP = 1− SSE

SST
. (29)

The larger the value of CoP, the greater the influence
of structural parameters Xi on optimization objective yi,
and the higher the sensitivity.
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Table 5: Sensitivity analysis results of structural param-
eters

The optimization design of IPMSM can be simpli-
fied to the multi-stage and multi-physical field optimiza-
tion through sensitivity analysis [19]. The sensitivity of
each parameter to each optimization target and the over-
all sensitivity results are shown in Table 5 after the sensi-
tivity calculation of structural parameters. The following
conclusions can be drawn from Table 5:

(i) The values of CoP of overall structural param-
eters of the three optimization objectives are all above
75%, indicating that the determined structural parame-
ters have high sensitivity to the three optimization objec-
tives;

(ii) High sensitivity parameters: Bs0, Bs1, Hs2 and
Thi have a high influence on one or more of the three opti-
mization objectives. The values of CoP of them are bigger
than 20%, so they are set as high sensitivity parameters.

(iii) Low sensitivity parameters: o2 and dr only
affect two objectives and the values of CoP are below
20%, and the sensitivity of Bs2 to the three optimiza-
tion objectives is all below 20%, so these three structural
parameters are set as low sensitivity parameters.

(iv) Irrelevant parameters: Hs0, Hs1and Hrib don’t
have corresponding CoP value, so they do not partici-
pate in the optimization in the next stage. The number of
structural parameters to be optimized is reduced to 7.

D. Process of hierarchical optimization
The appropriate optimization method is adopted for

each level of parameters to reduce the calculation amount
and to improve the accuracy of optimization for each
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Fig. 9. Optimization flow of structure parameter hierar-
chical optimization.

parameter based on the results of sensitivity classifica-
tion [20]. The process of hierarchical optimization of
structural parameters is shown in Fig. 9.

ALHS is used to sample in the optimization space
and determine the initial samples of all levels of opti-
mization, and an adaptive strategy is introduced to deter-
mine the samples of each iteration, so as to improve the
randomness and global character of the initial samples
and iterations and reduce their global influence on the
optimization results [15].

After a round of hierarchical optimization being
completed, the global nature of the optimization results
under a given optimization environment is judged, and
the optimized structural parameters are imported into
the optimization process as initial values for the sec-
ond round of optimization. If the difference between
the value of the multi-objective optimization function
Wmax(xi) after the second round optimization and the
result of the first round is less than 2%, the first round
result is judged to meet the global requirements, and the
first round result is output as the final optimization result
of the structural parameters. Otherwise, the next round of
optimization is carried out based on the results of the sec-
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ond round of hierarchical optimization until the global
demand is met. The overall judgment process of hierar-
chical optimization results is shown in Fig. 10.

The optimal solution of Pareto solution set obtained
by all levels of optimization in the optimization process
can be selected by normalized weighting function, and
the weighting function can be expressed as:

Wmax(xi) = λ1
Tavg(xi)
T o

avg(xi)
+λ2

Po
nm(xi)

Pnm(xi)
+λ3

T o
ripple(xi)

Tripple(xi)

λ1 +λ2 +λ3 = 1
, (30)

where T o
avg(xi), Po

nm(xi) and T o
ripple(xi) are the maximum

value of the optimized tangential electromagnetic torque
mean value, the optimized radial electromagnetic force
peak value and the minimum value of torque ripple,
respectively. xi is the ith solution in the Pareto solution
set. Tavg(xi), Pnm(xi) and Tripple(xi) are result of each opti-
mization scheme. λ1, λ2 and λ3 are the weight coeffi-
cients of three optimization objectives [21]. Because the
main purpose of this optimization is to suppress electro-
magnetic noise, the radial electromagnetic force density
and torque ripple weight coefficient are higher, and the
values of λ1, λ2andλ3 are set to 0.2, 0.4 and 0.4, respec-
tively.

E. First round optimization of highly sensitive param-
eters

The highly sensitive parameter optimization
includes four structural parameters and three opti-
mization objectives, which belongs to multi-parameter
and multi-objective optimization, and it is difficult
to construct a direct functional relationship between
structural parameters and optimization objectives. The
four structural parameters have a great influence on
the optimization objectives, which requires deep opti-

mization and a large amount of calculation. The three
optimization objectives of Pnm, Tripple and Tavg are con-
tradictory and need to be considered in a compromise.
Multi-objective genetic algorithm (MOGA) is used for
global optimization. For multi-objective optimization
and tradeoff among optimization objectives, the optimal
solution set is given by using Pareto frontier.

