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Abstract – Multibranch basis functions have been con-
firmed to be effective for local refinement of domain
decomposition methods in the application of solving sur-
face and volume integral equations. Surface-volume inte-
gral equations (SVIEs) are applied for solving the hybrid
electromagnetic scattering problems involving perfect
electric conductors (PEC) and dielectrics, especially
inhomogeneous and anisotropic media. In this paper,
multibranch Rao-Wilton-Glisson basis functions (MB-
RWGs) are applied in conjunction with multibranch
Schaubert-Wilton-Glisson basis functions (MB-SWGs)
for solving the SVIEs. Block diagonal preconditioners
(BDPs) are used to accelerate the iteration convergence
based on generalized minimum residual (GMRES) algo-
rithms. The numerical results demonstrate the accuracy
of the multibranch basis functions in solving SVIEs, and
also show that proper BDPs can accelerate the iteration
convergency.

Index Terms – block diagonal preconditioner, MB-
RWG, MB-SWG, surface-volume integral equations
(SVIEs).

I. INTRODUCTION
With the increasing complexity of electronic struc-

tures and material characteristics, the analysis of scat-
tering problems becomes more and more challenging.
We need to consider hybrid structures with perfect elec-
tric conductors (PEC) and dielectric scatterers, or even
including inhomogeneous and anisotropic media. Inte-
gral equation methods have been widely used for electro-
magnetic scattering problems. PEC and simple medium
can be efficiently analyzed with surface integral equa-
tions (SIEs) [1–4], while for anisotropic and inhomo-
geneous media, volume integral equations (VIEs) [5–
8] may have to be used. To solve these two types of
integral equations (IEs), Rao-Wilton-Glisson basis func-
tions (RWGs) [1] and Schaubert-Wilton-Glisson basis
functions (SWGs) [5] have been widely applied for over
four decades. Recently, as an extension of the two kinds
of basis functions, multibranch Rao-Wilton-Glisson
(MB-RWGs) and multibranch Schaubert-Wilton-Glisson

(MB-SWGs) basis functions are proposed for domain
decomposition and local refinement [3][7]. It has been
confirmed that these two kinds of basis functions have
almost the same characteristics of the related traditional
basis functions and have advantages in flexibility when
applied for solving SIEs and VIEs. In this paper, we
focus on analyzing hybrid objects that include inho-
mogeneous and anisotropic dielectric scattering objects.
Both MB-RWGs and MB-SWGs are applied, together
with traditional RWGs and SWGs, to solve the surface-
volume integral equations (SVIEs) [9–12] for these
objects.

When applying method of moments (MoM), the
impedance matrix is usually a dense matrix and it
is time-consuming to solve the matrix equation with
LU decomposition directly. Iterative algorithms, like
the generalized minimum residual (GMRES) algorithm,
conjugate gradient (CG) algorithm, and so on, are well
used as solvers. However, with more complex struc-
tures and diversified materials, the characteristics of
the impedance matrix becomes worse. It is difficult to
converge even using iterative algorithms. An effective
approach to improve the behavior of the matrix is to
apply preconditioners [13–15]. In this paper, we use
block diagonal preconditioners (BDP) to accelerate the
iterative process.

The remainder of this paper is organized as fol-
lows: SVIEs are introduced in Section II, along with the
matrix equations applied with (MB-)RWGs/SWGs and
the method to generate BDPs. Two numerical examples
are shown in Section III, with a conclusion in Section IV.

II. SVIES FORMULATION
Consider an arbitrary hybrid PEC and anisotropic

dielectric scattering body (Spec and VD) illuminated by
an incident field

(
E incHinc

)
. The relative tensor permit-

tivity and permeability of the dielectric are ε̄r and µ̄r. The
SVIEs can be written as:

LE
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J
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+Etot (r)

= Einc(r),r ∈VD,
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= n̂×Einc(r),r ∈ Spec, (1)
where the operators are formulated as:

