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Abstract – In this paper, we propose a dual-input
inversion method based on deep learning to improve
the accuracy of electromagnetic imaging using the back
propagation algorithm (BP). An improved U-Net net-
work is utilized to reconstruct the scatterers. Unlike other
deep learning inversion methods, we input both the scat-
terer distribution data from BP imaging and the scattered
field data received by the antennas into the neural net-
work for training. This approach leads to a more accu-
rate prediction of scatterer positions and characteristics.
Compared to predicting the scatterers using only the
scattered field as input, adding the BP imaging results
at the input provides the neural network with more infor-
mation, significantly reduces the learning difficulty, min-
imizes errors, and enhances the quality of imaging. To
address potential gradient vanishing and spatial informa-
tion loss during network training, we integrate attention
mechanisms and residual modules into the basic U-Net
network. The former helps the network extract impor-
tant relevant information under different contrast condi-
tions, while the latter focuses on solving the problems
of gradient vanishing and explosion. Simulation experi-
ments confirm that our dual-input inversion method sig-
nificantly reduces the average error, outperforming tradi-
tional single-input reconstruction methods.

Index Terms – back propagation (BP), dual-input inver-
sion, improved U-Net, inverse scattering

I. INTRODUCTION
Inverse scattering theory and inversion techniques

have frequently emerged and been applied to solve vari-
ous scientific and engineering problems, such as remote
sensing [1], medical imaging [2], and nondestructive
testing [3].

Due to the nonlinearity and ill-posedness of inverse
scattering problems, the common solution methods are

divided into two categories: linear and nonlinear solu-
tions. Nonlinear methods transform the nonlinear prob-
lem into an optimization problem by constructing an
objective function, which is then solved iteratively with
multiple times [4–8]. Examples include the Contrast
Source Inversion (CSI) method [9] and the Distorted
Born Iterative Method (DBIM) [10–13]. Linear meth-
ods, on the other hand, use approximation techniques
to convert the nonlinear problem into a linear one,
thereby reducing complexity and increasing solving
speed [14, 15]. Examples include the Born approxima-
tion [16] and the Rytov approximation [17]. Both of
these approximation methods require prior information
to solve the problem. The back propagation (BP) algo-
rithm in linear solutions can be solved without itera-
tion. Although the applicability of non-iterative inversion
methods is limited, they offer high computational
efficiency [18].

With the development and widespread application
of deep learning, researchers have applied deep learn-
ing to solve inverse problems. Convolutional Neural
Networks (CNN) can effectively capture the implicit
features of input and output data and learn the map-
ping relationship between them. In 2019, Wei and Chen
input scattered fields into a CNN, trained the net-
work, and then estimated the scatterers using the neu-
ral network. Their research found that this approach
could effectively reconstruct the scatterers [19]. In the
same year, these two researchers proposed using deep
learning to solve full-wave electromagnetic scattering
problems, training the network based on contrast, and
discovered that it could still produce good results for
tests beyond the training set [20]. Subsequently, in 2021,
they used a modified contrast scheme and U-Net network
to reconstruct high-contrast two-dimensional and three-
dimensional objects [21]. In the same year, scholars
Ahmadi and Shishegar incorporated prior information

Submitted On: August 22, 2024
Accepted On: November 27, 2024

https://doi.org/10.13052/2024.ACES.J.391104
1054-4887 © ACES

https://doi.org/10.13052/2024.ACES.J.391104


YANG, MENG, WEI, TONG: A DUAL-INPUT ELECTROMAGNETIC INVERSE SCATTERING ALGORITHM BASED ON IMPROVED U-NET 962

such as imaging boundaries into deep learning to solve
inverse scattering problems, resulting in smoother and
better imaging results [22]. In 2020, He Yang and Jun
Liu successfully employed a CNN to accurately approx-
imate the nonlinear mapping between noisy far-field pat-
terns and the positions as well as sizes of disks suitable
for unknown scatterers [23]. In 2022, Liu et al. pro-
posed an unsupervised learning framework called CSI-
GAN, which integrates the entire CSI process with an
unsupervised Generative Adversarial Network (GAN).
CSI provides physical constraints for the GAN, while
the GAN adds topological and semantic features to
the CSI, jointly achieving the inverse imaging of scat-
terers [24]. However, the high nonlinearity and ill-
posedness reduce the generalization ability of neural net-
works, especially when the contrast increases, signifi-
cantly affecting the imaging results. Therefore, how to
incorporate more prior information, reduce the learn-
ing difficulty of neural networks, and improve gen-
eralization performance has become a major research
direction for electromagnetic inversion based on deep
learning.

