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Abstract – A unified framework for implementing cir-
cularly polarized plane wave sources in time-domain
electromagnetic simulations is presented. Unlike tradi-
tional approaches that require separate settings for the
orthogonal components as different sources, our method
integrates circular polarization states represented in fre-
quency domain seamlessly into time-domain simula-
tions. We also studied the effectiveness of the approach
when broadband sources are used. This framework is
applicable to both finite-difference time-domain (FDTD)
and pseudospectral time-domain (PSTD) methods.

Index Terms – Circular polarization, finite-difference
time-domain (FDTD), pseudospectral time-domain
(PSTD).

I. INTRODUCTION
Electromagnetic (EM) wave propagation is a funda-
mental aspect of numerous scientific and engineering
applications, including optical device design, wireless
communication, antenna design, metasurfaces and nano-
materials [1–9]. A critical feature of these waves is
their polarization, which significantly affects their inter-
action with materials, their propagation characteris-
tics, and their performance in various applications. As
compared to linear polarization, circular polarizations
are also important due to their unique properties and
practical advantages. However, despite their signifi-
cance, the documentation and detailed methodologies for
implementing circular polarization in time-domain EM
simulations, such as the finite-difference time-domain
(FDTD) method and the pseudospectral time-domain
(PSTD) method, remain sparse [10–14].

The FDTD method, a widely used numerical tech-
nique for solving Maxwell’s equations in the time-
domain, is a powerful tool for simulating complex EM
phenomena. However, incorporating circular polariza-
tion into these time-domain simulations poses specific
challenges. These include accurately representing the
phase relationships and amplitude ratios of the orthog-
onal components of the electric field, ensuring numer-
ical stability, and maintaining computational efficiency.

While there is extensive literature on the general appli-
cation of FDTD, there is a noticeable gap when it comes
to practical, detailed guidance on simulating circularly
polarized waves.

Modeling circular polarization accurately in EM
simulations is crucial for several reasons. Firstly, these
polarization states are often used in modern communi-
cation systems, where they can enhance signal quality
and reduce interference [3]. Secondly, in remote sensing
and radar applications, the ability to accurately simulate
these polarizations can improve the detection and char-
acterization of various targets and materials [2]. Lastly,
in antenna design, understanding the behavior of circu-
larly and elliptically polarized waves can lead to more
efficient and effective antenna configurations [4–6].

This paper aims to address the gap in the current lit-
erature by providing a comprehensive methodology for
implementing circular polarization in time-domain sim-
ulations using the collocated Fourier PSTD method, par-
ticularly with the introduction of plane wave sources by
the total-field scattered-field (TFSF) formulation. The
proposed method aims to achieve accuracy within 1%
error when comparing the average radius of the elec-
tric field intensity to the reference radius. The reason we
chose Fourier PSTD over FDTD is in its collocated grid-
nature in field calculation, which is much easier for us
to verify our results. However, the proposed method is
applicable for both FDTD and PSTD simulations. We
will explore the theoretical foundations of these polar-
ization states, detail the numerical implementation steps,
and validate the approach through various simulations.

II. THEORETICAL BACKGROUND
In this section, we first confine our study to

monochromatic EM waves, as circular polarizations
are predominantly represented and analyzed in the
frequency domain. This focus allows us to lever-
age the well-established theoretical frameworks and
mathematical representations of polarization states for
single-frequency waves. A subsequent framework is
developed in the next section to seamlessly incorporate
the frequency-domain representation into time-domain
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simulation, and further discussion on expanding the
method to broadband sources are also discussed.

Polarization describes the orientation of the elec-
tric field vector of an EM wave as it propagates through
space. It is a fundamental property that significantly
influences the wave’s interaction with materials, reflec-
tion and transmission characteristics, and reception by
antennas. The three primary types of polarization are lin-
ear, circular, and elliptical:

(1) Linear polarization: The electric field vector
maintains a constant direction as the wave propa-
gates.