LE(f) = jωµ0

∫
Ω

(
Ī +
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k2
0

)
g0•fdr′,

LM(f) = jωε0

∫
Ω

(
Ī +

∇∇

k2
0

)
g0•fdr′,

K (f) = p · v ·∇×
∫

Ω

f ·g0dr′, (2)

and g0 = e− jkR
/

4πR,R = |r− r′|is three dimensional
Green’s function in free space, r and r′ represent the
field point and source point, respectively. The integration
region Ω is VD and Spec means volume integral for dielec-
tric scatterer and surface integral for PEC scatter, respec-
tively. In equation (1), J, M, Js are polarized electric
current, polarized magnetic current, and equivalent sur-
face current, respectively. Etot and Htot are total electric
and magnetic fields in the interior region of the dielectric
scattering object. According to the constitutive relation,
J, M, Etot , and Htot can be replaced by polarized elec-
tric displacement Dand polarized magnetic flux density
B as:

J = jω (ε̄r − Ī)gε̄
−1
r gD

M = jω (µ̄r − Ī)gµ̄
−1
r gB

Etot = ε̄
−1
r gD/ε0

Htot = µ̄
−1
r gB/µ0

. (3)

To solve the SVIEs, traditional RWG and SWG
basis functions are defined as:

f(r) =


l

2A+

(
r− r+0

)
,r ∈ S+

l
2A−

(
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)
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,
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s

3W+

(
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)
,r ∈ T+

s
3W−

(
r− r−0

)
,r ∈ T−

0, otherwise
, (4)

where S± and T± response to positive/negative trian-
gle and tetrahedron in RWGs and SWGs, r±0 is the pos-

itive/negative free node in both basis functions, l and
A± are the length of common line and the area of pos-
itive/negative triangle for RWGs, meanwhile s and W±

are the area of common surface and the volume of pos-
itive/negative tetrahedron for SWGs. The MB-RWGs
and MB-SWGs are defined with similar formulation as
shown in equations (5) and (6) [3], [7]:

fMB(r) =


l+i
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i

(
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)
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, (5)

hMB(r)=


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(
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)
,r ∈ T+
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3W−

j

(
r− r−j

)
,r ∈ T−
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0, otherwise

. (6)

If meshing the PEC surface and the dielectric sepa-
rately, we may encounter nonconformal meshes on the
interface between them. It is also possible to use half
SWG basis functions (HSWGs) hH in the analysis [6].
Then, D, B, and Js, are expanded by these basis functions
(shorted as b in total) mentioned above and formulated
as:

D(r) =
NS

∑
i=1

cNS
D,ihi(r)+

NHS

∑
i=1

cNHS
D,i hH

i (r)+
NMBS

∑
i=1

cNMGS
D,i hMB

i (r),

B(r) =
NS

∑
i=1

cNS
B,i hi(r)+

NHS

∑
i=1

cNHS
B,i hH

i (r)+
NMBS

∑
i=1

cNMGS
B,i hMB

i (r), (7)

Js(r) =
NR

∑
i=1

cNR
J,i fi(r)+

NMBR

∑
i=1

cNMBR
J,i fMB

i (r),

where S, HS, MBS, R, and MBR are the labels to
represent related SWG, HSWG, MBSWGs RWG, and
MBRWG basis functions (shorted as BF in total), NBF

are the numbers of basis functions, respectively, and
cNBF

m , where m = D,B,J, are the coefficients of different
sources and basis functions.

According to MoM, testing the first two equations
in equation (1) by SWG series functions and testing the
tangential components of the fields in the last equation
in equation (1) by the tangential components of RWG
series functions, we can convert it in matrix formulation
as equation (8), with elements formulas listed under it

