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Abstract – In this paper, a hybrid method combining
the characteristic basis function method (CBFM) and the
best uniform rational approximation (BURA) technique
for fast wideband radar cross-section (RCS) prediction
of finite periodic arrays is proposed. The traditional
CBFM requires reconstructing the reduced matrix at
each frequency point, which is very time-consuming
when calculating the wideband RCS of the target. By
introducing the BURA technique, the hybrid method is
proposed to efficiently calculate the wideband RCS. The
target is first divided into several easily solvable subdo-
mains. Then, the surface integral equation is solved by
the characteristic function method to obtain the equiva-
lent surface current at the Chebyshev node. Afterwards,
the surface current in a desired frequency band is repre-
sented by the Chebyshev series. To improve accuracy, the
Chebyshev series is matched with the Maehly approx-
imation. After obtaining the current coefficients in the
whole bandwidth, the current density at any frequency
point in the bandwidth can be calculated. Finally, the
broadband electromagnetic scattering characteristics of
the finite periodic arrays can be obtained.

Index Terms – best uniform rational approximation,
broadband, characteristic basis function method, Maehly
approximation.

I. INTRODUCTION
In recent years, typical periodic structures such as

frequency-selective surfaces, electromagnetic bandgap
structures and metamaterial structures have been widely
analyzed and applied. These structures are often electri-
cally large and have complex electromagnetic properties
that vary with frequency and other parameters. The anal-
ysis of these structures may require further refinement of
the mesh. Both of them will lead to a large amount of the

number of unknowns.
To address the above problems, many methods have

been proposed [1][2]. One is the traditional Method of
Moments (MoM) [3], which is extremely expensive in
terms of computational resources when dealing with
electrically large problems. The multilayer fast multi-
pole method (MLFMA) [4][5] and the adaptive cross
approximation (ACA) algorithm [6][7] have both been
proposed to address this problem. These algorithms can
improve the computational efficiency of MoM, but they
require the use of an iterative method for solving. There-
fore, there is a problem of slow convergence or even fail-
ure to converge when dealing with complex objectives.
A second class of methods is to reduce the impedance
matrix dimension by constructing basis functions, such
as the sub-entire domain basis functions [8] and the char-
acteristic basis function method (CBFM) [9][10]. These
methods reduce the impedance matrix scale and decrease
the number of unknowns for the target. The method first
divides the objective into several subdomains. Then dif-
ferent subdomain sizes can be selected to control the
dimension of the impedance matrix according to the
requirements. Finally, the weighting coefficients of the
characteristic basis functions can be obtained by solving
the impedance matrix in low dimensions by the direct
method. The stability and computational efficiency of the
solution are guaranteed.

However, when utilizing CBFM to obtain the tar-
get broadband RCS the impedance matrix must be filled
repetitively at each frequency point, leading to a large
amount of computational time. In recent years, fast com-
putational methods such as the impedance matrix inter-
polation method, the Cauchy method, the best uniform
rational approximation (BURA) [11][12], model param-
eter estimation (MBPE) [13][14] and asymptotic wave-
form estimation (AWE) [15–18] have been proposed.
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Among them, BURA has been widely used. It has the
advantages of good convergence, easy integration with
CBFM and no need to increase memory. When using
BURA the process of repeated solutions of matrix equa-
tions can be bypassed, which reduces the computation
time of the impedance matrix.

The remainder of this paper is organized as follows.
The formulations of the Chebyshev approximation tech-
nique (CAT) application to CBFM are explicitly derived
in Section II. Three examples are presented in Section
III to verify the accuracy and efficiency of the hybrid
CBFM-CAT algorithm and the conclusion of this work
is drawn in Section IV.

II. CBFM-CAT FORMULATION
In solving the broadband electromagnetic character-

istics of periodic structures, CBFM is utilized to solve
the large unknown matrix during computation. However,
for broadband RCS calculations, CBFM still needs to
calculate the surface currents at each frequency, which
leads to a large amount of computation time. By intro-
ducing the idea of CAT, the hybrid CBFM-CAT imple-
ments to achieve fast frequency sweeping as follows.

The electric field integral equation (EFIE) can be
written as:

Z (k) I (k) =V (k) , (1)
where Z (k) denotes impedance matrix, I (k) denotes cur-
rent coefficient vector and V (k) denotes excitation vec-
tor.

CBFM divides the target into N subdomains Ω1,
Ω2, . . .ΩN . According to CBFM, the matrix equation of
equation (1) can be written as: Z11 (k) · · · Z1N (k)

...
. . .

...
ZN1 (k) · · · ZNN (k)


 I1 (k)

...
IN (k)

=

 V1 (k)
...

