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Abstract – The open-source code PSSFSS for analysis
and design of polarization selective surfaces (PSSs), and
frequency selective surfaces (FSSs) is presented, begin-
ning with an introduction to the Julia programming lan-
guage in which the code is written. Analysis methods and
algorithms used in PSSFSS are described, highlighting
features of Julia that make it attractive for developing this
type of application. Usage examples illustrate the code’s
ease of use, speed, and accuracy.
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I. INTRODUCTION
PSSFSS [1] is a free, open-source code for analy-

sis and design of polarization selective surfaces (PSSs),
frequency selective surfaces (FSSs), radomes, reflectar-
ray elements, and similar devices. It is written in Julia
[2], a recently developed language for high-performance
technical computing. Its speed, accuracy, and ease of
use make PSSFSS useful and accessible to both students
and working engineers. Section II of this paper briefly
introduces the Julia programming language. Section III
describes the PSSFSS program, including information on
its deployment as a standard Julia package. It then goes on
to outline the steps in the analytical formulation used in
PSSFSS. Some of the key steps are detailed and their real-
ization in Julia code is presented. In the process, a few of
the features of Julia that make it well-suited for this type
of application are highlighted. Section IV provides sev-
eral usage examples, including timing and convergence
studies, with comparisons to exact solutions or results of
other simulation tools. Finally, conclusions are presented
in Section V.

II. THE JULIA LANGUAGE
Julia [2] is a recently developed, free and open-

source computer programming language intended for
high-performance technical computing. A modern,
dynamic, high-level language, Julia was specifically
created to address perceived shortcomings of existing

languages like R, C, C++, Fortran, Matlab, and Python.
Notably, the developers of Julia were awarded the 2019
James H. Wilkinson Prize for Numerical Software.
Although Julia can be used interactively where it “feels”
like an interpreted language, it transparently compiles
code to machine language prior to execution (“JIT” or
just in time compilation), resulting in execution speed
competitive with Fortran or C. Indeed, in 2017 Julia
joined C, C++, and Fortran as the only languages to
have achieved petaflop performance [3]. Support for
parallelism (both distributed and threaded) is built into
the language, as is support for multidimensional arrays
of any dimensions and types. The syntax for performing
linear algebra is similar to Matlab’s. Installation of Julia
is a simple process on Windows, Linux, or Macintosh
computers. The language fully supports Unicode, so that
symbols such as ϵᵣ, μᵣ, and tanδ can be used for Julia
variable names, if desired.

Most of Julia’s core code and its standard libraries
are written in Julia itself, making it easy for users to
read, understand, and contribute improvements. User-
written packages employing custom types can be just as
performant as functions and standard libraries supplied
with the language, since all are written in Julia. In this
way, Julia solves the so-called “two-language problem”
wherein packages for dynamic languages like Python or
Matlab that require maximum performance must either
be partially written in C or Fortran, or be restricted to a
compilable subset of the full language.

Additional comments about specific features of Julia
that were found to be useful in developing PSSFSS are
included below in Section III.

III. DESCRIPTION OF PSSFSS
A. Packaging

PSSFSS has been released as a registered Julia pack-
age. As such it can be installed via a single command at
the Julia REPL¹. Doing so causes Julia to download the

¹”REPL” is an acronym for Read-Evaluate-Print Loop, the interac-
tive terminal environment where the user types inputs that are then eval-
uated and printed back by Julia.
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Git repository [1] containing the PSSFSS source code,
along with repositories of dependent packages. Similarly,
updates published to the PSSFSS Github repository can
be automatically retrieved by the user with another sim-
ple Julia update command.

Besides its on-line user manual [4], PSSFSS
includes a detailed, 86 page theory document [5] that
derives from first principles the formulas and algorithms
implemented in the code. The code is heavily com-
mented with references to specific sections and equa-
tion numbers in the theory document to promote code
transparency.