ZS,S
1 ZS,S

2 ZS,HS
1 ZS,HS

2 ZS,MBS
1 ZS,MBS

2 ZS,R
E ZS,MBR

E
ZS,S

3 ZS,S
4 ZS,HS

3 ZS,HS
4 ZS,MBS

3 ZS,MBS
4 ZS,R

H ZS,MBR
E

ZHS,S
1 ZHS,S

2 ZHS,HS
1 ZHS,HS

2 ZHS,MBS
1 ZHS,MBS

2 ZHS,R
E ZHS,MBR

E
ZHS,S

3 ZHS,S
4 ZHS,HS

3 ZHS,HS
4 ZHS,MBS

3 ZHS,MBS
4 ZHS,R

H ZHS,MBR
H

ZMBS,S
1 ZMBS,S

2 ZMBS,HS
1 ZMBS,HS

2 ZMBS,MBS
1 ZMBS,MBS

2 ZMBS,R
E ZMBS,MBR

E
ZMBS,S

3 ZMBS,S
4 ZMBS,HS

3 ZMBS,HS
4 ZMBS,MBS

3 ZMBS,MBS
4 ZMBS,R

H ZMBS,MBR
H

ZR,S
1 ZR,S

2 ZR,HS
1 ZR,HS

2 ZR,MBS
1 ZR,MBS

2 ZR,R
E ZR,MBR

E
ZMBR,S

1 ZMBR,S
2 ZMBR,HS

1 ZMBR,HS
2 ZMBR,MBS

1 ZMBR,MBS
2 ZMBR,R

E ZMBR,MBR
E


•



CS
D

CS
B

CHS
D

CHS
B

CMBS
D

CMBS
B
CR

CMBR


=



ES

HS

EHS

HHS

EMBS

HMBS

ER

EMBR


. (8)
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ZS,S
1 (hm,hn) =

〈
hm, jωLE

(
(ε̄r − Ī)• ε̄

−1
r •hn

)
+ε̄

−1
r •hn/ε0

〉
,

ZR,S
1 (fm,hn) =

〈
fm, jωLE

(
(ε̄r − Ī)• ε̄r

−1 •hn
)〉

,

ZS,S
2 (hm,hn) =

〈
hm, jωK

(
(µ̄r − Ī)• µ̄r

−1 •hn
)〉

,

ZR,S
2 (fm,hn) =

〈
fm, jωK

(
(µ̄r − Ī)• µ̄r

−1 •hn
)〉

,

ZS,S
3 (hm,hn) =

〈
hm, jωK

(
(µ̄r − Ī)• µ̄r

−1 •hn
)〉

,

ZS,S
4 (hm,hn) =

〈
hm, jωLM

(
(µ̄r − Ī)• µ̄

−1
r •hn

)
+µ̄

−1
r •hn/µ0

〉
,

ZR,R
E (fm, fn) = ⟨fm,LE (fn)⟩ ,

ZS,R
E (hm, fn) = ⟨hm,LE (fn)⟩ ,

ZS,R
H (hm, fn) = ⟨hm,−K (fn)⟩ ,

where⟨a,b⟩ is the inner product of vector a and b. The
number of test functions is subscripts m = 1, · · · ,NS for
SWGs and m = 1, · · · ,NR for RWGs as test functions,
n = 1, · · · ,NS for SWGs and n = 1, · · · ,NR for RWGs as
basis functions.

If we rearrange the variables according to the type of
the basis functions, the impedance matrix can be simply
denoted by:

Z̄ =


ZS,S ZS,HS ZS,MBS ZS,R ZS,MBR

ZHS,S ZHS,HS ZHS,MBS ZHS,R ZHS,MBR

ZMBS,S ZMBS,HS ZMBS,MBS ZMBS,R ZMBS,MBR

ZR,S ZR,HS ZR,MBS ZR,R ZR,MBR

ZMBR,S ZMBR,HS ZMBR,MBS ZMBR,R ZMBR,MBR

 .

(9)
To accelerate the iterative progress, it is important to

establish a proper precondition matrix P̄ to improve the
convergence rate of the iterative solver. In this paper, a
left BDP matrix is used to transform:

Z̄ •C = E, (10)
into:

(P̄)−1 • Z̄ •C = (P̄)−1 •E. (11)
The left BDP matrix has different formulations.

Here, four different BDPs are constructed and applied
to the matrix function independently.

The first preconditioner is constructed by the block
matrix along the diagonal line in equation (9) and formu-
lated as:
P̄1a = diag

(
ZS,S ZHS,HS ZMBS,MBS ZR,R ZMBR,MBR

)
.

(12)
According to the difference between J (M) and D

(B) in equation (3), in order to balance the elements of
dielectric part and PEC part, the second preconditioner
is constructed by dividing the jω and formulated as:

P̄1b = diag
(

ZS,S

jω
ZHS,HS

jω
ZMBS,MBS

jω ZR,R ZMBR,MBR
)
.

(13)
Similarly, the third and the fourth preconditioners

are constructed by the block matrix along the diagonal

Fig. 1. Two-layered sphere with a PEC core and a dielec-
tric shell.

line in equation (8) with jω only divided in the fourth
preconditioner, and formulated as:

P̄2a = diag
(

ZS,S
1 · · · ZMBS,MBS

4 ZR,R
E ZMBR,MBR

E

)
,

(14)
P̄2b = diag

(
ZS,S

1
jω · · · ZMBS,MBS

4
jω ZR,R

E ZMBR,MBR
E

)
. (15)

Finally, according to equations (10) and (11), these
four BDPs are applied to original matrix equation inde-
pendently.