(2) Circular polarization: The electric field vector
rotates in a circular motion, making one complete
revolution per wavelength. It can be right-hand cir-
cularly polarized (RHCP) or left-hand circularly
polarized (LHCP), depending on the rotation direc-
tion and also the definition. Suppose we have a wave
propagating in the z-direction, the phasor represen-
tation of a circular polarized electric field at a fix
point can be represented by:

E(t) =R(E0eiωt x̂±E0ieiωt ŷ), (1)
where R(·) denotes taking the real part of its argu-
ment, E0 denotes the amplitude of the electric field,
ω being the angular frequency, and x̂ and ŷ are
orthogonal unit vectors. By further calculations, (1)
can be written in a pure time-domain representation
as:

E(t) = E0cos(ωt) x̂±E0cos(ωt −π/2) ŷ. (2)

Here the same wave function (cosines) is used for
both x̂ and ŷ components. This is better for under-
standing time-domain implementations, since a sin-
gle pre-defined waveform can be employed for both
orthogonal components of the fields by properly
introducing a time delay.

(3) Elliptical polarization: This can be viewed as a
generalization of circular polarization where the
electric field vector traces an ellipse. It is character-
ized by the ellipticity (ratio of the minor axis to the
major axis) and the orientation angle of the ellipse.
The mathematical representation of an elliptically
polarized wave is:

E(t) = E0xcos(ωt +δx) x̂±E0ycos(ωt +δy) ŷ.
(3)

Comparing with circular polarizations, two things
can be observed from the formulation: (i) the ampli-
tudes can be different in x̂ and ŷ components and
(ii) the phase delays (or advances) δx,δy ∈R do not
need to have a difference of π/2.

The polarization state of an EM wave can be rep-
resented using Jones vectors or Stokes parameters. For

simplicity, we focus on Jones vectors in this paper. A
Jones vector is a column vector that represents the ampli-
tude and phase of the orthogonal components of the elec-
tric field. For an elliptically polarized wave, the Jones
vector is represented by:

J =

(
E0xeiδx

E0yeiδy

)
. (4)

In our implementation, by specifying the two
orthogonal components of the electric field, representa-
tion similar to the Jones vector can be utilized to intro-
duce the circularly polarized plane wave sources.

III. METHOD
In this section, the detailed method of implementing

circular polarizations in time-domain simulations is out-
lined. Extending the method to the application of broad-
band sources is also discussed. It is noted that the method
mentioned above is not restricted to the TFSF formula-
tion; it is also applicable to the pure scattered field (SF)
formulation if only the scattered field from the circularly
polarized plane wave is of interest.

A. Circularly polarized plane wave implementation
In this section, the aim is to develop a framework

that incorporates Jones vector representations, as shown
in (4), into time-domain simulations without the need to
set up two sources. Following the TFSF settings, the first
step is to define the incident angles of the plane wave,
followed by the field strength. Traditionally, the fields are
real-valued. However, we aim to set them as complex-
valued. Specifically, the far-field incident electric field in
spherical coordinate system takes the general complex
form of: {

Eθ = E0θ eiδθ

Eφ = E0φ eiδφ
, (5)

where E0θ , E0φ ,δθ ,δφ ∈ R. One can easily transform
this into the x-y-z components by the following: Ex = cosθi cosφi Eθ − sinφi Eφ

Ey = cosθi sinφi Eθ + cosφi Eφ

Ez =−sinθi Eθ

, (6)

where θi and φi are the incident angles in spherical coor-
dinate system. Similar relationship for the magnetic field
components can be acquired accordingly.

Note that the values in (5) are now complex-valued
and thus are not directly applicable in time-domain sim-
ulations. A certain adaptation similar to (2) needs to be
constructed in order to seamlessly incorporate the defi-
nitions in (4) into time-domain simulations. The key lies
in the time-shifting properties of the Fourier transform:
g(t − t ′) corresponds to e−i2π f t ′G( f ). The additional
phase factor e−i2π f t ′ in frequency domain represents a
time shift t ′ in the time-domain.