The sample size is set to 200, the initial population
is 20, the crossover probability is 50%, and the muta-
tion probability is 14%. The generated Pareto frontier is
shown in Fig. 11. The first round of optimization results
obtained after selecting Pareto solution sets of high sen-
sitivity parameters by using the normalized weighting
function is shown in Table 6.
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Table 6: Results of high sensitivity optimization
Parameters/
Objectives

Pre-optimization
Value

Post-optimization
Value

Bs0/mm 2.5 2.012727
Bs1/mm 5.2 5.851049
Hs2/mm 23 21.34658
Thi/mm 5 5.49087

Pnm 552646.9 433154.7
Tripple 2.8476 2.424988
Tavg 103.83 104.3193

It can be seen from Table 6 that each optimiza-
tion index of high sensitivity parameters has improved
to some extent after optimization by MOGA. The peak
Pnm of radial electromagnetic force density has decreased
by 27.59%, the mean Tavg of tangential electromagnetic
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torque has increased by 0.47%, and the torque ripple
Tripple has decreased by 17.43%. The values of the four
highly sensitive parameters are modified to the optimized
values after the optimization is completed, which are
used as fixed values to participate in the subsequent opti-
mization.

F. First round of optimization of low sensitivity
parameters

The low sensitivity parameter optimization includes
three structural parameters and three optimization objec-
tives, which belongs to multi-parameter multi-objective
optimization. The influence of the three parameters on
the optimization objectives is smaller than that of the
highly sensitive parameters, so it is unnecessary to
collect many samples. Therefore, the response surface
method is used to optimize the low sensitivity parame-
ters. The low sensitivity optimization results can also be
evaluated based on the multi-objective normalized opti-
mization function Wmax(xi) in the optimization process.
Table 7 shows the changes of parameters and target val-
ues after optimization of low sensitivity parameters.

It can be seen that after the low sensitivity parame-
ters optimization, the peak Pnm of radial electromagnetic
density has been reduced by 13.45%, the torque ripple
Tripple has been reduced by 7.37%, but the mean Tavg of
tangential electromagnetic torque has been reduced by
8.1%. The comprehensive optimization index has been
improved to some extent.

Table 7: Results of low sensitivity optimization
Parameters/
Objectives

First Level
Optimization

Value

Second Level
Optimization

Value
o2/mm 37.6638 37.016

Bs2/mm 7.5 8.4408
dr/mm 1 1.2984

Pnm 433154.7 374870
Tripple 2.424988 2.6218
Tavg 104.3193 96.634

G. Global judgement of hierarchical optimization
results

The optimized results of Tables 6 and 7 are imported
into the hierarchical optimization process again as the
results of the first round of optimization, and the sec-
ond round of hierarchical optimization is carried out. The
comparison of the two rounds of optimization results is
shown in Table 8. The multi-objective optimization func-
tion Wmax(xi) is reduced by 0.29%, and the improvement
degree is less than 2% after the second round of opti-
mization. According to the global judgment process, the
final output is the optimization result of the first round.

Table 8: Comparison of two rounds of hierarchical opti-
mization results

Parameters/
Objectives

First Round
Results

Second Round
Results

Bs0/mm 2.012727 2.169249
Bs1/mm 5.851049 5.838322
Bs2/mm 8.4408 8.5995
Hs2/mm 21.34658 21.94714
Thi/mm 5.49087 5.596182
dr/mm 1.2984 1.2988
o2/mm 37.016 37.67575

Pnm 374870 373730
Tripple 2.6218 2.6313
Tavg 96.634 96.411

This shows that the results obtained by hierarchical opti-
mization of the seven structural parameters have better
global performance in the optimization space composed
of the given initial optimization value and optimization
range [15].

VI. VERIFICATION OF OPTIMIZATION
EFFECT OF IPMSM

A. Finite element verification of hierarchical opti-
mization results

Figure 12 shows the comparison of the distribu-
tion of electromagnetic excited force before and after
the optimization of structural parameters. It can be seen
that the peak value of radial force Pnm is 373534.2742N
after the optimization of structural parameters, which
decreases by 34.19% compared with that without skewed
slots and 28.79% compared with the V-shaped skewed
slots.
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Fig. 12. Comparison of radial force distribution before
and after optimization of structural parameters.