VN (k)

 . (2)

When li = l j, Zlil j (k) is the self-impedance matrix
of region Ωli. Whenli ̸= l j, Zlil j (k) is the mutual
impedance matrix of region Ωli and region Ωlj.Il j (k)
is the matrix of current coefficients of region Ωlj,
Vl j (k)is the excitation vector of region Ωlj and li ∈
[1,2, ...,N] , l j ∈ [1,2, ...,N].

Uniform plane wave illuminates each
subdomainΩli, the frequency range f ∈ [ fa, fb], the
corresponding wave number is k ∈ [ka,kb]. Using the
coordinate transformation, k̃ is obtained by:

k̃ =
2k− (ka + kb)

ka − kb

(
k̃ ∈ [−1,1]

)
. (3)

Let Tq

(
k̃
)
(q = 1,2, ...n) be a Chebyshev polyno-

mial of order q defined as follows:

T1

(
k̃
)
= 1,T2

(
k̃
)
= k̃;

Tq+1

(
k̃
)
= 2kTq

(
k̃
)
−Tq−1

(
k̃
)
. (4)

Then the q-th Chebyshev node of the Q order
Chebyshev polynomial can be calculated by equa-
tion (5):

k̃q = cos
[
(2q−1)

2Q
π

]
(q = 1,2, ...,n) . (5)

To transform k̃q from interval [−1,1] into interval
[ fa, fb], the q-th Chebyshev frequency sampling point in
band f can be obtained by using equation (6):

kq = 1/
2
[
(ka + kb)− k̃q (ka − kb)

]
. (6)

Afterwards, the induced current Ili (kq) at the
Chebyshev frequency sampling point kq in the li-th
subdomainΩli is obtained. Assume that the number of
discrete units in the subdomain before expansion is Nli
and after expansion is Ne

li. Then the main characteris-
tic basis functions of the extended subdomain li can be
derived from:

Ze
lili (kq)Jp

li (kq) =V e
li (kq) , (7)

where V e
li (kq) is a Ne

li ×1 matrix, the matrix correspond-
ing to the extended subdomain in the excitation vector
from equation (2). Ze

lili (kq) is the self-impedance matrix
of the extended subdomain, which is an Ne

li-dimensional
square matrix. By performing the LU decomposition of
Ze

lili (kq) followed by matrix inversion, the main charac-
teristic basis functions of the extended subdomain Jp

li (kq)
can be derived from equation (7).

According to the Foldy-Lax multipath scattering
equation, the total characteristic basis function for con-
structing a periodic structure target should include the
primary characteristic basis function (PCBF), which rep-
resents the self-interaction of the subdomains them-
selves. The secondary characteristic basis function
(SCBF) represents the interaction between the subdo-
mains. The primary secondary feature basis function
JS1

li (kq) can be used as an excitation source by superim-
posing the primary feature basis function Jp

li (kq) on the
remaining subfields. The surface induced current is gen-
erated in the desired subregion. The primary characteris-
tic basis function has been derived from equation (7), at
which point the secondary characteristic basis function
can be derived from:

Ze
lili (kq)JS1

li (kq)=−
N

∑
l j=1,l j ̸=li

Zlil j (kq)JP
l j (kq) . (8)

JS1
li (kq) can be obtained by a direct inverse of the LU

decomposition of Ze
lili (kq) via equation (8). Similarly, the

secondary characteristic basis functions of the remaining
subdomain targets can be derived. If the secondary char-
acteristic basis functions are taken only up to JS1

li (kq),
the total induced current on each subdomain target can
be written as:

Jli (kq) = aliJP
li (kq)+bliJS1

li (kq) . (9)
The dimensionality of the impedance matrix can be

reduced by Galerkin method. By obtaining the unknown
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coefficients ali and bli, the induced currents on a total of
N subdomains can be obtained. Then the target surface
current coefficients for each subdomain are Jli (kq) =
Ili (kq) ,(li = 1,2, ...,N).

To improve the accuracy of the numerical solution,
the Chebyshev series is replaced by a rational func-
tion named Maehly approximation. The surface current
In (ks) in the li-th subdomainΩli can be approximated as:

Ili (ks)∼=
n

∑
q=1

cli,qTq

(
k̃q

)
−

cli,1

2
, (10)

where cli,q =
2
n ∑

n
q=1 Ili,q (kq)Tq

(
k̃q

)
.

