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Abstract – Energy selective surface (ESS) is a special
kind of metasurface with great potential in high-power
microwave protection. In this paper, the electromagnetic
(EM) properties of an ESS array are analyzed with syn-
thetic functions expansion (SFX) method. A cylindri-
cal conformal ESS array based on an I-shape element is
designed for demonstration. The Bistatic RCS as well as
electric field distribution of the ESS array is calculated
with SFX and traditional full-wave numerical methods.
The results show that SFX exhibits great advantages in
memory cost while maintaining the same level of accu-
racy and efficiency with the multi-layer fast multipole
method (MLFMM). Besides, the EM performance of the
designed ESS is calculated with an array with finite ele-
ments and unit cell with periodic boundaries, respec-
tively. The results show a good agreement. The proposed
method can also be applied to the analysis of other kinds
of metasurfaces whose elements share similar geome-
tries with periodic or quasi-periodic arrangement. Espe-
cially for large-scale arrays, this method could well over-
come the difficulty of balancing accuracy, efficiency, and
resource consumption.

Index Terms – Energy selective surface (ESS), large-
scale arrays, metasurface, method of moment (MoM),
synthetic functions expansion (SFX).

I. INTRODUCTION
Energy selective surface (ESS) is a special kind of

metasurface posing nonlinear transmission characteris-
tics with respect to the field intensity of incident waves
[1]. More specifically, ESS is supposed to be trans-
parent to low-power microwaves but shield high-power
microwaves adaptively. Therefore, ESS is regarded as a
potential method in the fields of high-power microwave
protection [2].

In the past several years, ESS has attracted great
interest and significant progresses have been made [3–
8]. In terms of the analytical and numerical modeling
of ESS, an approximation method based on periodic
boundary conditions is mostly adopted. In that case, ESS
is regarded as an infinite array and its electromagnetic
(EM) properties are obtained using Floquet model anal-
ysis [6]. However, this method is not valid for finite and
conformal arrays [7]. On the one hand, the edge effects of
a finite array should be taken into account. On the other
hand, for most conformal arrays, they do not strictly sat-
isfy the periodic boundary conditions. Thinking of this,
full-wave numerical methods are usually adopted to sim-
ulate the EM properties of a finite conformal ESS array.

Nevertheless, traditional full-wave algorithms face
several difficulties such as a tremendous cost of memory,
low computational efficiency, and so on, when applied
to large-scale arrays. For instance, method of moment
(MoM) is a classic frequency-domain full-wave numer-
ical method which is well known for high accuracy and
pretty good adaptability for arbitrary 3D objects. When
it comes to large-scale arrays, MoM requires significant
memory cost which is usually unbearable for a single
PC because of the complex dense matrix equations. Fur-
thermore, the computational complexity is terrible. In
contrast, time-domain full-wave numerical methods like
finite difference time domain (FDTD) and finite inte-
gration technique (FIT) perform better than frequency-
domain methods in memory consumption and compu-
tational efficiency in general. As a tradeoff, computa-
tional accuracy of time-domain methods is usually less
than frequency-domain methods. Hence, for the mod-
eling and analysis of large-scale conformal ESS arrays,
an efficient and accurate full-wave numerical method is
what we desire [9–12].

In this paper, an improved method of MoM called
synthetic functions expansion (SFX) is used to analyze
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the EM properties of a large-scale cylindrical conformal
ESS array. SFX is first presented by Matekovits et al., the
core idea of which is using synthetic functions instead of
low order basis functions to discretize EM integral equa-
tions [13–14]. After that, several meaningful works on
SFX have been published which mainly focus on the
following topics such as the construction of synthetic
functions [15–16], the unsolved integral equations [17–
18], and the parallel algorithm [12]. Compared to tra-
ditional full-wave numerical methods, the advantages of
SFX are:

1) Since synthetic functions are adopted to discretize
the integral equations, memory cost and efficiency of
SFX will perform much better than MoM.

2) For an ESS array, synthetic functions defined on
different elements can be reused because of the geomet-
rical similarity between these elements. This feature is
of vital importance in the analysis of large-scale arrays
which can improve the computational efficiency greatly.

3) For a cylindrical conformal array, SFX only needs
to mesh the surface of objects rather than the total space
which means the memory cost of SFX will be less than
traditional time-domain numerical methods.

