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Abstract – A locally corrected Nyström (LCN) dis-
cretization of a magnetostatic volume integral equation
is presented. Anomalous magnetization spikes can oc-
cur when the underlying mesh uses tetrahedral cells re-
gardless of discretization order. The mechanism for the
anomalous magnetization spikes is discussed, and miti-
gation of the spikes through use of an LCN-to-Moment
Method conversion is investigated. Results are presented
validating that the LCN-to-Moment Method suppresses
the anomalous spikes.

Index Terms – integral equation methods, locally cor-
rected Nyström method, moment method.

I. INTRODUCTION
The locally corrected Nyström (LCN) method [1–

3] is one of the primary methods for discretizing inte-
gral equations. Advantages of the LCN method over the
Moment Method (MoM) include not having to explic-
itly enforce continuity of physical quantities across mesh
cell boundaries, less strict mesh conformality require-
ments, more efficient system matrix fill, and ease of im-
plementing higher-order codes. Divergence-conforming
formulations require that normal components of quan-
tities such as fields and currents be continuous (unless
physically discontinuous) across mesh cell boundaries.
Although the Nyström method does not explicitly en-
force this normal continuity, the underlying Nyström
degrees-of-freedom should permit the proper space and
continuity properties required by the formulation to be
achieved.

In this paper, a magnetostatic volume integral equa-
tion is presented that is discretized by the locally cor-
rected Nyström method [4]. Results are provided in
which anomalous (non-physical) magnetization [5] are
observed for complex geometries when tetrahedral mesh
elements are used in the discretization. The mechanism
for the anomalous magnetization spikes is discussed by
noting that the typical Nyström representation does not

span the same mixed-order divergence-conforming space
that commonly used Moment Method bases span. Fur-
ther, use of an LCN-to-MoM conversion [7, 8] of the dis-
cretized LCN system is observed to suppress the anoma-
lous magnetization spikes since the LCN-to-MoM con-
version provides a representation with the appropriate
degrees-of-freedom to model a mixed-order divergence-
conforming space as well as the appropriate normal
continuity.

II. LCN FORMULATION FOR
TETRAHEDRA

Consider the magnetostatic volume integral equa-
tion (VIE)

χχχ
−1 ·M(r) = Hexcitation (r)+Hm (r) , r ∈V, (1)

defined over a material volume V where M is the magne-
tization, χχχ is the magnetic susceptibility tensor, and Hm

is the demagnetizing field

Hm (r) =
∫∫∫

V
∇∇ ·

[
1

4π |r− r′|
M

(
r′
)]

dv′. (2)

The VIE in (1) is discretized using the locally cor-
rected Nyström (LCN) method. For simple geometries,
good results and convergence have been obtained for
both hexahedral and tetrahedral cells. For sphere and
spherical shell geometries with isotropic, homogeneous
magnetic susceptibility, high-order convergence is ob-
tained for higher basis orders when higher-order mesh
representations are used. For some complex geome-
tries, however, the magnetization is observed to exhibit
anomalous spikes for tetrahedral meshes. Similar spikes
in the magnetization are not observed for hexahedral
meshes of the same geometry when using a mixed-order
LCN formulation [10].

For basis order p = 0, the phenomenon seems to be
at least partially due to the inability of the underlying
function space of the Nyström representation of the mag-
netization to sufficiently model the continuity of the nor-
mal component of magnetization across tetrahedral cell
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boundaries. More generally, for order p ≥ 0 the standard
Nyström representation on tetrahedral cells (and simi-
larly on triangular cells) does not span the same space
as typical divergence-conforming MoM representations
(e.g,, [9]). The ability to maintain continuity across all
cell boundaries is discussed for the basis order p = 0
and p = 1 representations. For orders p > 1, analogous
results hold. Further, the number of degrees-of-freedom
of the standard Nyström representation and mixed-order
divergence-conforming MoM representations are not the
same, indicating different spaces are being spanned.