For each complex field value Fη , where F ∈ E,H
and η ∈ x,y,z, a set of preliminary amplitude A(Fη) and
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time delay ∆(Fη) can be derived by the following:{
A(Fη) = abs(Fη)

∆(Fη) = ang(Fη)/2π fc
, (7)

where abs(·) denotes the absolute operator and ang(·)
computes the phase angle in radians in the interval
(−π,π]. fc is the frequency of the monochromatic wave.

If ∆(Fη) < 0, then a flip in amplitude and a shift in
time delay will be employed as a correction:{

A′ (Fη) =−A(Fη)
∆′ (Fη) = ∆(Fη)+1/2 fc

. (8)

Otherwise A′ (Fη) = A(Fη) and ∆′ (Fη) = ∆(Fη).
The reason to employ this correction is to preserve the in-
phase relationship between the orthogonal components
of the E,H pair. Thus, the updating equation for the
injected circularly polarized wave source can be repre-
sented by the following form:

F inc
η (t) = A′ (Fη) ·w[t −∆

′ (Fη)], (9)
where w(·) represents the waveform function (for exam-
ple, a ramped sine wave). By employing (9) in the time-
marching loop, one can successfully create a circularly
polarized plane wave in time-domain simulations, and
assignment of the incident plane wave source takes the
form as in (5).

B. Discussion on extension to broadband sources
The method described earlier utilizes a time shift

between the two orthogonal components to create a cir-
cularly polarized monochromatic plane wave. Specif-
ically, the waveform functions in (9) are typically
sinusoidal. However, it is also of interest to extend this
method to broadband sources, such as Gaussian or dif-
ferential Gaussian pulses. It should be noted that the time
shift ∆(Fη) introduced in (7) is dependent on a cen-
ter frequency fc. Consequently, if a broadband source
is implemented, only the field at the center frequency
will be circularly polarized. At frequencies other than the
center frequency, the wave will be elliptically polarized.
This can be demonstrated by the following analysis.

Consider a plane wave source with orthogonal com-
ponents:

J =
(

G( f )
G( f )e−i2π f t ′

)
, (10)

where G( f ) is the Fourier transform of the time-
domain waveform function. If the second component in
(10) is time-shifted in the time-domain by an amount
of t ′ = 1/4 fc, when f = fc, (10) reduces to J =
(G( f ), e−iπ/2 G( f )), which represents a circularly polar-
ized source. However, at frequencies other than the cen-
ter frequency, a factor of e−iπ f/2 fc is introduced, causing
the resulting wave to become elliptically polarized.

IV. NUMERICAL RESULTS
In the numerical examples, we choose the TFSF

technique as our method to introduce plane wave

sources, since it is easy to use the TFSF technique to
study various wave propagation phenomena. However,
the proposed method can also be implemented in pure
SF formulation. The TFSF used for collocated Fourier
PSTD contains certain modifications: a connected region
between the TF region and SF region is required in
order to eliminate the artifacts caused by the field abrup-
tions [15].

The collocated field calculations in the PSTD for-
mulation facilitate the verification of numerical results.
The simulation uses a 51×51×51 grid, with a 10-cell
thick convolutional perfectly matched layer (CPML) to
eliminate unwanted waves leaking from the TFSF region
(though the leakage is relatively small enough compared
to the amplitude of the incident wave, below 0.1%). The
TFSF connecting region has a thickness of 8 cells, as
proposed in [15], and starts 10 cells away from the PML.
The grid size is 50 nm in all three directions and the time
step is set to 0.06 fs. The programs are written in Julia.