B. Analysis methods and algorithms used
1. Overview

PSSFSS solves for the electric and/or magnetic sur-
face currents on planar FSS/PSS sheets located within
a stratified medium consisting of any number of dielec-
tric layers. Currents are represented using modified Rao-
Wilton-Glisson (RWG) basis functions [6] and are deter-
mined via a periodic moment method (PMM) solu-
tion of the mixed-potential integral equation (MPIE)
in the space domain. The potential Green’s functions
are computed using a wide-band expansion [7] that,
for normal incidence, permits the most expensive part
of matrix assembly to be performed once only, regard-
less of the number of analysis frequencies performed.
Multiple FSS/PSS sheets are accommodated by cascad-
ing their generalized scattering matrices (GSMs). The
number of Floquet modes retained in the GSMs is cal-
culated automatically such that excluded modes must
encounter at least 30 dB of attenuation between neighbor-
ing sheets. The following subsections describe some of
these analysis steps in more detail, and describe their Julia
implementation.

2. Surface representation
As in other surface-based moment method (MoM)

formulations, in PSSFSS a conducting surface (in the
case of a capacitive FSS) or aperture (in the case of
inductive FSS) must be triangulated as a preliminary step
in forming the RWG basis functions. Triangulation is
accomplished using the Triangulate package, a conve-
nient Julia interface to the well-known, planar mesh gen-
erator Triangle [8]. Polygon and triangle vertex loca-
tions in the plane are stored in one-dimensional arrays,
each element of which is of type SVector{2,Float64}
as defined in the StaticArrays [9] package. Here the
type parameters 2 and Float64 mean that each planar
vertex is represented by a length-2 “static vector” con-
sisting of two 64-bit floating point values (the G and H

coordinates of the point). Since the length of an SVector
is encoded statically into its type, this length is known
to the Julia compiler, allowing optimizations at compile
time such as CPU register or stack allocation (rather than

slower heap allocation), and efficient packing in memory
and retrieval from arrays of these objects. For example, an
array of = SVectors requires exactly the same amount of
memory as is required for a contiguous array of 2= 64-bit
floating point numbers. Furthermore, linear algebra oper-
ations on StaticArray objects of small orders are spe-
cialized via unrolling and other optimizations to be many
times faster than those on an ordinary, heap-allocated
arrays.

Besides speed of computation, static vectors (and
matrices) inherit all the convenient array syntax of the
language. By way of illustration, given a pair of SVectors
r and s, the expression 3r - 2s will perform the indi-
cated scalar multiplications² of each vector followed by
a vector difference. The result will be another SVector.
With the LinearAlgebra standard library package, many
additional operations are defined. E.g., we may compute
the dot product of the two vectors by writing r ⋅ s. The
centered dot is the infix form of the two-argument dot
function and is typed at the Julia REPL (or within an
appropriately configured editor) as \cdot (LaTeX nota-
tion) followed by a Tab character.

3. Green’s function calculation
Discretization of the MPIEs via MoM in the spa-

tial domain requires calculation of the potential Green’s
functions for currents flowing in a stratified medium,
subject to quasi-periodic (Floquet) boundary conditions
in the lateral directions. For efficient numerical evalu-
ation, each potential Green’s function is represented as
a sum of modal series and quasi-static, spatial series,
as derived in detail in [5]. As an example, consider an
electric surface current flowing in the interface plane
IB , located between dielectric layers B and B + 1 of the
stratified media. The x̂x̂ component of magnetic vec-
tor potential dyadic Green’s function evaluated at r =

ρ + IBẑ = (G, H, IB) due to a point current source at r′ =
ρ′ + IBẑ = (G′, H′, IB) is

��
GG (ρ − ρ′, IB , IB) = ˜̀

{
Σ"1 (ρ − ρ′) +

+ D

4c
[
Σ(1 (ρ − ρ′) + 23Σ(2 (ρ − ρ′)

]}
, (1)

where D > 0 is an appropriately chosen smoothing factor
with units of wavenumber, ˜̀ = `B`B+1/(`B + `B+1), `=
is the permeability of dielectric region =, l is the radian
frequency, and 23 is a constant that depends on frequency,
D, and the electrical parameters of regions B and B + 1.
Σ(1 and Σ(2 are quasi-static, spatial series, and Σ"1 is a
modal series. All series are double sums

∑∞
<=−∞

∑∞
==−∞

which is abbreviated as
∑

<,= hereafter.