To improve the accuracy of the numerical solution,
using the Maehly approximation to obtain the current
coefficient vector, Ili (ks) can be re-expressed as:

Ili (ks)≈ RLM,li

(
k̃q

)
=

PL,li(k̃q)
QM,li(k̃q)

,

=
ali,0T0(k̃q)+ali,1T1(k̃q)+···+ali,LTL(k̃q)

bli,0T0(k̃q)+bli,1T1(k̃q)+···+bli,MTM(k̃q)
,

(11)

where ali,l denotes the first unknown coefficient of the
li-th subdomain at the Chebyshev node of the Cheby-
shev polynomial of order L, and bli,m denotes the second
unknown coefficient of the li-th subdomain at the Cheby-
shev node of the Chebyshev polynomial of orderM,
bli,0 = 1.

Substituting equation (12) into equation (11)
and using the constant equation Tp (x)Tq (x) =
1/

2
(
Tp+q (x)+T|p−q| (x)

)
, the unknown coefficients

ali,i (i = 0,1, · · · ,L) and bli, j ( j = 0,1, · · · ,M) can be
obtained as follows:

ali,0 =
1
2 bli,0cli,0 +

1
2

M
∑
j=1

bli, jcli, j

ali,i = cli,i +
1
4 bli,icli,0 +

1
2

M
∑
j=1

bl, j
(
cli,i+ j + cli,| j−i|

)
i = 1,2, · · · ,L

(12)
cli,L+2 + cli,L cli,L+3 + cli,L−1 · · ·

cli,L+3 + cli,L+1
...

cli,L+4 + cli,L
...

· · ·
· · ·

cli,L+M+1 + cli,L+M−1 cli,L+M+2 + cli,L+M−1 · · ·
cli,L+M+1 + cli,L−M+1
cli,L+M+1 + cli,L−M+2

...
cli,L+2M + cli,L

•


bli,1
bli,2

...
bli,M

=−2


cli,L+1
cli,L+2

...
cli,L+M


(13)

Calculating the unknown coefficients ali,i and bli, j
for the n-th subdomain Ωn, the surface current Ili (ks) can
be obtained by using ali,i and bli, j and substituting them
into equation (11) thereby obtaining the radar scattering
cross section of the periodic structure target at each fre-
quency.

The error function En is defined as:

En,li = RLM,li

(
k̃q

)
− Ili (ks)

= 1
QM,li(k̃q)

∑
∞
p=L+M+1 hp,liTp,li

(
k̃q

) . (14)

The coefficient hp,li in equation (14) can be defined
as:

PM,li

(
k̃q

)
−QL,li

(
k̃q

)
Ili (ks)

= ∑
∞
p=L+M+1 hp,liTp,li

(
k̃q

) . (15)

Since bli,0 is usually set to 1, the coefficient hp,li
decays rapidly then the error function En,li can be
approximated as:

PM,li

(
k̃q

)
−QL,li

(
k̃q

)
Ili (ks)

= ∑
∞
p=L+M+1 hp,liTp,li

(
k̃q

) , (16)

where:
hL+M+1,li = cL+M+1,li

+1/
2∑

M
i=1 bi,li

(
cL+M+i+1,li + cL+M−i+1,li

) . (17)

Hence, RLM,li

(
k̃q

)
can be taken as BURA to Ili (ks).

III. NUMERICAL SIMULATION RESULTS
AND ANALYSIS

A. A 9x9 patch array
The first example is a 9×9 patch array consisting of

square ring frequency selective cells with a center fre-
quency of 15 GHz, as illustrated in Fig. 1. The inci-
dent angle is (θ inc, ϕinc)=(0◦, 0◦) and the scattering
angle is (θsca, ϕsca)=(60◦, 0◦). The working frequency
band is 12 to 20 GHz. The step frequency is 100 MHz.
The whole structure can be decomposed into four sub-
domains with a total of 3402 unknowns for the target.
The unknowns for each sub-domain are 756, 756, 756
and 1134 when using CBFM, respectively. The broad-
band RCS of the target was calculated by using the
Chebyshev approximation with the Maehly approxima-
tion (L=M=3, L=M=7, L=M=15).

Fig. 1. Geometry of the patch array.

Figure 2 illustrates the broadband bistatic cross-
section (BCS) of the patch array in the 12-20 GHz range
using three different CBFM-CAT orders (L=3, 7, 15).
A results comparison between the CBFM-CAT algo-
rithm and the conventional moments method can be seen
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in Fig. 2. Better results will be obtained as we increase
the CAT order.

Fig. 2. Wideband BCS of the patch array computed by
CBFM-CAT using three different orders.

As shown in Fig. 3, the peak memory, CPU time and
the number of iterations of MoM, CBFM and CBFM-
CAT with three orders are compared. According to
Fig. 3, total CPU time of CBFM-CAT (L=M=15) can be
reduced by 54.4% compared to conventional MoM.

