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Abstract – In this article, a Vivaldi antenna with broad
bandwidth and high gain is proposed. The proposed
antenna consists of a coplanar Vivaldi antenna (CVA)
configuration etched with two rhombus slots at both sides
of the radiation arm to improve bandwidth and gain
at the low frequencies as well as maintaining antenna
miniaturization. A compact broadband metasurface is
loaded in the dielectric region between the two expo-
nentially tapered lines to improve radiation performance
in a wide frequency range without increasing antenna
size. The antenna has been fabricated and measured,
obtaining 1.27-9.4 GHz bandwidth covering L/S/C/X
and ultra-wideband (UWB) lower bands. The measured
gain ranges from 3 dBi to 9.67 dBi. With a miniaturized
size of 100×100×1 mm3, good directional radiation pat-
tern and high gain in the whole working band, the pro-
posed antenna is a good candidate for the applications in
multi-band coverage systems.

Index Terms – broadband antennas, coplanar Vivaldi
antennas (CVA), metasurface, multiband antennas.

I. INTRODUCTION
Multiband coverage ultra-wideband antenna not

only has the broadband performance of ultra-wideband
antenna, but also covers the operating frequency band
of a variety of applications, so that only one broadband
antenna is needed to meet the design metrics that can be
achieved by combining multiple antennas, such as base
station antenna system [1–4], which greatly enhances the
performance of electronic information systems, reduces

the complexity of system architecture, and effectively
alleviates the shortage of frequency spectrum resources
and space resources. Vivaldi antenna [5] are widely used
in wideband antenna design due to its performance of
directional radiation, linear polarization, and low profile.
To further improve the antenna’s bandwidth, coplanar
Vivaldi antenna (CVA) [6–15], antipodal Vivaldi antenna
(AVA) [16–23], and balanced antipodal Vivaldi antenna
(BAVA) [24] have been proposed and applied in ground
penetrating radar [6–8, 13], medical imaging [9, 10, 16–
19], and mobile communication systems [11, 12].

For some applications, such as long-distance point-
to-point communication and directional coverage com-
munication, antennas are required with high radia-
tion gain. Using multiple antenna elements to form an
antenna array is an effective method to obtain high gain
[11]. To reduce the antenna array’s volume and cost,
an antenna element with a small size and high gain
is preferred. The commonly used methods to improve
a Vivaldi antenna element’s gain include integrating a
spherical-axicon dielectric lens with the antenna [25, 26],
and introducing metasurfaces in the tapered radiation
aperture of the antenna [13, 14, 20, 21]. In the foremen-
tioned techniques, mounting a dielectric lens with com-
plicated stereoscopic increases the antenna’s volume and
fabrication cost, and adding metasurfaces enlarges the
antenna’s footprint.

To obtain antenna miniaturization, much work has
been done using a high dielectric constant dielectric sub-
strate [16], etching slots in the radiation section [18],
[19], and half-cutting the antenna [27]. Arlon AR1000
with a high relative permittivity of 9.8 was used as the
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substrate of the antenna [16]. Meanwhile, [16, 18, 19]
slotted on AVA’s radiation arm to broaden antenna band-
width at low frequency, but it was ignored that AVA itself
has large cross-polarization, which affects antenna radi-
ation performance. In [27], the CVA was half-cut along
the antenna’s central axis which resulted in an asymmet-
rical structure and caused a directional pattern distortion
and the directivity deteriorated.

It is challenging to design an antenna with wideband
bandwidth, small size, high radiation gain, and good
linear performance. In this article, an ultra-wideband
Vivaldi antenna based on the traditional CVA is pre-
sented, with two rhombus slots etched in both sides
of the antenna radiation arm, and the broadband meta-
surface loaded in the exponential tapered radiation
region. The proposed antenna obtains a wide oper-
ating bandwidth of 1.27-9.4 GHz with the measured
S11<− 10 dB. It covers L (1.27-2 GHz), S (2-4 GHz),
C (4-8 GHz), and X (8-9.4 GHz) bands as well as
UWB (3.1-9.4 GHz) bands, suitable for ground pen-
etrating radar, medical imaging, and communication
systems.

II. ANTENNA CONFIGURATION
The configuration of the proposed antenna is shown

in Fig. 1. The proposed antenna is obtained based on
a traditional Vivaldi antenna by etching two rhombus-
shaped slots on the two radiation arms to improve
antenna bandwidth. A broadband metasurface structure
is added in the exponentially tapered radiation region
to improve antenna gain. The metasurface structure is

Fig. 1. Configuration of the proposed antenna: (a) 3-D
view, (b) radiation structure, (c) metasurface structure,
and (d) feed structure.

arranged in the non-metal region with symmetric struc-
ture and can maintain miniaturization and improve per-
formance, which is also adopted in [28–32] to reduce
mutual coupling. The proposed antenna is fed with a
microstrip line connected with an impedance transform
line and a sector-shaped balun with a tension angle of
103◦. The antenna is printed on a 1 mm thick FR4 dielec-
tric substrate, with a dielectric constant of 4.4 and a
loss tangent of 0.02. Table 1 lists the optimized geomet-
ric dimensions. The proposed antenna was simulated by
HFSS 15.0.