The paper is arranged as follows. In Section II, a
cylindrical conformal ESS array working at 10 GHz is
designed and analyzed based on periodic boundary con-
ditions. In Section III, we introduce the basic theory
of SFX, then the modeling of ESS and the construc-
tion of synthetic functions are discussed. In Section IV,
Bistatic RCS, electric field distribution, and high-power
microwave protection performance of the designed cylin-
drical conformal ESS array are calculated using SFX
and other numerical methods. Furthermore, the compu-
tational performance are discussed, from which we can
see that SFX exhibits great advantages in memory con-
sumption while maintaining the same level of compu-
tational accuracy and efficiency compared to traditional
full-wave numerical methods.

II. MODEL DESIGN
For demonstration, a cylindrical conformal ESS

array is designed and analyzed, and the detailed geom-
etry parameters are shown in Fig. 1. The array includes
21*10=210 unit cells covering an azimuth angle of 1800.
The radius of the conformal array is 1.27λ 0 (λ 0=30 mm
at 10 GHz) and the height is about 2λ 0. The unit cell is
composed of an I-shaped metal structure with two diodes
loaded on the vertical arm.

Transmission properties of the unit cell, shown in
Fig. 2, are obtained with a commercial full-wave soft-
ware (CST MWS 2021) under periodic boundary con-
ditions where diodes are modeled as lumped elements,
namely, a capacitor C=0.018pf and a resistor R=2Ωfor
OFF and ON states, respectively [4]. It is not difficult

Fig. 1. Illustration of the cylindrical conformal ESS
array.

to see that the transmission coefficient is near to 0 dB
and smaller than -20 dB at the central frequency (10
GHz) when the diodes are in different states. The phys-
ical mechanism may be illustrated briefly by the shift of
the resonance frequency. When the diodes are OFF under
low-power EM waves, the resonance frequency is much
higher than 10 GHz and the structure is supposed to be
transparent to low-power EM waves. By contrast, when
the structure is illuminated by high-power EM waves,
the diodes will be triggered on by the induced voltage,
and the ESS structure will resonate at 10 GHz. Then,
the high-power EM waves will be reflected. By this way,
electronic equipment in the area enclosed by the ESS
array is able to receive low-power EM waves, which is
the working signals. Meanwhile, high power EM waves
are shielded by the ESS array adaptively to protect the
electronic equipment.

In this work, our focus is not on the design method
of the ESS structure or the underlined mechanism. We
aim at the fast and accurate numerical analysis of a
designed ESS array. In previous works, the performance
of ESS is mainly evaluated by two important indexes
- the insertion loss (IL) and the shielding effectiveness
(SE) - which are defined as the transmission coefficient
of the ESS under different states (Diodes OFF for IL and
Diodes ON for SE). However, the transmission coeffi-
cients used in these definitions are obtained from an infi-
nite array with periodic boundary conditions, which only
illustrate an ideal situation. Thus, from a more practical
perspective, we define the IL/SE as the average attenua-
tion of the electric field in the area enclosed by the ESS
array in different states. In more detail, IL and SE are
defined as:

IL/SE = 20log(
∮

s |Einc|ds∮
s |Et |ds

), (1)
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Fig. 2. The transmission properties of the unit cell of ESS
under periodic boundary condition.

where S is the area enclosed by ESS array; Eincand Et
indicate the electric field with and without ESS array. In
this paper, considering the ESS array is half-open, we
select a semi-circle S in the transverse (to z) plane at z=30
mm as the area to calculate IL and SE. That is:

x2 + y2 ≤ R,x ≥ 0,z = 30mm. (2)

III. SFX ANALYSIS
A. Theory

Since SFX is an improved approach of MoM, we
will begin with a brief introduction of MoM and the elec-
tric field integral equation (EFIE) is adopted for example.

Usually, EFIE can be compactly written as:
n̂×L(J) = n̂×Einc, (3)

where Jand n̂ are the surface current and a unit vector,
respectively. For a vector X (circled by S), L is the elec-
tric integral operator and defined as:

L(X) = jωµ

∫
S
[X +

1
k2 ∇(∇ ·X)]gdS, (4)

where ω ,µand k are the frequency, the permeability, and
the wave number in the free space, respectively. In addi-
tion, g is the Green’s function in the free space.

To solve the vector integral equation using MoM,
we first need to use Rao-Wilton-Glisson (RWG) func-
tions to discretize the unknown vector J and then to make
Galerkin test. Then, (3) can be transformed into a linear
scalar matrix equation as:

ZI=V, (5)
where Z is the impedance matrix, V is the excitation vec-
tor, and I is the current coefficient vector of basis func-
tions.

Elements in Z and V can be calculated as:{
zmn =< fm,L( fn)>
vm =< fm,Einc >

, (6)

where f m and f n are the basis functions (RWG func-
tions in general), Einc stands for the electric field of the
incident wave, <A, B> represents the inner product of
A and B.

