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Abstract – For homogeneous kernels, the memory
requirements associated with H2 representations of inte-
gral equation matrices can be reduced by incorpo-
rating translational invariance. Starting with a non-
translationally invariant H2 representation, this can be
accomplished using a left/right iterative algorithm. In
this paper, it is shown that a similar algorithm can also
be used to compress an existing fast multipole method
(FMM). It is observed that the iterative compression con-
verges faster when used to compress an FMM than when
it is applied to an H2 representation. Resulting savings in
floating-point operations are indicated, and extensions of
the reported method are discussed.

Index Terms – fast multipole method, integral equation.

I. INTRODUCTION
Integral equation (IE) based formulations provide

an effective method for formulating 3D electromagnetic
interaction problems over a range of frequencies. When
modeling fields on large and/or complex domains, it is
necessary to use compressed representations of the gen-
erally dense system matrix that results from the use of
an IE formulation. For static and low-frequency electro-
magnetic applications, fast multipole methods (FMM)
[1, 2] and the H2 representations [3] provide control-
lably accurate representations of IE system matrices and
have O(N) complexity, where N indicates the number of
unknowns in the discretized IE formulation.

Although similar in many ways, the FMM and H2

representations of integral equation matrices differ in
how they represent interactions between source and field
groups. In an FMM, all interactions are represented using
a common (e.g., multipole) basis. For translationally
invariant kernels, this enables significant time and mem-
ory savings when building the FMM since only a rela-
tively small number of unique translators are needed at

each level of an octree decomposition (at most 316 for a
homogeneous kernel).

In contrast, the H2 representation is often devel-
oped from sparse samples of the underlying matrix [4].
(The H2 representation in [4] is therein referred to as
an MLSSM representation; the MLSSM is equivalent
to an H2, as indicated by equation (21) of [4].) Since
the underlying geometry is not translationally invariant,
the H2 representation obtained via sparse matrix sam-
ples does not retain the translational invariance of the
underlying kernel, and each translation matrix is unique.
A result is that the time required to build an H2 represen-
tation can be significantly longer than the time required
to build a similarly accurate FMM.

Although the time required to build an FMM can
be much less than the time required to build a sim-
ilarly accurate H2, this saving comes at the expense
of requiring larger translation matrices. This increased
dimension of the FMM translators can lead to higher
costs for matrix-vector product operations when using an
FMM versus an H2 representation. Furthermore, when
fast direct solvers such as the O(N) H2 factorization
of [4] are used, the larger translators of the FMM can
also yield increased factorization costs relative to an H2.
These additional costs can offset the relative computa-
tional savings provided by an FMM when constructing a
sparse representation of the system matrix.

It was recently shown that, for translationally invari-
ant kernels, it is possible to reduce memory costs asso-
ciated with an H2 representation by converting a non-
translationally invariant H2 matrix into a translationally
invariant H2 representation using an iterative procedure
[5, 6]. However, the computational costs of the algo-
rithms used to compress the H2 have been found to be
too large to be practically useful.

In the remainder, a similar algorithm is reported for
compressing an existing FMM representation [2]. It is
found that the computational costs to compress an FMM
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are significantly less than the costs reported in [5, 6] for
compressing an H2.

II. SHIFT INVARIANT FORM
At a given level of an octree, the interactions

between non-touching groups in an FMM can be repre-
sented as:

Zfar = UTSI Vh, (1)
where U and V are block-diagonal matrices containing
the FMM aggregation and disaggregation operators that
map between the multipole representations of parent and
child groups (or between multipole representation and
the unknowns, if at the finest level). The matrix TSI con-
tains all translators at the level, of which only 316 (at
most) are unique. Further details are provided in [2].

To compress the FMM, we first compute a com-
pressed representation T from TSI . The matrix T is
obtained by computing the O(τ) truncated SVD of
column- and row-blocks of the FMM translation matrix
TSI . The resulting singular vectors are then used
to project the column-/row-blocks of TSI yielding T.
Herein, the SVD truncation tolerance τ is selected to be
equal to the accuracy of the FMM representation divided
by 10. (In the numerical examples below, τ=1e-7.)