In this paper, we use both the scattered field and the
scatterer distribution obtained by BP as inputs, with the
real scatterer image as the output, allowing the neural
network to learn the mapping relationship between these
physical quantities. The inclusion of BP inversion results
can provide more auxiliary information for the neural
network, greatly reducing learning difficulty. Compared
to a single-input network that uses only the BP image as
input, retaining the scattered field data ensures the accu-
racy of the neural network output even when the quality
of the BP image is poor.

The structure of this paper is as follows. The second
section introduces the electromagnetic imaging problem
model and the BP algorithm. The third section provides
a detailed description of the improved Residual Atten-
tion U-Net (RAU) neural network structure proposed in
this paper. The fourth section presents a simulation anal-
ysis, comparing the dual-input inversion method with the
single-input inversion scheme to verify its efficiency. The
fifth section concludes the paper.

II. INVERSE PROBLEM AND BP SCHEME
The electromagnetic imaging problem model is

shown in Fig. 1. Assume an imaging region D in free
space, there is an unknown non-magnetic scatterer x in
region D. The relative permittivity of the scatterer x is
ε , and the permeability is µ . This paper uses microwave
imaging, where the transmitting and receiving antennas
are located in the observation domain S outside the imag-
ing region D. When the scatterer receives the incident
electromagnetic wave, it generates a scattered field. The
receiving antenna captures the total field, which is the

superposition of the scattered field and the incident field,
for subsequent imaging calculations. A detailed intro-
duction to BP follows.

Fig. 1. Electromagnetic imaging model.

The BP imaging algorithm typically consists of
three steps. The first step is to determine the induced
current using BP, where it is assumed that the induced
current is proportional to the scattered field:

J = γ ·GH
S ·Es, (1)

where γ is an unknown proportionality constant, GS is
the Green’s function that represents the propagation pro-
cess from the scatterer to the receiver, H denotes matrix
Hermitian, and Es is the scattered electric field. To obtain
J, a function between the scattered field and the calcu-
lated field is defined:

F(γ) =
∥∥Es −GS(γ ·GH

S ·Es)
∥∥2

S . (2)
To minimize F(γ), the minimum value of F(γ)

requires that the derivative with respect to γ is equal to
zero, thus yielding the optimal solution for γ:

γ =

〈
Es,GS(GH

S ·Es)
〉

S∥∥GS(GH
S ·Es)

∥∥2
S

, (3)

where
〈
Es,GS(GH

S ·Es)
〉

S denotes the projection of Es

and GS(GH
S ·Es) in the observation domain S. Its discrete

form is EST
· (GSGH

S ·Es)
∗
, where the superscripts T and

* denote the transpose and complex conjugate, respec-
tively. From equation (1), it can be seen that once γ is
determined, the induced current J can be obtained.

The second step is to calculate the total field in the
imaging region D:

Et = E i +Gd (J) , (4)
where E i denotes the incident field and Gd is the Green’s
function within the imaging domain.
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The third step is to obtain the contrast χ (r) by con-
sidering all incident waves, where the contrast χ (r) is
equal to the relative permittivity minus 1. For the p-th
transmitting antenna, the definition of χ (r) requires that:

Jp (r) = χ (r)Et
p (r) , (5)

where Et
p denotes the total field received by the p-th

transmitting antenna. The incident field is solved using
the least squares method, and χ (r) is obtained and ana-
lyzed:

χ (r) =
∑

Ni
p=1 Jp(r) · [Et

p(r)]
∗

∑
Ni
p=1 |Et

p(r)|2
, (6)

where Ni denotes the number of incident antennas. If
the scatterer is non-lossy, the contrast takes the real part
of (6).

III. RECONSTRUCTION ALGORITHM
BASED ON RAU

In this section, the authors primarily introduce the
improved U-Net. U-Net is a common CNN, and the CNN
architecture typically consists of convolutional layers,
pooling layers, and fully connected layers.