Consider the set of tetrahedral cells depicted in
Fig. 1. A primary cell Tc is adjacent to four secondary
cells Tk for k = 0,1,2,3. The boundary face Sk is shared by
cells Tc and Tk. Local coordinates are defined such that
uix is the coordinate along the ith unitary axis for i=1,2,3.
A dependent local coordinate u0x = 1−u1x −u2x −u3x is
also defined. The local coordinates are such that ukx = 0
on face Sk in cell Tx. For i=1,2,3, uix

(
u1x,u2x,u3x

)
is

the ith unitary vector and uix
(
u1x,u2x,u3x

)
is the ith re-

ciprocal unitary vector in cell x. Furthermore, u0x =
−
(
u1x +u2x +u3x

)
. The cell vertices are ordered such

that the outward normal to boundary Sk is −ukc in cell
Tc and is −ukk in cell Tk, and, so, ukc =−ukk on Sk.

Let the Nyström degrees-of-freedom be cast onto
a set of bases within tetrahedron x with degrees-of-

Fig. 1. Primary tetrahedral cell Tc adjacent to four sec-
ondary tetrahedral cells Tk. Shared face Sk is shared by
Tc and Tk.

freedom αix, j for the jth degree-of-freedom associated
with the ith unitary direction. The pth-order polynomial-
complete basis representation on tetrahedron x is

Mp
x
(
u1x,u2x,u3x)= 1

√
gx

3

∑
i=1

f p
ix

(
u1x,u2x,u3x)uix, (3)

where
√

gx (u1x,u2x,u3x) is the cell Jacobian and f p
ix is a

polynomial of degree p. Note that on the boundary face
Sk,

√
gc =

√
gk at each point on the face. Hence, in the

following development, the cell Jacobians will cancel for
constraints on Sk. For both the p = 0 and p = 1 discussion,
the degrees-of-freedom in cell Tk are considered fixed,
and the degrees-of-freedom in cell Tc will be constrained
(if possible) to achieve continuity of normal magnetiza-
tion across all faces.

For p = 0, there are three Nyström degrees-of-
freedom and three bases, and

f 0
ix
(
u1x,u2x,u3x)= α

0
ix,0. (4)

Enforcing continuity at each face Sk for k=0,1,2,3
gives the constraints[

ukc · 1
√

gc

3

∑
i=1

α
0
ic,0uic

]
ukc=0

=

[
ukc · 1

√
gk

3

∑
i=1

α
0
ik,0uik

]
ukk=0

. (5)

Since the set of unitary and reciprocal unitary vec-
tors are orthonormal, the constraints in (5) reduce to

α
0
kc,0 =−α

0
kk,0, k = 1,2,3, (6)

and
3

∑
k=1

α
0
kc,0 =−

3

∑
k=1

α
0
k0,0, k = 0. (7)

Note there are only three degrees-of-freedom in cell
Tc but four constraints that must be satisfied. The three
degrees of freedom within the cell permit the normal
component of the magnetization to be matched contin-
uously at three of the tetrahedral cell faces. However,
there are insufficient degrees-of-freedom within the cell
to match the normal component of magnetization at all
four of the faces of the cell as required in a divergence-
conforming formulation.

For p = 1, there are twelve Nyström degrees-of-
freedom and twelve bases, and [3]

f 1
ix
(
u1x,u2x,u3x)= α

1
ix,0 +α

1
ix,1u1x +α

1
ix,2u2x +α

1
ix,3u3x.

(8)
Enforcing continuity at each face Sk for k=0,1,2,3

gives the constraints

[
ukc
√

gc
·∑3

i=1

(
α1

ic,0 +α1
ic,1u1c +α1

ic,2u2c +α1
ic,3u3c

)
uic

]
ukc=0

=
[

ukc
√

gk
·∑3

i=1

(
α1

ik,0 +α1
ik,1u1k +α1

ik,2u2k +α1
ik,3u3k

)
uik

]
ukk=0

.

(9)
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The constraints in (9) then reduce to(
α1

ic,0 +α1
ic,1u1c +α1

ic,2u2c +α1
ic,3u3c

)∣∣∣
ukc=0

= −
(

α1
ik,0 +α1

ik,1u1k +α1
ik,2u2k +α1

ik,3u3k
)∣∣∣

ukk=0

,

(10)
for k = 1,2,3. For each k=1,2,3, three degrees-of-
freedom on Tc are specified leaving 3 remaining degrees-
of-freedom to match continuity across S0. For S0, the
constraint reduces to
∑

3
i=1

(
α1

ic,0 +α1
ic,1u1c +α1

ic,2u2c +α1
ic,3u3c

)
u0c ·uic

= ∑
3
i=1

(
α1

i0,0 +α1
i0,1u10 +α1

i0,2u20 +α1
i0,3u30

)
u0c ·ui0

.