²A numeric literal prepended to a variable or parenthesized expres-
sion implies multiplication.
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Spatial series
The spatial series are

Σ(1 (ρ − ρ′) =
∑
<,=

4−Dd<=

Dd<=

4− 9 (<k1+=k2 ) , (2)

Σ(2 (ρ − ρ′) =
∑
<,=

4−Dd<=4− 9 (<k1+=k2 ) , (3)

where d<= = ‖ρ−ρ′−<s1−=s2‖, s1 and s2 are the direct
lattice vectors of the periodic metalization pattern, andk1
and k2 are the incremental phase shifts associated with
the Floquet boundary conditions in the s1 and s2 direc-
tions, respectively. It is evident that these rapidly (expo-
nentially) convergent series are independent of frequency
whenever the incremental phase shifts are. This occurs for
normally incident illumination of the FSS (k1 = k2 = 0)
or when simulating an FSS placed within a rectangu-
lar waveguide. When either of these is the case, and a
swept-frequency analysis is desired, the contributions of
the spatial series can be calculated a single time and re-
used at each new analysis frequency, achieving substan-
tial execution time savings. It should also be noted that
Σ(1 contains the known 1/‖ρ − ρ′‖ static singularity in
the (<, =) = (0, 0) term, permitting singularity subtrac-
tion and closed-form integration [10] as part of the MoM
procedure.

It is of interest to see how these series are evaluated
in Julia. The following code fragment is taken from the
PSSFSS package:
# Sum over the r’th ring:
for (m, n) in Ring(r)

uρₘₙ = norm(uρ⃗₀₀ - (m * us⃗₁ + n * us⃗₂))
phase = -(m*ψ₁ + n*ψ₂)
...

end

The for loop iterates over the (m,n) tuples of integer
indices comprising the rth concentric ring of the sum-
mation lattice. For example, Ring(0) generates the single
tuple (0,0), while Ring(1) iterates over the eight tuples
(1, -1), (1, 0), (1, 1), (-1, -1), (-1, 0), (-1, 1),
(0, -1), and (0, 1). In the code base Ring is a struct
defined simply as
struct Ring

r::Int
end

where the double colon is a type declaration for field
r. The capability to iterate on Ring(r) as in the for
loop above comes from defining a method for the base
Julia iterate function that accepts two inputs: a vari-
able of type Ring, and the current state of the iterator.
It provides as outputs the next iterate and updated state.
Each tuple is then efficiently generated iteratively in turn
(i.e., lazily) in the for loop, avoiding unnecessary heap
allocations. The above for loop is actually embedded
in an outer loop over the ring index r, where conver-
gence is checked after summing the contributions over

each ring—the natural and rigorously correct way to form
partial sums of such series. Thus the Ring type, straight-
forwardly implemented using Julia’s standard iteration
protocol, enhances the simplicity and readability of the
Green’s function code.

Calculation of the scalar variable uρₘₙ within the
body of the for loop above shows how closely Julia code
can resemble the mathematics that it is implementing.
Variables uρ⃗₀₀, us⃗₁, and us⃗₂ are all of type SVector{
2,Float64}, representing in this case dimensionless 2-
vectors. Again, such variable names incorporating Uni-
code symbols are easily typed using LaTeX notation. The
expression passed as the argument to the norm function
above will be evaluated prior to the call, resulting in a new
SVector, stored either in the CPU stack or CPU registers
(without any heap allocation). The function norm com-
putes the 2-norm of a vector or matrix, and is exported by
the LinearAlgebra package. However, a method specifi-
cally for arguments of type SVector{2,Float64} is pro-
vided at compile time by the StaticArrays package.
Both the construction of the argument and calculation of
its norm in the specialized method avoid (via unrolling)
the loops that would otherwise be needed for dealing with
standard arrays.

Modal Series
The modal series is

Σ"1 (ρ − ρ′) =
∑
<,=

5(<,=)4
− 9β<=·(ρ−ρ′ ) , (4)

where

5(<,=) =
1

2�

[
2+TE

i (β<=)
9l ˜̀

− 1
^<=

− 23

^3
<=

]
. (5)

Here � is the area of the unit cell, +TE
i is the spectral

transmission line Green’s function as defined in [11],
β<= = β00 + <β1 + =β2, β00 = (k1β1 + k2β2)/(2c),
^<= =

√
β<= · β<= + D2, and β1 = (2c/�)s2 × ẑ and

β2 = (2c)/�ẑ×s1 are the reciprocal lattice vectors. The
modal series is very smooth as a function of ρ − ρ′ and
rapidly converging, since the summand decays as V−5