U-Net was developed in 2015 by the Department of
Computer Science at the University of Freiburg, Ger-
many, for biomedical image segmentation [25]. The
advantage of this network lies in its basis on a fully con-
volutional network, where the architecture, after modi-
fication and extension, can produce more accurate seg-
mentation with fewer training images [25]. In some
biomedical image segmentation studies [26], U-Net has
shown significant performance improvement and has
excellent generalization capability with a small amount
of labeled data. In inverse scattering problems, the mag-
nitude of the contrast significantly affects the imaging
results. As the contrast increases, traditional imaging
results theoretically become coarser [27]. The recep-
tive field of the convolutional layers in the ordinary U-
Net is limited and cannot capture the global informa-
tion of coarse images, thereby failing to perceive the
overall scattering situation. Therefore, it needs to be
improved.

The attention mechanism is derived from human
vision research [28]. When humans process information,
they selectively focus on a part of the received informa-
tion and ignore other information. For example, when
reading, a sentence with jumbled words does not affect
reading comprehension. The attention mechanism simu-
lates this process by assigning higher weights to impor-
tant information and lower weights to irrelevant infor-
mation. In neural network training, the attention mecha-
nism helps to focus more on key information. The struc-
ture of the residual module is shown in Fig. 2. It was
proposed by Kaiming He and others from Microsoft,
and the residual network based on this module won the
championship in the 2015 ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [29]. The core idea of
the residual module is to introduce shortcut connections,
allowing information to be directly transmitted to sub-
sequent layers, thereby maintaining the integrity of the
information. Let x be the input. After passing through the
mapping function, the output is F(x). The output of the
residual module, in addition to F(x), also adds the orig-
inal input x through the shortcut connection, resulting in
an output of F(x)+ x. The introduction of the residual
module addresses the problem of gradient vanishing and
explosion caused by the increasing number of network
layers. The authors enhanced the U-Net by incorporat-
ing attention mechanisms and residual modules. This
enhancement improves the global perception capability
of the convolutional layers and prevents gradient vanish-
ing and exploding problems due to the increased num-
ber of network layers. The authors named this improved
network model the RAU, with the structure shown in
Fig. 3.

Fig. 2. The structure of residual module.

In Fig. 3, the inputs are the BP image and the scat-
tered field, and the output is the enhanced prediction
from RAU. Similar to the standard U-Net, the RAU net-
work structure is mainly divided into two parts: the left-
side contracting path and the right-side expanding path.
The contracting path aims to extract features from the
input images, while the expanding path aims to enhance
the features extracted by the contracting path. In RAU,
an attention mechanism is incorporated into each con-
volution process, expected to enhance global perception
capability. Additionally, residual modules are added dur-
ing the convolution process in the fifth layer to prevent
gradient explosions.
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Fig. 3. The structure of RAU.

IV. NUMERICAL SIMULATION
In this section, the authors analyze the experimen-

tal results. This study uses TM electromagnetic waves,
with 32 transmitting antennas and 64 receiving antennas.
The frequency of the transmitting antennas is set to 400
MHz. The antennas are uniformly distributed on a circu-
lar observation domain S with a radius of 3m, centered at
the origin of the coordinate system. The imaging region
D is a square with a side length of 2 m, divided into a
grid of 64×64 pixels.

In this experiment, a total of 2300 single scatterers
were used, with 2000 sets used as the training dataset and
300 sets as the test dataset. The scatterers are circles of
varying sizes, with radii ranging randomly between 0.1
to 0.4 m. The contrast varies randomly between 0.1 to
2.0. The centers of the circles are randomly positioned
within a square formed by the vertices (-0.6 m, 0.6 m),
(-0.6 m, -0.6 m), (0.6 m, -0.6 m), and (0.6 m, 0.6 m),
including the boundaries. In the first set of experiments,
the input is the scattered field data, while in the second
set, the input consists of both the scattered field data and
the BP imaging distribution data. The output for both sets
of experiments is the predicted scatterer data after neu-
ral network training. The neural network is trained using
the ADAM optimizer with learning rates of 0.001 and
0.0001. Training is conducted for 500 and 1000 epochs,
with batch sizes of 32, 64, and 128. Since this task is a
regression task, Mean Squared Error (MSE) is chosen as

the loss function. The training was conducted on a GPU
platform using RTX 4090 24G. After training the net-
work, it was tested on a test set of 300 samples, and the
average MSE for these 300 samples was calculated.