Many radial electromagnetic force harmonics of dif-
ferent orders and frequencies will be generated in the air
gap of PMSM when the electromagnetic fields of the sta-
tor and rotor interact, which are the main factors leading
to radial vibration of the stator core of the motor. The har-
monic optimization of the radial electromagnetic force
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Fig. 14. Ripple torque before and after optimization.  

 

From Fig. 13 and Table 9, it can be seen that the 

fundamental, the 8th, 48th, and 96th order harmonics 

after the optimization of structural parameters are further 

reduced on the basis of the V-shaped skewed slots 

optimization, indicating that the electromagnetic 

vibration noise is effectively suppressed. 

The comparison between torque ripple rippleT  and 

average torque avgT  before and after optimization of 

structural parameters is shown in Fig. 14. After the 

compromise of multiple optimization objectives, the 

torque ripple after optimization is 2.8691, which is 

41.44% lower than that before optimization and basically 

equivalent to the effect of V-shape skewed slots 

optimization. The average torque after optimization is 

significantly lower than the initial value and the V-

shaped skewed slots, but the average torque in the V-
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value. 

 

B. Modal optimization analysis of IPMSM stator 
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Motor vibration not only depends on the stress of 
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Point /X mm  r  

Initial 

Force 

/N 

V-shape  

Force 

/N 

Optimized  

Force 

/N 

m0 0.0000 0 216912.80 214192.01 165369.22 

m1 17.7627 8 170873.21 166385.01 121907.56 

m6 106.5762 48 77168.65 87619.53 51467.84 

m12 213.1524 96 47800.92 42057.04 23221.42 

m18 319.7286 144 25985.30 22815.83 21879.61 

Fig. 13. Harmonic optimization of radial electromagnetic
waves.

wave is shown in Fig. 13. m0 ∼ m18 list the spatial dis-
tance X and amplitude Y of force waves with different
orders, and the relationship between force wave order n
and spatial distance X is expressed as:

n =
2πRaX
1000

, (31)

where Ra is the radius of the air gap circumference.
The major orders of space harmonics of radial

electromagnetic waves converted by (31) are shown in
Table 9. The 8th order force wave is the radial force
wave with frequency 2 f1, which is mainly generated by
the magnetic field of the main wave. The 0th and 8th
order force waves are also lower order force waves mod-
ulated by the first order tooth-harmonic magnetic field of
the stator and the harmonic magnetic field of the rotor.
The 48th, 96th and 144th order force waves are the radial
force waves generated by the interaction between the sta-
tor and the rotor harmonic magnetic field, and also the
radial force waves generated by the interaction between
the stator tooth-harmonic magnetic field and the perma-
nent magnet rotor magnetic field.

Table 9: Optimization of the main spatial harmonic order
of radial electromagnetic waves
Point X/mm r Initial

Force
/N

V-shape
Force

/N

Optimized
Force

/N
m0 0.0000 0 216912.80 214192.01165369.22
m1 17.7627 8 170873.21 166385.01121907.56
m6 106.5762 48 77168.65 87619.53 51467.84

m12 213.1524 96 47800.92 42057.04 23221.42
m18 319.7286 144 25985.30 22815.83 21879.61

From Fig. 13 and Table 9, it can be seen that the
fundamental, the 8th, 48th, and 96th order harmonics
after the optimization of structural parameters are fur-
ther reduced on the basis of the V-shaped skewed slots
optimization, indicating that the electromagnetic vibra-
tion noise is effectively suppressed.
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Point /X mm  r  

Initial 

Force 

/N 

V-shape  

Force 

/N 

Optimized  

Force 

/N 

m0 0.0000 0 216912.80 214192.01 165369.22 

m1 17.7627 8 170873.21 166385.01 121907.56 

m6 106.5762 48 77168.65 87619.53 51467.84 

m12 213.1524 96 47800.92 42057.04 23221.42 

m18 319.7286 144 25985.30 22815.83 21879.61 

Fig. 14. Ripple torque before and after optimization.