<=.
Using the change of variables ρ − ρ′ = b1s1 + b2s2 and
using the fact that

b8 =
1

2c
β8 · (ρ − ρ′), 8 = 1, 2 (6)

the series can be rewritten in the form

Σ"1 (b1s1 + b2s2) =

4− 9 ( b1k1+b2k2 )
∑
<,=

5(<,=)4
− 92c (<b1+=b2 ) . (7)

If we restrict evaluation to a discrete, regular grid of b1
and b2 points, and assume that the summand is negligibly
small outside some maximal ring index, it is straightfor-
ward to recast the series above into the form of a two-
dimensional discrete Fourier transform, which is effi-
ciently evaluated using the fast Fourier transform (FFT).
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Low-order bivariate polynomial interpolation is used to
allow evaluation of the modal series at arbitrary points
within the grid.

In the Julia implementation of the modal series, it is
convenient when tabulating 5(<,=) to use an array whose
indices can range over both positive and negative integers.
This is accomplished by use of the OffsetArrays pack-
age, which provides Julia with arrays that have arbitrary
indices, similar to those found in some other program-
ming languages like Fortran. Consider the following code
fragment, taken from the modal series code:
parent = zeros(ComplexF64, 2mg + 1, 2mg + 1)
table1g = OffsetArray(parent, -mg:mg, -mg:mg)

The zeros call returns a two-dimensional array of 64-bit,
complex, floating-point numbers initialized to zero. The
indices range from 1 to 2*mg + 1 (native Julia arrays use
1-based indexing). The OffsetArray call returns an array
sharing the same memory as parent, but whose indices
range from -mg to mg. There is no performance penalty
associated with indexing into table1g versus parent.
Both StaticArrays and OffsetArrays were originally
contributed by the Julia user community, and both are
written entirely in Julia, showing the power and flexibility
inherent in the language.

Tabulation of 5(<,=) is performed in a parallel (multi-
threaded) loop. Here is a fragment from the relevant code:

# Fill the tables:
@threads for r in (mmax_oldo2+1):mmaxo2

ringsum1 = zero(eltype(table1g))
....
for (m, n) in Ring(r)

β⃗m ₙ = β₀⃗₀ + m * β₁⃗ + n * β₂⃗
β² = β⃗m ₙ ⋅ β⃗m ₙ # magnitude squared
...

end
...
table1g[m,n] += ringsum1
...

end

The outer loop over ring index is parallelized (threaded)
by a call to @threads of the built-in threading library
Threads. The @ symbol denotes a Julia macro, which
can arbitrarily transform Julia source prior to compila-
tion. The two lines shown in the inner loop over summa-
tion ring indices, where β<= and ‖β<=‖2 are computed,
exemplify once again how the use of Unicode symbols
in variable names can enhance clarity when translating
a mathematical formulation to Julia code. β₀⃗₀, β₁⃗, and
β₂⃗ are all defined previously in the code and have type
SVector{2,Float64}. The assignment causes β⃗m ₙ to also
have the same type without requiring any type declara-
tion, an example of type inference performed by the Julia
compiler.

Following tabulation, the FFT is performed in-place
by a call to the function FFT! from the FFTW package. The

latter provides convenient Julia bindings to the popular
FFTW library [12].

4. GSM representation and cascading
A GSM is represented in the Julia code by the GSM

type, defined as
struct GSM

s11::Matrix{ComplexF64}
s12::Matrix{ComplexF64}
s21::Matrix{ComplexF64}
s22::Matrix{ComplexF64}

end

The s11, s12, s21, and s22 fields store the four partitions
of the full GSM. In Julia, an array is indexed using square
brackets, e.g. s[1,2] to select the element of array s in the
first row and second column. The Julia compiler converts
this syntax into the call getindex(s, 1, 2). By extend-
ing the getindex function with a new method for the
GSM type, one can enable indexing into a variable of this
type:
function Base.getindex(gsm::GSM, i, j)

(i, j) == (1, 1) && (return gsm.s11)
(i, j) == (1, 2) && (return gsm.s12)
(i, j) == (2, 1) && (return gsm.s21)
(i, j) == (2, 2) && (return gsm.s22)
throw(BoundsError(gsm, (i, j)))

end

Here the short-circuit logical “and” operator && is used as
a concise if-then construct, a common Julia idiom. Given
g::GSM, the above definition allows, e.g., g[1,2] to be
used in lieu of g.s12. Since Julia functions use “pass-
by-sharing” semantics, such indexing does not cause any
unwanted copying of the GSM partitions.