Fig. 3. Comparation of peak memory, CPU time and
number of iterations for conical radome.

B. Square-ring FSS conical radome
The second example is a six-layer conical FSS

radome consisting of a square-ring type frequency selec-
tor unit with a center frequency of 15 GHz, as illustrated

in Fig. 4. The incident angle is (θ inc, ϕ inc)=(0◦, 0◦) and
the scattering angle is (θ sca, ϕsca)=(60◦, 0◦). The work-
ing frequency band is 12 to 20 GHz. The step frequency
is 100 MHz. The whole structure can be decomposed
into three subdomains with a total of 3234 unknowns
for the target. The unknowns for each subdomain are
1386, 1134 and 714 when using CBFM, respectively.
The broadband RCS of the target was calculated using
the Chebyshev approximation with the Maehly approxi-
mation (L=M=3, L=M=7, L=M=15).

Fig. 4. Geometry of the square ring FSS conical radome.

Figure 5 illustrates the broadband BCS of the con-
ical radome in the 12-20 GHz range using three differ-
ent CBFM-CAT orders (L=3, 7, 15). Figure 5 shows
that the results obtained by the CBFM-CAT algorithm
are in good agreement with the traditional MoM. As we
increase the order of CAT we get a better result.

Fig. 5. Wideband BCS of conical radome computed by
CBFM-CAT using three different orders.
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As shown in Fig. 6, peak memory, CPU time and
number of iterations of MoM, CBFM and CBFM-CAT
with three orders are compared. According to Fig. 6,
the computation time of CBFM-CAT (L=M=15) can be
reduced by 54.7% compared to conventional MoM.

Fig. 6. Comparation of peak memory, CPU time and
number of iterations for conical radome.

C. Square-ring FSS pyramid radome
The third example we consider is an FSS pyra-

mid radome composed of a square-ring frequency selec-
tor unit with a center frequency of 15 GHz, as shown
in Fig. 7. The model is divided into four subdomains.
The FSS pyramid radome is discretized into 3136 ele-
ments so that the number of unknowns is 4704. The
unknowns for each subdomain when using CBFM are
1176, 1176, 1176, 1176 and 1176. The incident angle

Fig. 7. Geometry of the square ring FSS pyramid
radome.

is (θ inc, ϕ inc)=(0◦, 0◦) and the scattering angle is (θ sca,
ϕsca)=(60◦, 0◦). The working frequency band is 12 to 20
GHz. Step frequency is 100 MHz.

The broadband RCS of the target was calculated
using the Chebyshev approximation with the Maehly
approximation (L=M=3, L=M=7, L=M=15). Figure 8
shows that the results obtained by the CBFM-CAT algo-
rithm are in good agreement with traditional MoM. As
the order of CAT increases, better results are obtained.
The results obtained by CBF M-CAT are consistent with
those obtained by MoM and CBFM.

Fig. 8. Broadband BCS of the pyramid radome computed
by CBFM-CAT using three different orders.

As shown in Fig. 9, peak memory, CPU time and
number of iterations of MoM, CBFM and CBFM-CAT

Fig. 9. Comparation of peak memory, CPU time and
number of iterations for pyramid radome.
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Table 1: Calculation result of three examples
Examples MoM CPU Time

(min)
CBFM (L=M=15) CPU

Time (min)
MoM Memory

(MB)
CBFM (L=M=15)

Memory (MB)
Array patch 92.56 53.7 124.32 34.27

Conical
radome

72.45 33.5 80.64 27.64

Pyramid
radome

126.1 69.9 168.96 42.41

with three orders are compared. According to Fig. 9,
the total CPU time of CBFM-CAT (L=M=15) can be
reduced by 45.6% compared to conventional MoM.

Table 1 illustrates the total memory and CPU time
required to compute the three examples by using MOM
and CBFM methods. In comparison to traditional MoM,
the memory requirement and CPU time of CBFM-
CAT can achieve reduction for the three examples
shown.

IV. CONCLUSION
In this paper, we propose a new hybrid CBFM-CAT

algorithm to efficiently analyze the wideband electro-
magnetic bistatic scattering problem for finite periodic
arrays. By applying CBFM, the dimensionality of the
impedance matrix can be reduced. By introducing the
idea of CAT, only the currents at the Chebyshev nodes
are calculated. The surface current in a desired frequency
band is represented by a Chebyshev series by combining
it with the Maehly approximation. After obtaining
the current coefficients over the entire broadband, we
can then obtain the current density at any frequency
point. Furthermore, we discuss the accuracy of the
CBFM-CAT method at different orders. According to
the numerical results, the proposed CBFM-CAT method
is able to significantly improve efficiency with a slight
loss of accuracy.
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