The test results are shown in Fig. 4. In Fig. 4 (a),
the scatterer has its center at (0.2 m, -0.4 m), a radius
of 0.4 m, and a contrast of 0.2. In Fig. 4 (b), the scat-
terer has its center at (-0.3 m, 0.1 m), a radius of 0.3 m,
and a contrast of 1.5. Based on the test results, it can be
observed that both single-input and dual-input imaging
outperform BP imaging results. Furthermore, dual-input
imaging is superior to single-input imaging in terms of
reconstructed images. To avoid chance results, the aver-
age MSE is compared further. The average MSE for the
300 test samples is shown in Table 1.

As shown in Table 1, the red text highlights the
minimum errors achieved under both the single-input
and dual-input models, which correspond to the same
set of parameters: a learning rate of 0.001, 500 train-
ing epochs, and a batch size of 64. Under these param-
eters, when the batch size increases from 32 to 64, the
MSE gradually decreases; however, when the batch size
increases from 64 to 128, the MSE gradually increases.
The red texts represent the minimum error. According
to Table 1, when the learning rate is fixed at 0.001 and
the training epochs are set to 500 and 1000, the error
reduction for the best dual-input compared to the best
single-input is 32.9% and 42.9%, respectively. When the



965 ACES JOURNAL, Vol. 39, No. 11, November 2024

-1 -0.5 0 0.5 1

X (m)

-1

-0.5

0

0.5

1
Y

 (
m

)

1

1.1

1.2

1.3

1.4

1.5

(a)

-1 -0.5 0 0.5 1

X (m)

-1

-0.5

0

0.5

1

Y
 (

m
)

1

1.5

2

2.5

3

(b)

-1 -0.5 0 0.5 1

X (m)

-1

-0.5

0

0.5

1

Y
 (

m
)

1

1.02

1.04

1.06

1.08

1.1

(c)

-1 -0.5 0 0.5 1

X (m)

-1

-0.5

0

0.5

1

Y
 (

m
)

1

1.05

1.1

1.15

1.2

(d)

-1 -0.5 0 0.5 1

X (m)

-1

-0.5

0

0.5

1

Y
 (

m
)

1

1.1

1.2

1.3

1.4

1.5

(e)

-1 -0.5 0 0.5 1

X (m)

-1

-0.5

0

0.5

1

Y
 (

m
)

1

1.5

2

2.5

3

(f)

-1 -0.5 0 0.5 1

X (m)

-1

-0.5

0

0.5

1

Y
 (

m
)

1

1.1

1.2

1.3

1.4

1.5

(g)

-1 -0.5 0 0.5 1

X (m)

-1

-0.5

0

0.5

1

Y
 (

m
)

1

1.5

2

2.5

3

(h)

Fig. 4. Comparison of BP imaging, single-input imag-
ing and dual-input imaging for a single circle scatterer:
(a) and (b) show the target scatterers, (c) and (d) show
the BP imaging images, (e) and (f) show the single-input
imagings, and (g) and (h) show the dual-input imagings.

learning rate is fixed at 0.0001 and the training epochs
are set to 500 and 1000, the error reduction for the best
dual-input compared to the best single-input is 20.7%
and 16.8%, respectively. The single-circle test was con-
ducted using the best parameters for both single-input
and dual-input. The probability cumulative curves for
the best single-input and dual-input cases are shown in
Fig. 5, where it can be seen that the overall test error
for single-input is greater than that for dual-input, with
MSE of 0.006872 and 0.004683, respectively. The dual-
input method shows a 31.9% reduction in MSE com-
pared to the single-input method, demonstrating a sig-
nificant advantage.