The comparison between torque ripple Tripple and
average torque Tavg before and after optimization of
structural parameters is shown in Fig. 14. After the com-
promise of multiple optimization objectives, the torque
ripple after optimization is 2.8691, which is 41.44%
lower than that before optimization and basically equiv-
alent to the effect of V-shape skewed slots optimization.
The average torque after optimization is significantly
lower than the initial value and the V-shaped skewed
slots, but the average torque in the V-shaped skewed slots
is basically the same as the initial value.

B. Modal optimization analysis of IPMSM stator
structure

Motor vibration not only depends on the stress of
exciting vibration of motor, but also relates to the natural
vibration characteristics of the motor structure, including
the natural vibration mode and natural frequency of the
motor structure itself. The motor stator is a circular struc-
ture, and the radial electromagnetic force directly acts on
the teeth and magnetic poles of the stator. The natural
vibration modes of this stator ring model are mainly the
radial modes of different orders, and the order r of the
vibration mode of corresponding shape of the stator is
usually defined by the order n of the force wave, that is,
r = n [22].

The resonance effect will occur, making the motor
produce larger vibration and noise, when the frequency
and order of the radial electromagnetic excited force
wave are close to or consistent with the corresponding
natural frequency and natural vibration mode order of
the motor stator.

The specific relationship between the natural fre-
quency of each vibration mode and the motor structure
can be summarized as follows:

(i) The natural frequency is closely related to the
average radius Rc of the stator yoke. The natural fre-
quency is approximately inversely proportional to Rc for
breathing mode (r = 0). The natural frequency is approx-
imately inversely proportional to the square of Rc and,
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the larger the radius, the lower the natural frequency for
the other mode (r ̸= 0).

(ii) The natural frequency is also closely related to
the order r of the mode and is approximately propor-
tional to the square of r.

(iii) The natural frequency is also related to the yoke
thickness h, mainly the ratio of the thickness of the sta-
tor yoke to its average radius, i.e., h/Rc. A large h/Rc
indicates that the stiffness of stator is large, and the natu-
ral frequency will be high. Small h/Rc indicates that the
stiffness of stator is small, and the natural frequency will
be low.

The inherent modes of a certain order can be under-
stood and the actual modes of each order can be pre-
dicted through modal analysis of IPMSM [7]. The nat-
ural vibration modes of the stator model corresponding
to the 1st to 4th order are shown in Fig. 15.
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parameter optimization is shown in Table 10. After the 

stator skew slots is used, the natural frequency is 
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after the structural parameter optimization, which proves 
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According to equation (34), when 
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0m


  , 

the system will resonate, and the square of the resonant 

frequency is: 

2
0

1

m



 .   (35) 

When the excitation frequency is far away from the 

resonance frequency, the damping coefficient mr  is 

much less than ( / )m k  , which is ignored, and (35) 

substituted into (34) obtains:  
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For the r-order vibration mode ( 2)r  , the 

equivalent distributed stiffness of the stator core is 

approximately proportional to 2 2( 1)r  , that is: 

2 2( 1)k r  .   (37) 

Substitute (37) into (36) and take into account 

2 f   to get: 

nm
m 2 2 2

2
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( 1)
1

P
X

f r
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




.  (38) 

According to (38), the response of motor vibration 

system under simple harmonic excitation is still 
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According to (38), the response of motor vibration 

system under simple harmonic excitation is still 

(a) (b)
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According to (38), the response of motor vibration 

system under simple harmonic excitation is still 
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According to (38), the response of motor vibration 

system under simple harmonic excitation is still 
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Fig. 15. Stator natural vibration modes of each order: (a)
r = 1, (b) r = 2, (c) r = 3, and (d) r = 4.

The comparison of natural frequencies of each order
for stator skew slots optimization and structural param-
eter optimization is shown in Table 10. After the stator
skew slots is used, the natural frequency is improved,
and the natural frequency is slightly reduced after the
structural parameter optimization, which proves that the
optimization of motor body structure parameters can
improve the natural frequency of motor stator structure
and effectively reduce the resonance risk.

Table 10: Comparison of motor natural frequency before
and after optimization
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According to (38), the response of motor vibration 

system under simple harmonic excitation is still 

C. Optimization verification of vibration and noise
suppression of IPMSM

The stator will produce a continuous steady state
harmonic response when the periodic electromagnetic
excitation force is applied to the stator of the motor, and
the dynamic balance equation of the stator is expressed
as:

mẍ(t)+ rmẋ(t)+ kx(t) = F(t), (32)
where m, rm, and k are the mass, mechanical damping
coefficient, and stiffness of the stator vibration system,
respectively, F(t) is simple harmonic exciting force, and
F(t) = Pnm cosωt. ẍ(t) is the vibration acceleration of
the stator vibration system, ẋ(t) is vibration speed and
x(t) is vibration displacement.