Table 1: Dimensions of the proposed antenna
Par. Value

(mm)
Par. Value

(mm)
Par. Value

(mm)
L 100 L3 10.85 L6 6
W 100 W3 1.85 W6 2
L1 20 L4 4.68 L7 3
W1 20 W4 5 W7 5
L2 54 L5 5 R1 5
W2 12 W5 1 R2 3

III. ANTENNA SIMULATION AND
ANALYSIS

A. Antenna design
The proposed antenna was designed from a tradi-

tional CVA by etching two slots and loading metasur-
face. To illustrate the design process of the proposed
antenna, three reference antennas (Ant I, Ant II, and Ant
III) are presented in Fig. 2. The antennas’ reflection coef-
ficients and radiation patterns are given in Figs. 3 and 4,
respectively.

Fig. 2. Evolution of the proposed antenna.
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As shown in Fig. 2 (a), Ant I is a traditional CVA fed
with a step-shaped microstrip and fan-shaped balun. The
step-shaped microstrip acts as an impedance transformer
to obtain wideband impedance matching. The theoretical
formula of the exponential tapered curve of a traditional
CVA is:

y = Aecx +B, (1)
where the values A and B in (1) can be calculated from
the coordinates of the beginning point P1 (x1, y1) and
the terminal point P2 (x2, y2) of the exponential tapered
curve by the following equations:

A =
y2 − y1

ecx2 − ecx1
, (2)

B =
y1ecx2 − y2ecx1

ecx2 − ecx1
, (3)

where the value of c is optimized as 0.1 which
determines the curvature of the exponential tapered
curve and affects the impedance bandwidth of the
antenna.

Fig. 3. Reflection coefficients of reference antennas and
the proposed antenna.

The exponentially curved profile was proven to
be a self-scaling configuration providing frequency-
independent behavior [33]. As depicted in Fig. 3, Ant
I’s −10 dB bandwidth is 1.4-5 GHz. The antenna’s
reflection coefficients are higher than −10 dB at fre-
quencies 5-7.9 GHz. A second-ordered impedance trans-
former is adopted in Ant II’s feeding strip to improve the
impedance matching at higher frequencies 5-10.4 GHz.
However, the reflection coefficients at 2.4-2.6 GHz are
slightly higher than −10 dB. A rhombus slot is etched in
Ant III at the side edge of each radiation patch to reduce
reflections at lower frequencies. As shown in Fig. 3,
Ant III obtains low reflection coefficients both in lower

(a)

(b)

(c)

Fig. 4. The far-field radiation pattern in yoz-plane of ref-
erence antennas and the proposed antenna at (a) 1.4 GHz,
(b) 6 GHz, and (c) 8 GHz.
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and higher frequencies with bandwidth covering 1.27-
9.9 GHz. Based on Ant III, a broadband metasurface
is added in the opening region of the radiation part. As
shown in Fig. 3, the proposed antenna’s reflection coef-
ficients remain similar to Ant III at the lower frequen-
cies, whereas they become a bit higher at frequencies
above 8 GHz. The proposed antenna has a bandwidth
of 1.27-9.4 GHz, which is a bit narrower than Ant III.
The adoption of a metasurface is to improve antenna
radiation pattern and gain which is discussed in the
following.

As shown in Fig. 4 (a), Ant II has two side lobes at
θ=±95◦ with higher gain values than the main beam at
θ=0◦ at 1.4 GHz, which are caused by the electric field
distributing along the edge of the bottom plate edge as
shown in Fig. 5 (a). Ant III and the proposed antenna
have a lower side lobe at 1.4 GHz. As shown in Fig. 4 (b),
Ant III and the proposed antenna have higher peak gain
at θ=0◦ and lower back lobe at θ=±150◦ at 6 GHz. As
shown in Fig. 4 (c), the proposed antenna has a higher
peak gain and narrower main beam than Ant III and Ant
II at 8 GHz. These results indicate that adding the two
rhombus-shaped slots can improve antenna radiation pat-
terns at lower frequencies, and adding the metasurface
can improve antenna radiation patterns at higher frequen-
cies. The broadband metasurface has been well designed

(a)

(b)

(c)

Fig. 5. The electric field distributions of Ant II, Ant III,
and the proposed antenna at: (a) 1.4 GHz, (b) 6 GHz, and
(c) 8 GHz.

and maintains a wide bandwidth covering 1.27-9.4 GHz
as shown in Fig. 3.