Cascading of GSMs is accomplished by use of the
Redheffer star product [13–14]. If � and � are scat-
tering matrices for two linear networks, the scattering
matrix of the cascaded network is given by the (scat-
tering) star product � ★ �. If � and � are the block
matrices

� =

[
�11 �12
�21 �22

]
, � =

[
�11 �12
�21 �22

]
, (8)

then their star product is

� ★ � =

[
(� ★ �)11 (� ★ �)12
(� ★ �)21 (� ★ �)22

]
, (9)

where
(� ★ �)11 = �11 + �12�11 (� − �22�11)−1�21, (10a)

(� ★ �)12 = �12 (� − �11�22)−1�12, (10b)

(� ★ �)21 = �21 (� − �22�11)−1�21, (10c)

(� ★ �)22 = �22 + �21�22 (� − �11�22)−1�12, (10d)
and � is the identity matrix. The star product is imple-
mented in PSSFSS in the cascade function:
function cascade(a::GSM, b::GSM)

n2a = size(a[2,2], 2)
n1b = size(b[1,1], 1)
n1b ≠ n2a && error(”Non-conformable GSMs”)
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gprod1 = (I - a[2,2] * b[1,1]) \ a[2,1]
s21 = b[2,1] * gprod1
s11 = a[1,1] + (a[1,2] * b[1,1] * gprod1)
gprod2 = (I - b[1,1] * a[2,2]) \ b[1,2]
s12 = a[1,2] * gprod2
s22 = b[2,2] + (b[2,1] * a[2,2] * gprod2)
return GSM(s11, s12, s21, s22)

end

The backslash operator \ and the symbol I used above
are from the LinearAlgebra package. I is an object that
represents an identity matrix of any order. The backslash,
as in Matlab, performs matrix division using a polyalgo-
rithm that depends on the array types on both sides. For
the dense, square matrices occuring on the left-hand sides
here, it calls a LAPACK solver based on LU factorization.
By including the function definition
⋆(a,b) = cascade(a,b)

it is now possible to compute the cascade of GSMs s and t
and store the result in c by simply typing c = s ⋆ t.

The GSM of a dielectric layer has the form
[ 0 �
� 0

]
,

where � is a diagonal matrix. Therefore, when cascad-
ing some general GSM with that of a dielectric layer,
the calculations needed are significantly simpler than the
general case described by Eqs. (10). PSSFSS defines the
Layer type for dielectric layers, along with several addi-
tional methods of the cascade function, with signatures
cascade(a::GSM, b::Layer) and cascade(a::Layer,
b::GSM), wherein the appropriate, simplified calculations
are encoded. This is an example of multiple dispatch,
one of the fundamental paradigms of Julia programming.
The correct method to be called for a function is selected
from the available methods at compile time based on the
types of all of the call site arguments. This is in con-
trast to standard object-oriented programming, where the
selected method depends only on the first argument (sin-
gle dispatch). Multiple dispatch is clearly more power-
ful, and it can be argued that it is a better fit to the
needs of scientific computing. For example, given con-
formable arrays A, B, and C, the expression A * B * C is
transformed by the Julia compiler into the call *(A, B,
C), a three-argument method for the * (multiplication)
function. Within that method, the number of multiplica-
tions needed for (A * B) * C is compared to that for A
* (B * C) to choose which of these to execute. Users
can add their own methods as needed for their custom
types.

5. Fast sweep algorithm
The default method for frequency sweeps is an

extremely robust, diagonal rational function interpola-
tion using the Stoer-Bulirsch [15] (“fast sweep”) algo-
rithm. Applied to the final, composite GSM of the struc-
ture being analyzed, it eliminates the need for a full
PMM solution at each frequency (a “discrete sweep”),
often producing speedups of 10× to 20×. The algorithm

starts by analyzing the structure at five equally spaced
frequencies (interpolation “knots”) across the requested
bandwidth. The composite GSM of the full structure is
interpolated at the remaining frequencies via two differ-
ent orders of rational function, and an error estimate is
computed from their difference at each frequency. The
next knot is selected as that frequency with the largest
error estimate. A full analysis is performed at this knot,
and new interpolations are performed incorporating the
new data. The process continues until the error estimate
remains less than -80 dB for three consecutive iterations.
The strict termination criterion employed in PSSFSS for
this algorithm makes it absolutely reliable, in the author’s
experience.