Let the solution of (32) be:
x(t) = Xm cos(ωt −ϕ). (33)

Substitute (33) into (32) to get:

Xm =
Pnm

ω

√
rm2 +(ωm− k

ω
)2
. (34)

According to equation (34), when ωm− 1
ωλ

= 0, the
system will resonate, and the square of the resonant fre-
quency is:

ω0
2 =

1
mλ

. (35)

When the excitation frequency is far away from the
resonance frequency, the damping coefficient rm is much
less than (ωm−k/ω), which is ignored, and (35) substi-
tuted into (34) obtains:

Xm =
Pnm

ω( k
ω
−ωm)

=
Pnm

k(1− ω2

ω02 )
. (36)

For the r-order vibration mode (r ≥ 2), the equiv-
alent distributed stiffness of the stator core is approxi-
mately proportional to (r2 −1)2, that is:

k ∝ (r2 −1)2. (37)
Substitute (37) into (36) and take into account ω =

2π f to get:

Xm ∝
Pnm

1− f 2

f02

1
(r2 −1)2 . (38)

According to (38), the response of motor vibration
system under simple harmonic excitation is still har-
monic. The vibration amplitude Xm is directly propor-
tional to the excitation force Pnm. The response frequency
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is equal to the excitation force frequency. The system
will resonate and produce a large amplitude when the
exciting frequency f of the exciting force is close to the
natural frequency f0 of the motor vibration system. In
addition, Xm is approximately inversely proportional to
(r2 −1)2, so the smaller order r should be focused on.

(1) Vibration and noise evaluation criteria
Since the vibration frequency of the motor is mostly

in the mid-frequency band (f=10∼1000 Hz), the harm of
mid-frequency vibration is mainly reflected in the trans-
mission scale of vibration energy, such as the noise gen-
erated by vibration and fatigue damage of vibration com-
ponents, and the vibration energy is proportional to the
square of the vibration speed, so the vibration speed is
used as the characteristic quantity in the vibration test.

The motor is regarded as a spherical radiator, and
the radiation sound intensity is:

I = 2ρCπ
2 f 2Xm

2 · I∗, (39)
where I∗is the relative radiated sound intensity of the
spherical radiator, which can be obtained by the curve
shown in Fig. 16, sound velocity C is an inherent param-
eter of the medium, which depends on the density ρ

and elastic modulus E of the medium, and can be
expressed as:

C =

√
E
ρ
. (40)

The sound power W radiated by the motor hous-
ing is:

W = I ·2πDL
= 2ρCπ2 f 2Ym

2 ·2πDL · I∗ , (41)

where D is the radius of the housing and L is the length
of the housing.

Fig. 16. Relative radiated sound intensity of a spherical
radiator.

According to (41), the equivalent radiated power of
the motor is proportional to the square of the ampli-

tude of vibration velocity of the motor stator housing.
The amplitude of the vibration density can be expressed
as the product of the vibration displacement amplitude
and vibration frequency. ERPL is used to characterize
the harmonic response of the motor [23], and the expres-
sion is:

ERPL = 10lg
W
W0

, (42)

where W0 is the reference equivalent radiated power, gen-
erally taken as 10−12W .

(2) Vibration and noise suppression optimization
results

The air-gap electromagnetic stress of the stator
housing after the structural parameter optimization is
shown in Fig. 17. The red part is the imported electro-
magnetic excitation force, including radial electromag-
netic force and tangential torque.
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According to the electromagnetic force theory, this is 
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close to the natural frequency, it causes a large vibration 

noise. Another darker point corresponding to 3000 rpm, 

namely, mark point 2, has an ERPL value of 117.4 dB, 

which is generated by the interaction of the stator 

Fig. 17. Radial electromagnetic force and torsional force
model after optimization of structural parameters.