Once T is obtained, block diagonal matrices L and
R are computed such that:

T = LT SIR, (2)
which has the same structure as equation (4) of [6].

III. SOLVING FOR L AND R
In the following, an iterative algorithm is outlined

for determining the blocks of the block-diagonal matri-
ces L and R. It is noted that, if the singular vec-
tors obtained in the column-/row-block analysis outlined
above are used to form L and R, then (2) holds; this is the
initialization used in the following algorithm. It is noted
that this initialization for L and R does not provide an
effective compression of the FMM for the following rea-
sons.

First, if the matrices LTSI R are multiplied together
in (2), then the redundancy of TSI is lost (the individual
translators that constitute the global translation matrix T
are each unique, whereas TSI is comprised of at most 316
unique submatrices). Second, if the representation on the
right side of (2) is used without multiplying the matrices
together, then the cost to apply TSI to a vector during an
iterative solve is not reduced relative to a standard FMM.
The purpose of the algorithm outlined below is to find
alternative diagonal blocks for L and R that utilize only
a fraction of the FMM DOF space, thus reducing the cost
to apply TSI without increasing the cost to store TSI . (In
this paper, the terms FMM DOF and DOF are used to
indicate the dimension of the FMM translator blocks and
the corresponding dimensions of the diagonal blocks in
L and R. This terminology differs from that used in [7].)

The algorithm used to compute the diagonal blocks
of L and R is summarized in Fig. 1, which is a reverse-
bootstrapping procedure This is a modified version of the
bootstrapping algorithm reported in [5, 6]. The algorithm
begins with the initialization summarized above.

In Fig. 1, matrices Lg and Rg are the diagonal blocks
of L and R, and subscript g implies a loop over the
groups at this level of the octree. The integer m is the
size of each block of TSI and is equal to the number of
columns/rows in each diagonal block of L and R. The
decrement d is the size of the reduction in the number
of FMM DOF to be tested in the current iteration of the
WHILE loop.

It has been observed that the compression converges
to nearly identical values of m for arbitrarily large val-
ues of d for cases tested. This property makes the algo-
rithm of Fig. 1 significantly more efficient than the boot-
strapping algorithms previously reported for compress-
ing H2 representations [5, 6], which required d=1. The
difference between those methods and the current appli-
cation to an FMM is likely due to the fact that, in devel-
oping a translationally invariant representation from an
existing H2, one starts with an inaccurate representation
that is iteratively improved by adding additional DOF. In
contrast, when compressing an existing FMM, one starts
with an accurate representation, that is compressed by
removing DOF.
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 n=# DOF in FMM basis; err=0; d = round(n/4) 

 while err < τ 
1. m = n – d 
2. for k = 1:n_steps (n_steps=2 here) 

a. fix L and compute a least squares (LS) 
solution for Rg using only the first m DOF 

 when k=1, this reduces the number of 
rows in the Rg to m 

 when k>1, the Rg do not change in size 

b. fix R and compute a LS solution for Lg  

 when k=1, this reduces the number of 
columns in the Lg to m 

 when k>1, the Lg do not change in size 
3. err_new = || T – L TSI R

 || / ||T|| 
4. If (err_new < τ), n = m ; err = err_new;  

else,  

 if d>1, m=n; d = round(d/2)  

 else, m=n; end while 

Fig. 1. Algorithm for compressing an existing FMM.

IV. EXAMPLES
The following examples compress the black-

box FMM (bbFMM) [2] representation of the static
Green’s function, G(⃗r,⃗r′) = 1/ |⃗r− r⃗′|. Due to the scale-
invariance of the homogeneous kernel, the total number
of unique translation matrices needed in the bbFMM rep-
resentation of G across all levels of the octree is 316.
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The bbFMM representation of G is constructed with
an accuracy of 1e-6. The Chebyshev order and SVD trun-
cation tolerance [2] of the underlying bbFMM required
to obtain 1e-6 accuracy were determined as follows.
A dense (i.e., no empty groups), five-level octree was
formed, and source and observer points were densely
distributed over the surfaces of all octree boxes at the
finest level of the tree. The relative RMS error in the
bbFMM representation (versus the exact kernel evalua-
tions) was computed for all interactions between non-
touching groups at the finest level. Table 1 shows the
resulting error as a function of the SVD truncation tol-
erance when a 729-point bbFMM was used (9 points in
the x-, y-, and z-directions for each group). An RMS error
less than 1e-6 is obtained when the SVD truncation toler-
ance is 1e-7, resulting in approximately 157 FMM DOF
(the size of each translation matrix is 157-by-157). This
is the base FMM representation used in the following
examples.