(11)
Given the normal

u0c =−
(
u1c +u2c +u3c)=−u00, (12)

at S0 and u1x+u2x+u3x = 1 on the shared face, there are
three constraints and maintaining normal continuity is
possible. Note that [5] mistakenly indicates normal con-
tinuity is not possible for p ≥ 1 using the polynomial-
complete representation.

In the p = 0 case, the Nyström degrees-of-freedom
are insufficient by one DoF to be able to enforce nor-
mal continuity at all four faces simultaneously. The p = 1
case allows a linear tangential, linear normal representa-
tion instead of the typical linear tangential, constant nor-
mal representation. However, the linear tangential, lin-
ear normal representation includes degrees-of-freedom
associated with the null space of the divergence opera-
tor, which is undesirable.

In general, the order p divergence-conforming inter-
polatory vector basis set for tetrahedral cells in [9] give
the number of boundary face bases and internal cell bases
as

2(p+1)(p+2) , (13)
and

p(p+1)(p+2)/2, (14)
respectively. Table 1 lists the number of degrees-
of-freedom for the Nyström representation and a
divergence-conforming interpolatory [9] representation
on a tetrahedral cell for basis orders p = 0 through p =
2. It is noted that there are fewer Nyström bases than
divergence-conforming bases. What is missing from the
Nyström function space are mixed-order p+1 terms that
ensure that the divergence of the basis function space is
complete to order p. Without these terms, the divergence
of the Nyström basis space is only of order p-1. In addi-
tion, for the p = 0 basis, the divergence is zero.

For p > 0, while the Nyström basis is sufficient
to represent the magnetization to order p and provide
normal continuity, it has insufficient DoF to represent
the charge to order p. Therefore, the Nyström basis has
an insufficient number of DoF to represent the mixed-
order divergence-conforming space to order p. Further-
more, it over specifies the p-1 function space. Hence, the

Table 1: Total degrees-of-freedom (DoF) in Nystrom and
an interpolatory divergence-conforming representations
versus basis order p. (Number of boundary face and in-
ternal cell DoF in parenthesis)

Basis
Order ppp

Nyström DoF Interpolatory Divergence
Conforming DoF

0 3 4 (4,0)
1 12 15 (12, 3)
2 30 36 (24, 12)

standard Nyström representation on tetrahedra (and tri-
angles) cannot be truly divergence-conforming although
the method seems to provide very good solutions across
a wide range of problems.

For higher-order LCN representations, a variety of
quadrature rules with differing numbers of points and
properties exist thus complicating the discussion. For
Nyström discretizations with p > 0, it is desirable to
choose a quadrature rule of degree q = 2p, but, for
p > 1, rules of degree q = 2p usually lead to non-
square local correction matrices. Non-square local cor-
rection matrices may compromise the stability of the
solution, so choosing quadrature rules of degree q ≥
(p+1) such that the number of points equals the number
∑

p+1
k=1 p(p+1)(p+2)/6 of Nyström bases for each vec-

tor component at order p is recommended. The quadra-
ture rules need not be symmetric even though symmetric
rules are preferred when available.

The magnetization spike phenomenon is not ob-
served for hexahedral meshes. For example, for the p =
0 Nyström representation on hexahedral cells, a mixed-
order representation [10] has six degrees-of-freedom
which are sufficient to match continuity of the normal
magnetization at each of the six faces of the cell. If the
Nyström degrees-of-freedom are cast onto a set of bases
within the cell, the basis representation is

M0
x =

1
√

gx

3

∑
i=1

(
α

0
ix,0 +α

0
ix,1uix)uix, (15)

Along each unitary direction there are two degrees-
of-freedom allowing for a constant plus linear represen-
tation of the magnetization so that the magnetization at
one face can vary sufficiently to its opposite face (un-
like the p = 0 tetrahedral representation). Furthermore,
the hexahedral Nyström degrees-of-freedom span the
same space that a typical divergence-conforming Mo-
ment Method basis set spans. A polynomial-complete
representation on hexahedral cells, however, does not
span the proper divergence-conforming space and may
suffer from other spurious effects [10].