III. NUMERICAL EXAMPLES
Two numerical examples are considered. In both

cases, the scattering objects consist of a PEC part and
a dielectric part. They are illuminated by a x-polarized
plane wave travelling in -z axis. The PEC part and the
dielectric part are independently constructed and meshed
using COMSOL software. The relative error is defined
as 20log

(
∥x̄− x̄0∥2

/
∥x̄0∥2

)
to calculate the difference

between results x̄ and reference results x̄0.
We use the first numerical example to verify the

accuracy of the algorithm and the effect of the precon-
ditioners. The object is a two-layer sphere, centered at
(000). The radius of the outer surface is 1.0 m, while the
radius of the inner surface is 0.7 m. The frequency of the
incident plane wave is 30 MHz. The inner part is a PEC
sphere and the outer layer is a dielectric with relative per-
mittivity and permeability as 5.0 and 2.0, respectively.

We have used two mesh structures to compare the
accuracy and the convergence behavior. In case 1, the
PEC surface and the dielectric part are meshed into
1320 triangles and 1946 tetrahedrons, respectively. The
average length of the triangles is about 0.01λ0, λ0
is the wavelength in free space. The average length
of tetrahedrons is about 0.0763λD, λD is the wave-
length in the interior region of dielectric part. The mesh
structure generates 1980 RWGs, 3543 SWGs, and 698
HSWGs. Hence, the dimension of the impedance matrix
is 10462×10462. The mesh in case 2 is generated based
on the mesh of case 1. From the meshes in case 1, we
have selected the 162 triangles and 244 tetrahedrons in
the region x≥ 0, y≥ 0, and z≤ 0 for local refinement. By
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adding 3 additional nodes at the middle of the 3 edges of
the triangle, each selected triangle is divided into 4 small
triangles. Similarly, by adding 6 additional nodes at the
middle of the 6 edges of the tetrahedron, each selected
tetrahedron is divided into 8 small tetrahedrons. Hence,
the refined meshes generate 2664 RWGs, 6692 SWGs,
962 HSWGs, 30 MBRWGs, and 54 MBSWGs in total.
The dimension of the impedance matrix is changed to
18110×18110.

To reduce the number of iterations, the four precon-
ditioners, discussed in Section II, are applied. All the pre-
conditioners can greatly accelerate the convergence of
the GMRES iteration solver under nearly the same accu-
racy. The Bi-RCSs, obtained for the two mesh structures,
are compared with those obtained by Mie series, as illus-
trated in Fig. 2. The relative error is -17.65 dB in case 1
and -25.05 dB in case 2. Moreover, we have applied four
BDPs in case 2.

The relative error stays the same when different
BDPs are applied. The iteration property and singular
values of the impedance matrix in different cases are
illustrated in Figs. 3 and 4, respectively. The condition
numbers of case 2 with or without different BDPs and
numbers of iterations to achieve a residual error of 0.005
are listed in Table 1. Obviously, the singular values are
more clustered and the number of iterations is smaller
after application of preconditioners [16][17].

The second example is used to show the effect of
local refinement for different materials. We consider a
PEC cuboid, surrounded by two different materials and
illuminated by a plane wave with frequency of 260 MHz,
as shown in Fig. 5. The lengths of PEC cuboid along x,
y, and z axis are 0.6 m, 0.1 m, and 0.1 m, respectively.
The thickness of dielectric shell is 0.05 m. It consists
of two kinds of materials. The dielectric in region 1 is

Fig. 2. Bistatic RCSs for case 1, case 2, and case 2 with
two BDPs, Mie series.

Fig. 3. Iteration convergencies for different methods.

Fig. 4. The s values of SVD for different methods.

Table 1: Condition numbers and numbers of iterations
Case 2 Condition

Number
Number of Iterations

without BDP 1.438×1013 /
with BDP1a 1.356×1018 35
with BDP1b 7.250×1013 9
with BDP2a 1.356×1018 35
with BDP2b 1.842×1014 12

anisotropic materials, with parameters of:

ε̄r1 =

 8+0.2 j −0.4 j 0
0.4 j 8+0.2 j 0

0 0 8−0.1 j

 ,

µr1 = 2. The parameters of region 2 are εr2 = 2, µr2 =
1.5. The wavelengths in the dielectric part are labeled as
λn, where n = 1,2 for different regions.