Additional details of the theory and implementation
for PSSFSS can be found in [5].

C. Program features
Currently supported element types include rectangu-

lar strips, meanderlines, loaded and filled crosses, sinu-
ous and manji crosses, Jerusalem crosses, split rings, and
polyrings. The latter are able to model concentric rect-
angular loops or polygonal rings. All element types are
fully parameterized for easy specification and optimiza-
tion. The user manual [4] includes a gallery of supported
element types.

Available output quantities include scattering param-
eters (magnitudes, phases, or complex) using a TE/TM,
Ludwig 3, or LHCP/RHCP polarization basis, axial ratio,
and others.

D. Program usage
PSSFSS is run in a Julia script. The geometry to be

analyzed is specified as a vector of two or more dielectric
Layers and zero or more RWGSheets. The latter define the
FSS/PSS sheets and are instantiated by calling construc-
tors such as meander, strip, polyring, etc. After also
specifying the desired scan angles (or unit cell incremen-
tal phase shifts) and frequencies to be analyzed, a call to
the analyze function performs the analysis. Outputs are
requested using a tiny domain-specific language imple-
mented by the @outputs macro. As an example, provid-
ing @outputs s21db(L,R) ar22db(v) as the second
argument to the extract_results function will produce
a matrix whose columns contain 1) transmission ampli-
tude in dB to LHCP pol exiting port 2 due to a RHCP
wave incident at port 1, and 2) reflected axial ratio in dB
exiting port 2 due to an incident Ludwig 3 vertical wave at
port 2. The outputs can be further post-processed and/or
plotted in the same interactive or batch Julia session.

IV. EXAMPLE RESULTS
A. Symmetric strip grid

This example consists of a symmetric strip grating,
i.e., a grating where the strip width is half the unit cell
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Fig. 1. Symmetric strip grid: (a) Gray areas represent
metalization, Dashed lines show two possible choices for
unit cell location, (b) Triangulation used for both J and
M choice of unit cell, and (c) Triangulation with unit cell
boundary also shown.
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Fig. 2. Reflection magnitude for symmetric strip grid.

period %, as shown in part (a) of Fig. 1. The grating lies in
the I = 0 plane with free space on both sides. The shaded
areas represent metalization. The dashed lines show two
possible choices for the unit cell location: “J” for a formu-
lation in terms of electric surface currents, and “M” for
magnetic surface currents. The same triangulation (parts
(b) and (c) of the figure) can be used for either choice.
The length of the unit cell in the G direction is arbitrary,
here chosen to be one tenth of the strip width. The tri-
angulation shown uses 8 edges in the G direction and
80 in the H direction for a total of 640 squares bisected
into 1280 triangles. The PSSFSS analysis covered 99 fre-
quencies where period normalized to wavelength (%/_)
varied from 0.01 to 0.99, requiring about 9 seconds of
execution time. Normal incidence reflection coefficient
magnitudes and phases computed by PSSFSS are com-
pared with the exact solution ([16], [17, Prob. 10.6]) for
the electric field parallel (‖) and perpendicular (⊥) to the
direction of the grid (the H axis) in Figs. 2 and 3. The
maximum magnitude error for either polarization is about
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Fig. 3. Reflection phase for symmetric strip grid.

0.006 at the highest frequency. Maximum phase error is
about 0.35°, also at the highest frequency. In all cases the
solutions for the M and J unit cells bracket the exact solu-
tion. Presentation of the Julia script needed to run this
example is omitted here; it can be found in the online
manual [4].