To test the generalization ability of the RAU net-
work, 50 sets of double circles were used as the test set

Table 1: Comparison of average MSE between single-
input and dual-input results

Input Scattered Field
Learning Rate 0.001 0.0001

Epoch/Batch
Size

Average
Error

Epoch/Batch
Size

Average
Error

500/32 0.008696 500/32 0.008147
500/64 0.006872 500/64 0.009535

500/128 0.012687 500/128 0.010621
1000/32 0.008299 1000/32 0.010815
1000/64 0.008472 1000/64 0.008224

1000/128 0.012185 1000/128 0.009658

Input BP Result + Scattered Field
Learning Rate 0.001 0.0001

Epoch/Batch
Size

Average
Error

Epoch/Batch
Size

Average
Error

500/32 0.004726 500/32 0.007976
500/64 0.004683 500/64 0.007557

500/128 0.005721 500/128 0.008100
1000/32 0.004745 1000/32 0.008026
1000/64 0.004837 1000/64 0.006845

1000/128 0.005552 1000/128 0.008727
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Fig. 5. Probability cumulative curve for the single-circle
tests.

to evaluate the network’s performance. The average com-
putational time per sample was 0.212 seconds. The test
results are shown in Fig 6. In Fig. 6 (a), the centers of the
two circles are located at (-0.6 m, -0.6 m) and (0.4 m, 0.7
m), both with a radius of 0.2 m and a contrast of 1.0. In
Fig. 6 (b), the centers are located at (-0.3 m, -0.3 m) and
(0.5 m, 0.6 m), both with a radius of 0.1 m and a contrast
of 0.9. According to the test results, in the case of dou-
ble circles, the dual-input scheme is significantly better
than the single-input scheme. The single-input scheme
can only reconstruct one circle, and the reconstruction
effect becomes worse when the contrast is high. In con-
trast, the dual-input scheme can still reconstruct two
circular scatterers well, regardless of whether the con-
trast is low or high. The probability cumulative curves
for the 50 tests are shown in Fig. 7. Compared to the
single-circle tests, the dual-circle tests clearly show that,
under the same conditions, the dual-input has a signifi-
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Fig. 6. Test results of generalization ability of the algo-
rithm for two circular scatterers: (a) and (b) show the tar-
get scatterers, (c) and (d) show the BP imaging images,
(e) and (f) show the single-input imagings, and (g) and
(h) show the dual-input imagings.

cantly smaller error than the single-input, as illustrated
by the error curve. The average MSEs for single-input
and dual-input are 0.066458 and 0.037245, respectively.
The dual-input error is reduced by 44% compared to the
single-input error. From the comparison of single cir-
cle and double circle imaging between single-input and
dual-input, it can be concluded that dual-input has better
reconstruction performance than single-input.

Subsequently, the algorithm’s generalization abil-
ity was further evaluated using measurement data pro-
vided by the Fresnel Institute. It should be noted that
the measurement model [30] slightly deviates from our
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Fig. 7. Probability cumulative curve for the double-circle
tests.

adopted simulation imaging model. For this evaluation,
we specifically selected the ”dielTM dec8f.exp” dataset
with an excitation wave frequency of 4GHz. The recon-
structed target in this case is a circular scatterer posi-
tioned 30 mm away from the origin, having a radius of
15 mm and a relative permittivity value within the range
of 3±0.3. The imaging result depicted in Fig. 8 demon-
strates that, despite significant variations in antenna posi-
tion, excitation frequency, and scatterer size, the target
can still be accurately reconstructed using RAU.
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Fig. 8. Experimental results reconstructed by the dataset
at 4 GHz: (a) the ground truth image and (b) the output
image of RAU.

V. CONCLUSION
This paper proposes a dual-input electromagnetic

inverse scattering imaging method based on RAU.
Unlike traditional single-input deep learning inver-
sion methods, which only input the scattered field,
this method additionally inputs the scatterer distribu-
tion obtained by BP imaging along with the scattered
field. Consequently, the neural network can receive
more effective information. Compared to U-Net, RAU
enhances the global perception ability of the convolu-
tional layers through its attention mechanism, and its
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residual modules address the problem of gradient explo-
sion that can occur with deeper network structures. This
dual-input scheme results in smaller imaging errors. The
authors validated the above by conducting single-circle
and double-circle tests, demonstrating the effectiveness
of the method. Further improvements in imaging perfor-
mance will be considered in future research.
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