Firstly, we generate a fine mesh structure as a base
for comparison. The surface of the PEC part is divided
into 360 triangles, and the dielectric part is divided into
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(a) (b)

Fig. 5. Model of the cuboid scatterer divided in w
regions: (a) dielectric part and (b) PEC part.

2462 tetrahedrons. The fine mesh structure generates
4449 SWGs, 950 HSWGs, and 540 RWGs. The dimen-
sion of the impedance matrix is 11338×11338. The aver-
age lengths are 0.036λ0 for the PEC part, 0.19λ1 and
0.089λ2 for the dielectric part.

Secondly, we generate a coarse mesh structure as the
base for local refinement, where the surface of the PEC
part is divided into 104 triangles, and the dielectric part is
divided into 402 tetrahedrons. The coarse mesh structure
generates 658 SWGs, 292 HSWGs, and 156 RWGs. The
dimension of the impedance matrix is 2056×2056. The
average lengths are 0.066λ0 for the PEC part, 0.37λ1 and
0.16λ2 for the dielectric part.

Thirdly, based on the coarse mesh structure, pro-
gressive local refinements are considered to show the
effect of different local refinement strategies. The refin-
ing approach for the selected part of meshes is the same
as that in the first example.

In case 1, we only select the triangles/tetrahedrons
in region 1 of PEC/dielectric part for local refinement,
generating 2326 SWGs, 592 HSWGs, 12 MBSWGs,
312 RWGs, and 4 MBRWGs. The dimension of the
impedance matrix is 6176×6176.

Case 2 is based on case 1. We find the 4 triangles on
the PEC surface in region 2 that have one side locating
on the bordering line with region 1, and then add them as
additional region for local refinement. The numbers of
RWGs, MBRWGs, and the dimension of the impedance
matrix are changed to 324, 8, and 6192×6192, respec-
tively.

Case 3 is also based on case 1. We find the 50 tetra-
hedrons in region 1 and region 3 of dielectric part that
have a surface locating at the interface with region 2,
then we add them for local refinement. The numbers of
SWGs, HSWGs, MBSWGs, and the dimension of the
impedance matrix are changed to 2446, 628, 24, and
6512×6512, respectively.

In case 4, both of the additional meshes in case 2 and
case 3 are selected for local refinement. The dimension
of the impedance matrix is changed to 6528×6528.

Obviously, the local refinement in case 1 has abrupt
variation in mesh sizes in different material regions; in
case 2, a transition region on the PEC surface is added;

in case 3, a transition region in the dielectric region is
added; and in case 4, both the transition regions are
added. This is to show the effect of the different local
refining strategies.

The results of the surface current on the PEC part
and the Bi-RCSs of the object in the xoz plane in differ-
ent cases are shown in Figs. 6 and 7, respectively. The

(a) (b)

(c) (d)

(e) (f)

Fig. 6. The surface currents of different cases (unit:
mA/m): (a) fine case, (b) coarse case, and (c-f) case 1-
4.

Fig. 7. The results of bistatic RCSs of different cases in
xoz plane.
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relative errors of Bi-RCSs of the coarse mesh and cases
1-4 are -24.47 dB, -21.44 dB, -30.31 dB, -20.52 dB, and
-28.61 dB compared with the Bi-RCSs of the fine mesh
as a reference result.

It can be seen that surface current on the PEC sur-
face is greatly affected by the discontinuity between
different materials where there is no transition area on
the surface of the PEC object. The local refinement in
coarse meshes improves the Bi-RCSs result. Hence, the
MBSWGs and MBRWGs can be applied for hybrid PEC
and dielectric structures, especially when local refine-
ment is needed.

IV. CONCLUSION
MB-RWGs can be applied for solving SIEs, and

MB-SWGs can be applied for solving VIEs. Both have
nearly the same accuracy as that of using traditional
RWGs and SWGs [3][7]. In this paper, it is demonstrated
that MB-RWG and MB-SWG can also be applied for
solving SVIEs in hybrid systems even consisting of inho-
mogeneous and anisotropic materials.

Although MB-RWGs and MB-SWGs are flexible
for local refinement, numerical examples show that,
when performing local refinement among different types
of materials, it would be better to refine the regions
in a progressive way so that the scale of the mesh
structures between neighboring elements is not too
different.
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