A. Circular polarization simulation of monochro-
matic waves

For the circular polarization simulation of the
monochromatic wave, the center frequency is set to
600 THz, and a ramping sine function is defined as the
following to serve as the waveform function used in (9):

w(t) = T (t)sin(2π fct) , (11)
where T (t) is a turn-on function. In our implementation,
we use a shifted sigmoid function as the turn-on func-
tion for smooth transitions: T (t) = 1/[1+ exp(−t+l·dt

p·dt )].
l and p are parameters to determine the delay and width
of the ramping and is set to 40 and 10 respectively in the
simulation. The time difference dt in the simulation is
0.06 fs. The total time step is set to 400. The plane wave
introduced by the TFSF method is set to propagate in the
+z-direction (i.e. (θi, φ i) = (0, 0) towards the origin, in
this case, setting in (6) reduces to Ex = Eθ , Ey = Eφ ).

We first consider the case where J = (1, eiπ/2),
meaning Ex = 1 and Ey = i. The initial step to verify that
the plane wave is truly circularly polarized is to place a
detector at the center of the simulation space and record
the total squared field strength E2 = E2

x +E2
y +E2

z . The
value should be constant (in this case, 1) once the steady
state is reached. The result is shown in Fig. 1. Before
reaching the steady state, certain jitters exist because the
wave function (11) is not purely monochromatic. How-
ever, after 10 fs, when the steady state is achieved, the
value remains constant.

We then plotted the Lissajous figure, which is a
projected harmonic-motion trace, for time steps ranging
from 201 to 250. The result is shown in Fig. 2. One can
observe that the projected trace does fit on the unit circle,
indicating that the plane wave is circularly polarized. We
calculate the average electric field intensity over this time
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Fig. 1. Record of E2 = E2
x + E2

y + E2
z at the center of

the simulation space. This plot shows the time evolution
of the squared electric field magnitude at the origin. Ini-
tially, the field magnitude is zero, indicating no electric
field presence. As the simulation progresses, the elec-
tric field strength increases, exhibiting transient oscilla-
tions before stabilizing. After reaching the steady state
(around 10 fs), the field magnitude remains constant at
1, confirming the successful generation of a circularly
polarized plane wave. This verification step ensures that
the wave retains its polarization characteristics through-
out the simulation.

Fig. 2. Lissajous figure for time steps ranging from 201
to 250, showing the projected traces fitting perfectly on
the unit circle, indicating that the plane wave is circularly
polarized. The reference circle and data points demon-
strate the accuracy of the simulation.

frame and obtain a value of 0.9978, indicating an error of
less than 1% compared to the unity radius reference.

Finally, the 2D electric field at the center of the
domain is plotted for time steps ranging from 201 to
250. For the case where the source is J = (1, eiπ/2), the
result is displayed in Fig. 3 (a). Additionally, we mod-
eled the case with J = (1, e−iπ/2), and the corresponding
result is presented in Fig. 3 (b). As expected, the direc-
tion of polarization is reversed between these two cases,
which confirms the expected behavior of the electric field

(a)

(b)

Fig. 3. 2D electric field at the center of the simulation
space for time steps ranging from 80 to 120: (a) the
case where the source is J = (1, eiπ/2), showing the
electric field rotating from the positive y-axis toward
the positive x-axis and (b) the case where the source is
J = (1, e−iπ/2), with the electric field rotating from the
negative y-axis toward the positive x-axis.

under opposite phase shifts. The results clearly illustrate
how the phase shift between the orthogonal components
of the source influences the polarization direction of the
resulting wave.

B. Broadband sources simulation
In the broadband simulation, a Gaussian pulse is

used as the excitation:
w(t) = e−(t−t0)

2/τ2
, (12)

where τ =
√

2.3 / 2π fc = 0.4022 fs and t0 = 4.5 τ =
1.81 fs.