B. Electric field distribution analysis
The electric field distributions of Ant II, Ant III,

and the proposed antenna on the top layers at 1.4 GHz,
6 GHz, and 8 GHz are given in Fig. 5. As shown in
Fig. 5 (a), strong electric fields distribute at the bottom
edge near the feeding port for Ant II, resulting in a side-
lobe higher than the main beam at 1.4 GHz (shown in
Fig. 4 (a)). It can also be seen from Fig. 5 (a) that the
electric fields distribution at the bottom edges of Ant
III and the proposed antenna become much weaker than
Ant II, which results in a lower sidelobe as shown in
Fig. 4 (a). Comparing electric field distributions of Ant
III and the proposed antenna at 6 GHz and 8 GHz shown
in Figs. 5 (b) and (c), it can be seen that more electric
fields are introduced in the area near the opening region
of the two exponential curves with the adoption of the
metasurface which improves radiation pattern at higher
frequencies as shown in Figs. 4 (b) and (c).

Fig. 6. Simulation setup of the unit cell.

S-parameters of the metasurface unit cell are simu-
lated by using the model shown in Fig. 6. PEC and PMC
boundary conditions are set in the model. Figure 7 shows
the simulated S-parameters. As shown, S11 is less than
−7 dB, and S21 is higher than −1 dB in the frequency
band of 1-11 GHz, which indicates that the metasurface
structure has broadband performance. The relative per-
mittivity of the broadband metasurface has been simu-
lated and computed by using the equivalent medium the-
ory [34]. Figure 8 shows simulated results. As can be
seen, the values of relative permittivity are around 1 at
frequencies higher than 1.5 GHz, which provides good
impedance matching between the antenna and the air and
improves the radiation performance.
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Fig. 7. Simulated S-parameters of the metasurface unit
cell.

Fig. 8. Retrieved relative permittivity of the metasurface.

IV. RESULTS AND DISCUSSION
The prototype of the proposed antenna has been fab-

ricated and measured. Figure 9 shows photographs of the
fabricated antenna. Measured reflection coefficients are
illustrated in Fig. 10. It can be observed that the mea-
surement agrees well with the simulation, and the mea-
sured bandwidth with reflection coefficient lower than
−10 dB is 1.27-9.4 GHz, covering L (1.27-2 GHz), S (2-
4 GHz), C (4-8 GHz), X (8-9.4 GHz), and UWB lower
(3.1-4.5 GHz) bands.

The simulated and measured gain plots are shown in
Fig. 11. Figure 12 presents the radiation pattern in xoz
and yoz planes of the antenna at 1.5 GHz, 3 GHz, 5 GHz,
7 GHz, and 9 GHz, respectively. As shown, measurement
agrees well with simulation, and the antenna has good

Fig. 9. Photograph of the fabricated antenna.

Fig. 10. Simulated and measured reflection coefficients.

Fig. 11. Simulated and measured gain.
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(a)

(b)

(c)

(d)

(e)

Fig. 12. Radiation pattern of xoz and yoz planes of the
antenna at (a) 1.5 GHz, (b) 3 GHz, (c) 5 GHz, (d) 7 GHz,
and (e) 9 GHz.

Table 2: Comparison of the proposed antenna with pub-
lished literatures

Ref. Size (λ 3
L) BW

(GHz)
RBW
(%)

Gain
(dBi)

[13] 0.7×0.67
×0.0035

0.7-2.1 100 0.6-2

[15] 0.29×0.2
×0.008

2.9-13.55 129.5 1.8-6.91

[18] 0.75×0.75
×0.008

1.5-3.3 75 6.2-8.2

[19] 0.51×0.51
×0.013

2.35-3.79 46.9 4-7.35

[21] 0.6×1.3
×0.0025

1-28 186.2 4.9-14.4

Pro. 0.42×0.42
×0.0042

1.27-9.4 152.4 3-9.67

λL is the free space wavelength at the lowest operational
frequency.
RBW is the relative bandwidth.

directional radiation and linear polarization. The mea-
sured gain is higher than 3 dBi and peak gain reaches
to 9.67 dBi in the working band. Table 2 shows compar-
ison of the proposed antenna with published literatures.
The proposed antenna has a wider bandwidth than the
ones in [13, 15, 18, 19] and a smaller electrical size than
the one in [21].

V. CONCLUSION
A miniaturized, high-gain, multi-band coverage

ultra-wideband antenna has been proposed and fabri-
cated in this article. The proposed antenna has an excel-
lent impedance matching bandwidth of 1.27-9.4 GHz
with reflection coefficient below −10 dB and stable
directional radiation performance. The measured gain
ranges from 3 dBi to 9.67 dBi. The overall size of
the antenna is 0.42λL×0.42λL×0.0042λL. The proposed
antenna is a promising and economical candidate for
applications such as detection radar, medical imaging,
and mobile communication.
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