The chassis base is set as a fixed constraint, and
the frequency band is considered as 601 segments. The
modal superposition method is used to solve the multi-
speed EPRL waterfall diagram of IPMSM, and the speed
range is from 1000 rpm to 6000 rpm. The ERPL waterfall
diagram of IPMSM is obtained in Fig. 18 after harmonic
response analysis.

As can be seen from Fig. 18 corresponding to 6000
rpm, that is, at mark point 1, the color is the dark-
est and the ERPL value is the largest, reaching 129.16
dB. According to the electromagnetic force theory, this
is because the vibration frequency of the motor hous-
ing is close to the natural frequency, it causes a large
vibration noise. Another darker point corresponding to
3000 rpm, namely, mark point 2, has an ERPL value
of 117.4 dB, which is generated by the interaction of
the stator magnetomotive force harmonics themselves,
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Fig. 18. ERPL waterfall diagram of the initial motor 

model. 
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Fig. 19. Line diagram comparison of ERPL before and
after optimization: (a) line diagram comparison of ERPL
on 6000 rpm and (b) line diagram comparison of ERPL
on 3000 rpm

and the vibration frequency is twice the fundamental fre-
quency.

Figure 19 shows the ERPL line chart comparison of
the motor before and after optimization. It can be seen
from Fig. 19 (a) that the maximum value of ERPL is at
the vibration frequency of 400 Hz at 6000 rpm, which
is equal to the natural frequency at the vibration order.
Moreover, the ERPL value is reduced from 129.16 dB to
117.98 dB to 117.25 dB from initial model to V-shaped
skewed slots to structural parameter optimization. Com-
pared with that of initial model, the optimized ERPL
is reduced by 8.65% and 9.22%, respectively, indicat-
ing that the natural frequency of the stator housing of
the motor can be changed through structural optimiza-
tion and structural parameter optimization, so that the
vibration and noise suppression caused by resonance is
better. Figure 19 (b) shows that the maximum value of
ERPL corresponding to 3000 rpm is also at the vibra-
tion frequency of 400 Hz, and the ERPL value decreases
from 117.40 dB to 106.03 dB and then to 105.52 dB
from initial model to V-shaped skewed slots and then
to structural parameter optimization. After optimization,
the ERPL is reduced by 9.68% and 10.12%, respectively,
which proves that the harmonic components in the vibra-
tion response of the motor can be effectively reduced by
optimization, so as to obtain better vibration noise sup-
pression effect.

VII. CONCLUSION
The vibration and noise of 48-slot 8-pole IPMSM

suitable for new energy vehicles are suppressed by com-
bining structural optimization and structural parameter
optimization, and the following conclusions are drawn:

(1) The radial force wave causing electromagnetic
vibration noise is a spatiotemporal harmonic function,
the main orders of the space harmonics are an integer
multiple of the order 8 of main wave magnetic field, and
the frequency of the time harmonics are an integer mul-
tiple of the power supply frequency twice.

(2) Compared with the step skewed slots optimiza-
tion, the V-shape stator skewed slots structure is a better
scheme for skewed slots structure optimization, and the
radial force is reduced by 2.62%.

(3) The sensitivity of the motor structure parame-
ters to the optimization objective has been calculated by
the evaluation index of CoP, and the structure param-
eters have been classified into high sensitive parame-
ters, including Bs0, Bs1, Hs2 and Thi, and low sensi-
tive parameters, covering o2, dr, and Bs2, and irrelevant
parameters, involving Hs0, Hs1 and Hrib.

(4) MOGA and RSM have been integrated to opti-
mize the structural parameters of the motor hierar-
chically, and global verification has been carried out.
Considering the compromise of the three optimization
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objectives, the torque ripple increases slightly on the
basis of the V-shaped skewed slots optimization, but
decreases 41.44% compared with the initial value. The
continuous reduction of the average torque results in the
reduction of the peak value of the radial electromagnetic
force by 28.79% on the basis of V-shaped skewed slots
optimization, and significant reduction of the peak value
of the major orders spatial harmonics of the electromag-
netic force, which is in line with the expected optimiza-
tion goal.

(5) The results of vibration and noise suppression
optimization show that the optimization method pro-
posed has obvious suppression effect on the larger ampli-
tude of the vibration noise caused by resonance and
the main order vibration and noise harmonics, and the
ERPL values in the two cases are reduced by 9.22% and
10.12%, respectively, which is better than the vibration
and noise suppression effect of V-shaped skewed slots
optimization.
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