Similar to Fig. 3, Fig. 4 shows the 2D electric field at
the center of the simulation space for time steps ranging
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(a)

(b)

Fig. 4. 2D electric field simulation results for time steps
ranging from 80 to 120: (a) simulation with J=(1, eiπ/2)
showing the expected circular polarization and (b) simu-
lation with J = (1, e−iπ/2) illustrating the reversed polar-
ization direction. These results demonstrate the effective-
ness of the TFSF technique in accurately modeling cir-
cularly polarized plane waves. The time evolution of the
electric field is clearly depicted, highlighting the distinct
polarization characteristics for each case.

from 80 to 120, for the cases where the source is J =
(1, eiπ/2) and J = (1, e−iπ/2). It can be observed that
the Gaussian pulse exhibits a twist in both cases, but in
opposite directions. In Fig. 4 (a), the electric field rotates
from the positive y-axis toward the positive x-axis, while
in Fig. 4 (b), the electric field rotates from the negative
y-axis toward the positive x-axis.

It is also of particular interest to compute the axial
ratio (AR) as a function of frequency. In ideal circular
polarization, AR is exactly 1, indicating equal ampli-
tude components in orthogonal directions. An increase
in AR represents a deviation towards elliptical polariza-

tion, which can affect signal quality in communication
systems. In these systems, maintaining low AR values
is essential for minimizing cross-polarization and ensur-
ing consistent signal reception. A shift in AR from 1 to
1.5 (which is normally the threshold value) represents
an increasingly elliptical polarization, which can lead to
a mismatch between the transmitted and received signals
and reduce the effective power transferred to the receiver.

In the second simulation, we retained the parame-
ters of the Gaussian pulse as mentioned previously and
tested various time shifts. The recorded electric field at
the center is subjected to a discrete Fourier transform
(DFT) across various frequencies, ranging from 300 THz
to 800 THz with a spacing of 10 THz. After obtaining the
frequency-domain field of the orthogonal components,
AR is then calculated by dividing the length of the long
axis a by the length of the short axis b, with:

a =

√√√√E2
0x +E2

0y +
√
(E2

0x −E2
0y)

2
+4E2

0xE2
0ycos2 δ

2
,

(13)

b =

√√√√E2
0x +E2

0y −
√
(E2

0x −E2
0y)

2
+4E2

0xE2
0ycos2δ

2
,

(14)
where δ = δx − δy. By retaining the parameters of the
Gaussian pulse, center frequencies fc = 500, 600, 700s
THz are tested with J = (1, eiπ/2), and the results are
shown in Fig. 5. It can be observed that at the center fre-
quencies, the calculated AR values are equal to 1, indi-

Fig. 5. Axial ratio (AR) as a function of frequency
for Gaussian pulses with center frequencies fc =
500, 600, 700 THz. AR is calculated using J =
(1, eiπ/2). At the center frequencies, AR equals 1, indi-
cating circular polarization. As the frequency deviates
from the center, AR increases, demonstrating a transi-
tion to elliptical polarization. For fc = 600 THz, AR
remains below the threshold 1.5 over a total bandwidth
of 300 THz.
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cating that the waves are circularly polarized. AR val-
ues gradually increase and become elliptically polarized
as the frequency moves away from the center frequency.
For fc = 600 THz, the total bandwidth where AR<1.5 is
300 THz.

It is important to note that AR curves for broadband
sources are independent of the waveform function and
are solely determined by the factor e−iπ f/2 fc , as analyzed
in section 3B. The simulated results are consistent with
the analytical predictions obtained using the Jones vector
J = (1, e−iπ f/2 fc).

V. CONCLUSION
In this study, we have developed a comprehen-

sive method for incorporating circular polarizations into
time-domain EM simulations using the Fourier PSTD
method. Our simulations verified the accuracy and sta-
bility of the proposed approach, as evidenced by the
consistent field strength and accurate Lissajous figures.
In addition to monochromatic sources, we also tested
our method to accommodate broadband sources, such
as Gaussian pulses, and analyzed AR across a wide fre-
quency range. Analysis of AR demonstrated that while
circular polarization is maintained at the center fre-
quency, the polarization gradually transitions to ellip-
tical as the frequency deviates from the center. This
result is consistent with the expected behavior based
on the frequency-dependent phase shift. Future work
includes extending the polarization analysis from wave
propagation to scattering in both simple and complex
structures.
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