Table 1: Number of FMM DOF remaining after the
global SVD compression step outlined in [2] as a func-
tion of the SVD tolerance. A 729-point grid of Cheby-
shev nodes is used, so that the total number of FMM
DOF prior to the SVD compression step is 729. Lower
order Chebyshev grids fail to provide sufficient accu-
racy, and higher order grids did not reduce the num-
ber of FMM DOF required to achieve 1e-6 accuracy
below 157.

SVD
Tolerance

# DOF
Before SVD

# DOF After
SVD

Base-10
log of
Error

1e-4 729 44 5.0e-4
1e-5 729 73 9.6e-5
1e-6 729 109 9.6e-6
1e-7 729 157 8.0e-7

A. Example: Points on a line
To illustrate the performance of the compression

algorithm, we first consider the static kernel G(⃗r,⃗r′)
when N=50000 points are distributed along the line
defined by x=0, y=0, -1<z<1. A six-level octree is used
to decompose the problem, with level-1 being the root
box. There are 8, 16, 32, and 64 non-empty groups at
levels 3, 4, 5, and 6 of the octree for this geometry.

After the bbFMM representation described above is
built, at each level the matrix T is constructed as dis-
cussed above, and the diagonal blocks of L and R in
(2) are found using the algorithm summarized in Fig. 1.
When the iteration completes, the number of remaining
FMM DOF at a given level is m. The values of m at
each level of the octree for this example are reported

in the third column of Table 2. The last column of the
table indicates the savings in the floating point costs
required to apply the compressed translation matrix TSI
to a vector. The resulting block-diagonal matrices L and
R of (2) are multiplied into the block-diagonal U and
Vh matrices shown in (1), effectively compressing the
basis matrices (in addition to the translator matrix) at
each level.

Table 2: Results of compressing the 1e-6 bbFMM for
points on a line. The initial number of FMM DOF at all
levels is 157. The last column indicates the reduction in
floating-point operations to apply that level’s translation
matrix to a vector

Octree

Level

# FMM DOF
Before

Compression
(n)

# FMM DOF
After

Compression
(m)

FP Savings
Factor
(n/m)2

3 157 7 503
4 157 17 85
5 157 21 56
6 157 23 47

Finally, it is noted that the relative RMS error in
the compressed FMM representation at each level (and
globally) is less than 1e-6 (see Step 3 of the algorithm
reported in Fig. 1). This ensures that the accuracy of
the original FMM representation is retained by the com-
pressed FMM representation.

B. Example: Points on a plane
Table 3 reports the result of applying the FMM com-

pression of Fig. 1 to the static kernel for the case of
source/observer points distributed on the square surface
shown in Fig. 2. For this geometry, each group has a
larger interaction list than for the line example, and more
FMM DOF are needed to retain an accuracy of 1e-6. This
yields a savings of slightly more than 4.5 in the floating-

Table 3: Results of compressing the 1e-6 bbFMM for the
square surface geometry illustrated in Fig. 2. The initial
number of FMM DOF at all levels is 157. The last col-
umn indicates the reduction in floating-point operations
to apply that level’s translation matrix to a vector

Octree

Level

# FMM DOF
Before

Compression
(n)

# FMM DOF
After

Compression
(m)

FP
Savings
Factor
(n/m)2

3 157 47 11
4 157 71 4.9
5 157 74 4.6
6 157 74 4.6
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Fig. 2. Surface point distribution (N=1e5 points).

point cost to apply the translation matrix to a vector (rel-
ative to the original, 1e-6 bbFMM representation).

C. Example: Points in a volume
Table 4 reports the result of applying the FMM com-

pression of Fig. 1 to the static kernel for the case of
source/observer points distributed within the cubic vol-
ume shown in Fig. 3. For this geometry, each group has a
larger interaction list than in the previous two examples,
and more FMM DOF are needed to retain an accuracy
of 1e-6. For this reason, the floating-point savings pro-
vided by the FMM compression is limited to a factor of
approximately 2, as indicated by the last column of the
table.