III. LCN-TO-MOM FORMULATION
Nyström methods are desirable since the system ma-

trix fill avoids the costly double integrations that arise in
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Method of Moment (MoM) discretizations. An LCN-to-
MoM conversion [7, 8] allows an LCN system to be eas-
ily converted to a MoM system without sacrificing too
many of the LCN method’s advantages. Further, for the
magnetostatic VIE formulation presented, it is not nec-
essary to strictly enforce the continuity of MoM bases
across tetrahedral cell faces. Hence, independent half-
MoM bases can be assigned to each face in each tetra-
hedral cell, which further simplifies the LCN-to-MoM
conversion. For the magnetostatic formulation, indepen-
dent half-MoM bases must be assigned to shared faces
between two cells that have different susceptibilities.

In the LCN-to-MoM conversion on tetrahedral cells,
an order p MoM representation requires the LCN system
to be filled at order (p+1) to accommodate the polyno-
mial space requirements of divergence-conforming bases
[9]. In view of Table 1, the (p+1) Nyström representa-
tion has too many degrees-of-freedom for the analogous
divergence-conforming representation. Hence, the LCN-
to-MoM conversion matrices can be viewed as the ap-
propriate constraints to remove the extraneous degrees-
of-freedom in a Nyström representation and achieve a
divergence-conforming representation.

IV. DISCUSSION
First, a convergence analysis was performed for a

locally-corrected Nyström (LCN) discretization of (1)
for a magnetic spherical shell. The inner radius is 0.9 m,
the outer radius 1.0 m, and the relative permeability is
50. The shell was meshed with a sequence of three tetra-
hedral meshes with 1514, 3320, and 6426 cells, respec-
tively for mesh orders o = 1 (linear) and o = 2 (quadratic).
The convergence analysis was performed for LCN basis
orders p = 0, 1, and 2. The magnetic field was computed
at various points outside the shell, and the average rela-
tive error was calculated using the analytic solution [4]
as a reference. The results of the convergence analy-
sis are plotted in Fig. 2. Also plotted are the relative

Fig. 2. Average relative field error in Nyström solution
of (1) for a magnetic spherical shell vs. maximum mesh
edge length for various basis orders p and mesh orders
o. The relative mesh discretization error for the spherical
shell surface area is also plotted.

Fig. 3. Subsection of circular-cylindrical shell with ex-
tending circular frustrum shell overlaid with tetrahedral
mesh.

mesh discretization error of the total surface area of the
shell. The average relative error is observed to be limited
by the mesh discretization error. However, the conver-
gence rate increases with basis order until limited by the
mesh discretization error. Hence, when the geometry is
fairly smooth and uncomplicated, the LCN method usu-
ally produces good results.

As a second example, a subsection of a circular-
cylindrical shell with a hollow circular-cylindrical frus-
trum extending outward, depicted in Fig. 3, was ana-
lyzed. The cylinder has a height of 6 m, an outer radius of
5 m, a wall thickness of 2 cm and is aligned on the z axis
and centered at the origin. The frustrum has a height of
3 m, a wall thickness of 2 cm, and extends out from the
cylinder to a final outer radius of 5.5 m. Only the subsec-
tion of the structure for x > 3 m is retained. The circular-
cylindrical shell has a relative permeability of 150, and
the frustrum extension has a relative permeability of
100. The excitation Hexcitation = −ẑ A/m, and the ge-
ometry was meshed with a 28728 cell, linear tetrahedral
mesh.