Different with the case in MoM, synthetic functions
are used in SFX to discretize the surface current J and to
make Galerkin test which will yield the following lin-
ear scalar matrix equation, as shown in the following
term [19]: 

[WSBF ] [Y] = [GSBF ]

[WSBF ] = [P]H [Z] [P]
[GSBF ] = [P]H [V]

, (7)

where [P] and [Y] are expansion coefficients and cur-
rent coefficients of synthetic functions; [Z] and [V] are
impedance matrix and exciting matrix of the traditional
MoM.

From (7) we can see that impedance matrix [WSBF ]
and exciting matrix [GSBF ] of SFX can be got on the
basis of [Z] and [V] once [P] is obtained. In SBFM, syn-
thetic functions are usually defined as linear combina-
tions of RWG functions, as shown in the following equa-
tion:

Fm(r) =
N

∑
k=1

Pk fk(r); m = 1, · · · ,M, (8)

where N is the number of RWG functions, M is the num-
ber of synthetic functions; Fm represents the m-th syn-
thetic functions, and Pk is the expansion coefficient of
the k-th RWG function.

Thus, [P]={Pk}N×M can be viewed as the expansion
coefficient matrix of synthetic functions.

In [14], Matekovits et al. propose a concrete way to
calculate [P] and we conclude it as the following three
steps:

Step 1: setting a series of auxiliary exciting sources
around the target, as shown in Fig. 3.

(a) (b)

Fig. 3. A cube is surrounded by a series of auxil-
iary exciting sources: (a) auxiliary exciting sources are
defined on a series of discrete small RWG functions and
(b) auxiliary exciting sources are defined on a meshed
surface (shown in the wire-frame model).

Initially, Matekovits et al. define auxiliary exciting
sources on a series of discrete small RWG functions
around the target, as shown in Fig. 3 (a). After that,
Bo Zhang et al. define auxiliary exciting sources on a
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meshed surface [17], as shown in Fig. 3 (b). Since the
surface is meshed into triangular patches in an irregular
way, auxiliary exciting source defined on them will be
with diverse polarizations which is helpful for improv-
ing accuracy. In the following work, the second method
of setting auxiliary exciting sources will be adopted.

Step 2: solving the responses of targets to exciting
sources to get a solution space (both natural exciting
source and auxiliary exciting source are included).

If we define the mutual coupling impedance matrix
between the target and auxiliary exciting sources as Ve,
the solution space R of synthetic functions can be com-
puted as:

[R]N×(Q+1) = Z−1(V +Ve), (9)

where N is the number of RWG functions defined on the
target, and Q is the number of RWG functions defined on
auxiliary exciting sources.

Notably, (9) indicates that the solution space con-
tains two parts:

1) response to natural excitations (incident wave)

r1 = Z−1V, (10)

2) responses to auxiliary exciting sources

[r2r3...rQ+1] = Z−1Ve, (11)

where ri (i=1,2,. . . ,Q+1) represent the i-th column of
solution space R.

Step 3: extracting independent items from solution
space.

To extract independent items (expansion coefficients
of synthetic functions) from the solution space R, singu-
lar value decomposition (SVD) is usually adopted:

R =UρV H ,ρ = diag(ρ1,ρ2, ...,ρN), (12)

where ρi is the i-th singular value of R and ρ1 > ρ2 >
· · ·> ρN

U is a unitary matrix, and if ρM/ρ1<ρSBF (trunca-
tion error), we will take the first M columns of U as the
expansion coefficients [P] of synthetic functions. Thus,
it will be:

[P]N×M =UN×N

[
IM
0

]
N×M

, (13)

where IM is the identity matrix.
The truncation error ρSBF is usually determined by

the operator and, in different applications, ρSBF is also
usually different.

Having got the expansion coefficients [P] of syn-
thetic functions, we can compute the current coefficients
[Y] of synthetic functions according to (7):

[Y] = [WSBF ]
−1 [GSBF ] =

[
PHZP

]−1
[P]H [V] . (14)

Then, according to (8), we can obtain the current
coefficients of RWG functions defined on the surface of
targets:

[I] = [P] [Y] = [P]
[
PHZP

]−1
[P]H [V] . (15)

Finally, based on the current coefficients of RWG
functions, it is not difficult to calculate other EM proper-
ties of the target. As it is similar to the traditional MoM,
we are not going to explain it in detail.