D. Example: Coil lattice
Finally, consider the 4-by-4 coil lattice geometry

shown in Fig. 4. There are a total of N=80000 point
sources/observers in this geometry, and the static ker-
nel, G(⃗r,⃗r′), is compressed using a six-level octree with
results shown in Table 5.

Table 4: Results of compressing the 1e-6 bbFMM for the
volumetric point distribution illustrated in Fig. 2. The ini-
tial number of FMM DOF at all levels is 157. The last
column indicates the reduction in floating-point opera-
tions to apply that level’s translation matrix to a vector
Octree
Level

# FMM DOF
Before

Compression
(n)

# FMM DOF
After

Compression
(m)

FP Savings
Factor
(n/m)2

3 157 91 3.0
4 157 108 2.1
5 157 109 2.1

Fig. 3. Volumetric point distribution (N=1e5 points).

Fig. 4. Coil lattice geometry (N=8e4 points).

Table 5: Results of compressing the 1e-6 bbFMM for
the coil lattice geometry illustrated in Fig. 4. The initial
number of FMM DOF at all levels is 157. The last col-
umn indicates the reduction in floating-point operations
to apply that level’s translation matrix to a vector

Octree
Level

# DOF Before
Compression

(n)

# DOF After
Compression

(m)

FP
Savings
Factor
(n/m)2

3 157 52 9.1
4 157 76 4.3
5 157 64 6.0
6 157 58 7.3

V. CONCLUSION
A method for compressing an existing FMM rep-

resentation of point-to-point interactions for homoge-
neous kernels in three dimensions has been reported.
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Previously reported methods for compressing an exist-
ing H2 representation [5, 6] relied on a bootstrapping
method, which caused them to be computationally inef-
ficient. The method reported here is a modified form of
[5, 6] and utilizes a reverse-bootstrapping algorithm. The
compression has been observed to be insensitive to the
reverse-bootstrapping step size that is used to reduce the
FMM DOF space. This insensitivity to step-size renders
the proposed method computationally efficient for prac-
tical 3-D applications.

The FMM compression algorithm has been applied
to the bbFMM representation of G(⃗r,⃗r′) = 1/ |⃗r− r⃗′| for
four different 3-D point distribution examples consist-
ing of points on a line, a surface, a volume and a coil
lattice. Significant compression is observed in several
cases, with the volumetric point distribution resulting in
the least amount of compression relative to the original
bbFMM representation. This result is expected, since the
bbFMM is already optimized for volumetric point distri-
butions.

Finally, we briefly consider the application of the
compression algorithm of Fig. 1 to more complex point
distributions, such as that shown in Fig. 5. Unlike the
other examples considered above, the point distribution
in Fig. 5 has different types of point distributions in dif-
ferent spatial regions. In one corner of the domain, points
are distributed along three intersecting lines; in another
corner of the domain, points are densely distributed
throughout a cubic sub-volume. Assuming that the point
distributions are dense, an application of the algorithm
in Fig. 1 to this problem at fine levels of the octree
can be expected to yield compression results more sim-
ilar to those shown in Table 4 than those shown in
Table 2. This is because the number of FMM DOF, m,

Fig. 5. Example of a mixed DOF distribution contain-
ing a region with a dense set of volumetric points and a
region with three intersecting lines of points.

retained by the compression algorithm of Fig. 1 is the
same for all groups at a given level, and m must be
sufficiently large to represent the interactions between
groups having dense interaction lists (i.e., octree groups
located in the region containing the volumetric point
distribution).

However, it has been observed that significant
additional compression can be obtained for prob-
lems involving non-uniform point distributions (such as
Fig. 5) through a straightforward extension the algorithm
reported in Fig. 1. The extension is achieved by allow-
ing the number of FMM DOF used for each source/field
group at a given level of the octree to vary independently
of one another, which leads to non-square translation
matrices while retaining translational redundancy. This
extended version of the algorithm will be reported sepa-
rately elsewhere.
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