The LCN simulation was performed at p = 0, and the
LCN-to-MoM conversion used the Schaubert-Wilton-
Glisson (SWG) bases [6] with four degrees-of-freedom
per tetrahedral cell. Independent half-MoM bases were
applied to each shared face. Plots of the magnetization
for the LCN solution and LCN-to-MoM solution are
provided in Fig. 4 (a) and Fig. 4 (b), respectively. In
Fig. 4 (c) is shown the magnetization for a p = 0 LCN
solution using a hexahedral mesh. The LCN-to-MoM
solution and hexahedral LCN solutions are observed to
be regular while the tetrahedral LCN solution exhibits
anomalous spikes in magnetization across the mesh. The
maximum magnetization magnitude for the tetrahedral
LCN-MoM solution is approximately 156 A/m while the
tetrahedral LCN solution spikes to almost 1275 A/m.
Furthermore, some of the spikes in LCN magnetization
occur at smooth parts of the mesh and not near edges or
other complex features.
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(a)

(b)

(c)

Fig. 4. Magnitude of magnetization in circular-
cylindrical shell section with circular-cylindrical frus-
trum shell extension for (a) tetrahedral LCN simulation
(b) tetrahedral LCN-to-MoM simulation, and (c) hexa-
hedral LCN simulation.

Fig. 5. Scattered magnetic field Hz along a line centered
at x = 4.9 m, y = 0 m for the cylindrical shell section
with frustrum extension example. Included are the fields
due to the tetrahedral LCN solution, the tetrahedral LCN-
MoM solution, and the hexahedral LCN solution.

In Fig. 5 is plotted the z-component of the scat-
tered magnetic field vs z along a line centered at (x,y) =
(4.9,0) m for the tetrahedral LCN, tetrahedral LCN-to-
MoM, and hexahedral LCN solutions. The line passes
close to some of the magnetization spikes observed
in Fig. 4 (a) for the tetrahedral LCN solution. While
the scattered field of the LCN-to-MoM and hexahedral
LCN are visually identical, the field of the tetrahedral
LCN solution is seen to be corrupted by the spurious
magnetization.

V. CONCLUSION
The locally-corrected Nyström (LCN) method was

observed to potentially produce anomalous spikes in
magnetization when used to solve magnetostatic vol-
ume integral equations with tetrahedral mesh cells to
model geometry. The failure of the LCN method for
tetrahedra was discussed in terms of the inability of the
Nyström representation to appropriately model a typical
divergence-conforming space. Further, it was also ob-
served that the p = 0 LCN discretization for tetrahedra
does not allow continuity of normal magnetization be-
tween mesh cells to be appropriately modeled. For p >
0, the LCN basis does allow continuity, but fails to rep-
resent the charge to order p, and does not fully represent
the divergence-conforming basis to order p.

An LCN-to-MoM discretization, however, does ap-
propriately model a mixed-order divergence-conforming
space since the MoM bases are constructed to be
divergence-conforming. Further, proper continuity of the
normal magnetization across cell boundaries is mod-
eled at all orders even though it is not required to
explicitly enforce the MoM bases to be continuous
across cell boundaries. Hence, many of the advantages
of an LCN method are maintained in an LCN-to-MoM
discretization.
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Convergence results for a spherical magnetic shell
were presented that showed the LCN method usually per-
forms well for simple structures. Higher-order conver-
gence was achieved until stagnated by mesh discretiza-
tion error. However, for a more complicated model,
the LCN method produced anomalous spikes while the
LCN-to-MoM did not.

In conclusion, it is remarkable that the typical LCN
representations used with tetrahedral meshes perform as
well as they do as the representation do not span the ap-
propriate space. Still, over a wide range of problems, no
issues are observed, and good convergence characteris-
tics are achieved. It is extremely difficult to predict a
priori for a specific geometry whether the LCN method
will produce spurious results. For large complex geome-
tries with millions of cells, the probability of anomalous
spikes occurring greatly increases. Although mesh qual-
ity can affect both the LCN and LCN-to-MoM solution,
mesh quality seems to be more important to obtain ro-
bust LCN results when using tetrahedral cells. Refining
the mesh may help suppress the spikes in some cases,
but the increase in system size, as well as not knowing a
priori whether the refinement is sufficient, is prohibitive
for very large problems. Further, while the spikes seem
to be local in nature and do not seem to corrupt the whole
solution, fields in the vicinity of the spikes may have sig-
nificant errors. Hence, the use of the LCN-to-MoM is
advisable when working with tetrahedral meshes.
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