B. ESS Modeling
In SFX, triangular meshes and RWG functions are

usually adopted. For the ESS array shown in Fig. 1,
each element is divided into 164 triangular meshes
and 188 RWG functions are defined on these meshes,
as shown in Fig. 4. Thus, there are 188*210=39480
unknowns in total for the whole ESS array. In tradi-
tional MoM, the impedance matrix is a N*N (the num-
ber of unknowns) dense matrix of complex coefficients
which means the memory cost impedance matrix will be
39480*39480*2*4 Byte/float≈11.6 GByte. To decrease
the number of unknowns, synthetic functions are used to
compress the scale of the matrix equation.

To construct synthetic functions, a virtual meshed
surface is created around each element and 288 RWG
functions are defined on these meshes working as the
auxiliary sources, as shown in Fig. 4.

Fig. 4. Each element is divided into 164 triangular
meshes and a virtual meshed surface is created around
the element.

Fortunately, for the ESS array, synthetic functions
defined on different elements can be reused based on the
geometric similarities between these elements [10]. This
feature is rather appealing to us, especially in the anal-
ysis of quasi-periodic structures. It means the construc-
tion of synthetic functions only needs to be carried out
once, which is helpful to improve efficiency for large-
scale arrays. In this paper, after optimization, only 5 syn-
thetic functions for each element are enough to get a
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satisfying accuracy. Thus, for the whole ESS array, the
number of unknowns will be only 210*5=1050 for SFX.
So, the scale of the matrix equation in (7) is 1050*1050,
which is much smaller than that of traditional MoM.

For the analysis of ESS, another emphasis is on the
modeling of diodes. In this paper, a thin strip is used to
approximate the feeder line and the diodes are viewed as
a complex impedance in the middle of the feeder line, as
shown in Fig. 5. Technically, arbitrary two-port equiva-
lent circuit models could be handled in this method.

Fig. 5. A thin strip is used to approximate the feeder line
and the diodes can be viewed as a complex impedance in
the middle of the feeder line.

To take the diodes into consideration, we need to
modify the diagonal elements of the impedance matrix,
as shown in (16):

Diode OFF : znn → znn + l2
n(1/ jωC)

Diode ON : znn → znn + l2
nR

(16)

where R = 2.0Ω,C = 0.018pF, which are consistent with
the simulation setup in the Section II.

Compared to the simulating model in Feko, the
model used in this paper can transform the connection
from a wire-surface problem to a surface-surface prob-
lem and can be perfectly addressed by RWG functions,
shown in Fig. 6.

Fig. 6. The diode simulating model in Feko (right) and
in this paper (left).

IV. RESULTS
To illustrate the accuracy and efficiency of SFX, the

EM properties of the ESS array are numerically analyzed

with different methods based on commercial software for
comparison. Specifically, the following numerical meth-
ods are adopted: MOM and multi-layer fast multipole
method (MLFMM) with Feko (Altair Feko 2020), FIT
with CST (CST Studio Suite 2021). Considering that the
boundary conditions play a critical role in the accuracy
in time domain calculations, the boundary conditions
in CST are set as open boundary conditions (perfectly
matched layers, PML) with a minimum distance to struc-
tures of 4λ , and the estimated refection level is 0.0001.
The outer excitation is a plane wave which comes from
+x axis and polarizes +z axis with its frequency being
10 GHz. Both the far-field (Bistatic RCS) and near field
(electric field at z=0 mm cut-plane) are calculated. All
the simulations are carried on a computer poses 8 Intel
Core i7-7700K Processors with 4 cores per CPU running
at 4.2 GHz.

The results of the Bistatic RCS of the ESS array
obtained by different methods are shown in Figs. 7 and 8
with diodes in different states, respectively. When the
diodes are in OFF state, the transmission coefficient
of ESS is high and almost transparent to the incident
waves. Therefore, the RCS is supposed to be low and
the results are smaller than -20 dB (Fig. 7). On the con-
trary, the RCS is much larger because the incident wave
is strongly reflected when the diodes are in ON state
(Fig. 8). Notably, in Fig. 7, when the diodes are OFF, the
RCS of ESS array obtained by different methods shows
a similar trend with an error smaller than 2.6 dB. On
the main lobe, the largest RCS value comes from Feko
(MLFMM) (-20.4 dB) and then follows CST (FIT) (-20.9
dB) and SFX (-23.0 dB). Because the absolute value of
RCS is very low, the real error between different meth-
ods is actually small. As the RCS becomes much larger

Fig. 7. The RCS of the cylindrical conformal ESS array
calculated by different methods when diodes are in OFF
state.
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Fig. 8. The RCS of the cylindrical conformal ESS array
calculated by different methods when diodes are in ON
state.

in Fig. 8, the results obtained with different values are in
good agreement, which confirms the accuracy of SFX.
It should be pointed out that the results of Feko (MoM)
and Feko (MLFMM) are the same, therefore, only Feko
(MLFMM) is presented.

The distribution of electric field obtained with dif-
ferent methods at the cut-plane z=30 mm are demon-
strated in Figs. 9, 10, and 11. As we can see, the electric
field is more uniform when the diodes are OFF, which
means the ESS array generates a minor influence on the
incident waves. However, when the diodes are ON, the
incident wave is reflected rather than propagate through
the ESS array from the left to the right. As a result,
the electric field at the right side of ESS array is much
smaller than that at the left side. That is to say, the inci-
dent wave will be isolated out of the ESS array.

Furthermore, the IL and SE of the ESS array are
calculated with different methods, as given in Table 1.
Results obtained with the periodic boundary conditions
are also provided here for comparison. Obviously, the
results show a significant difference between IL and SE,

(a) (b)

Fig. 9. The electric field distribution of the cylindri-
cal conformal ESS array calculated with SFX when the
diodes are in different states (a) OFF and (b) ON.

(a) (b)

Fig. 10. The electric field distribution of the cylindrical
conformal ESS array calculated with Feko (MLFMM)
when the diodes are in different states (a) OFF and (b)
ON.

(a) (b)

Fig. 11. The electric field distribution of the cylindrical
conformal ESS array calculated with CST (FIT) when
the diodes are in different states (a) OFF and (b) ON.

Table 1: The IL and SE of ESS obtained with different
methods

IL (dB) SE (dB)
SFX -0.45 -16.5

CST (FIT) -1.26 -18.4
Feko (MoM) -0.3 -17.7

Feko (MLFMM) -0.3 -17.7
Unit cell -0.1 -20

confirming the capability of ESS for high-power EM
wave protection. As we can see, the IL obtained from the
finite ESS array is larger but the SE is smaller than that
of the unit cell, where ESS is regarded as infinite arrays.
The results can be attributed to several reasons. Firstly,
the array is not a strictly enclosed one, which may lead
to some EM leaks. Secondly, the IL and SE are obtained
based on the field intensity in the near field area of the
ESS array while that of the unit cell are calculated with
field intensity in the far field area, which also leads to
some error. Generally, the results obtained by different
methods are in agreement.

Table 2 illustrates the computational performance
of different methods in terms of time consumption,
peak memory cost, and root mean square error (RMSE).
Notably, the peak memory cost and time consumption
of Feko and CST are obtained from the software log-
file. It is not difficult to see that the proposed SFX
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exhibits outstanding performance in accuracy, efficiency,
and memory cost. More concretely:

1) According to the RMSE in Table 2, SFX has
the same level of accuracy with CST (FIT) and Feko
(MLFMM).

2) As for the computational efficiency, according to
the indexes of time consumption, SFX is slightly lower
than CST (FIT) and Feko (MLFMM), but exceeds tradi-
tional Feko (MoM).

3) When it comes to memory cost, SFX shows
a huge advantage over other methods, especially CST
(FIT) and Feko (MoM).

It is not difficult to draw the conclusion that SFX is
especially suitable for the analysis of ESS. Compared to
traditional full-wave numerical methods, SFX well over-
comes the difficulty of balancing accuracy, efficiency,
and resource consumption.

Table 2: Performance and comparison of different algo-
rithms (RMSE is obtained in comparison with the results
of Feko)

Elapsed
Time

Peak
Memory

Cost

RMSE

SFX 387.56 s 8.41 MByte 0.13
CST (FIT) 266 s 1.11 GByte 0.47

Feko (MoM) 2350.95 s 6.55 GByte -
Feko

(MLFMM)
262.16 s 618.25 Mbyte -

V. CONCLUSIONS
ESS is a potential method of high-power EM protec-

tion. In this paper, SFX is adopted to numerically analyze
the EM properties of ESS and an I-shape cylindrical con-
formal ESS array is designed for demonstration. Com-
pared to traditional full-wave numerical methods, SFX
exhibits great advantages in memory cost while main-
taining the same level of accuracy and efficiency with
MLFMM and FIT. Moreover, this method not only suits
ESS, but also suits other quasi-periodic arrays whose
elements share similar geometries. Especially for large-
scale array, this method can well overcome the dif-
ficulty of balancing accuracy, efficiency, and resource
consumption.
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