B. Over-sized Jerusalem cross slot
This example, taken from [18] and illustrated in the

inset of Fig. 4, constitutes a severe test of the fast sweep
algorithm. The unit cell is a 2.5 cm square. The FSS
is etched on a 0.02 cm thick dielectric slab with nA =

2.0 - 90.1. The incidence angle is (\, q) = (45◦, 1◦) so
that higher-order free-space Floquet modes begin prop-
agating at 7.025, 12.292, 12.542, 14.051, 16.665, and
17.060 GHz. Figure 4 shows how the computed trans-
mission coefficient for TM polarization converges as the
discretization is made finer. All of the traces overlay for
frequencies below about 17 GHz. The fast sweep results
for the final case are also shown, and they are indis-
tinguishable from the discrete sweep results. The maxi-
mum fast sweep error for any of the 381 frequencies plot-
ted is less than 0.0006 dB. The “glitches” in the traces
between 16 GHz and 18 GHz are resonances associated
with blazing frequencies. Swept frequency timing for dis-
crete and fast sweeps are shown in Table 1. This analy-
sis and all others reported in this paper were performed
on a 3 GHz Core i7-9700 CPU. As shown in the table,
fast sweeps for this example exhibited a speedup of about
4×. Greater speedups are usually obtained, but the many
modes passing out of cut-off in this band make this case
especially difficult. Here, about 90 of the 381 requested
analysis frequencies required a full PMM solve in the fast
sweep. The worst convergence of the model is obtained
at the highest frequency, 20 GHz. The final column of
Table 1 shows how the computed transmission coeffi-
cient at this frequency changes with number of triangles
in the discretization. Applying Richardson extrapolation
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Fig. 4. TM transmission coefficient for the over-sized
Jerusalem cross slot from [18]. The inset triangulation
contains 3400 triangles; a blue dashed line demarks the
2.5 cm unit cell.

Table 1: Timing and convergence for the Jerusalem cross
Number of Sweep Time (s) Fast Sweep T at 20 GHz
Triangles Discrete Fast Speedup (dB)

1224 199.3 58.3 3.4 -9.97
2176 627.5 155.2 4.0 -9.83
3400 1732.1 420.1 4.1 -9.75
6664 9182.0 2096.8 4.4 -9.66

[19] to this series results in a predicted converged value
of -9.54 dB, about 0.1 dB away from the 6664 triangle
result. Listing 1 contains the code used to generate the
fast sweep PSSFSS data and geometry plot for the 3400
triangle case.

C. 5-Sheet meanderline/strip CPSS
This example, from [20], consists of a 5-sheet,

sequentially rotated, circular polarization selective sur-
face (CPSS). The top images in Fig. 5 are the individ-

Fig. 4. TM transmission coefficient for the over-sized
Jerusalem cross slot from [18]. The inset triangulation
contains 3400 triangles; a blue dashed line demarks the
2.5 cm unit cell.

Table 1: Timing and convergence for the Jerusalem cross
Number of Sweep Time (s) Fast Sweep T at 20 GHz
Triangles Discrete Fast Speedup (dB)

1224 199.3 58.3 3.4 -9.97
2176 627.5 155.2 4.0 -9.83
3400 1732.1 420.1 4.1 -9.75
6664 9182.0 2096.8 4.4 -9.66

[19] to this series results in a predicted converged value
of -9.54 dB, about 0.1 dB away from the 6664 triangle
result. Listing 1 contains the code used to generate the
fast sweep PSSFSS data and geometry plot for the 3400
triangle case.

C. 5-Sheet meanderline/strip CPSS
This example, from [20], consists of a 5-sheet,

sequentially rotated, circular polarization selective sur-
face (CPSS). The top images in Fig. 5 are the individ-
ual sheet triangulations. Each sheet shares the same unit
cell, a 5.2 mm square. Sheets are etched on dielectric sub-
strates separated from their neighbors by foam layers. The
structure consists of 9 dielectric layers and 5 FSS sheets.
Below the sheet triangulations is a plot of computed inser-
tion loss and transmitted axial ratio (AR) for a right-hand
circular polarization (RHCP) wave normally incident on
the structure, both computed by PSSFSS and CST, the lat-
ter digitized from plots in [20]. The differences in the two
models’ results are attributed to finite metalization thick-
ness used in the CST model, a feature not yet supported
by PSSFSS. Analysis of the 5-sheet composite structure
at 101 frequencies required only 20 s for PSSFSS, com-
pared to the 17 min and 1 hr reported in [20] for CST
using a coarse and fine mesh, respectively. The speed of
PSSFSS for this case is due to multiple factors: 1) anal-
ysis is fastest at normal incidence, 2) meanderlines and
strips are triangulated using structured meshes which are

Listing 1 Julia script used to produce the triangulation
plot and compute the fast sweep performance shown in
Fig. 4.
using PSSFSS, Plots
P = 2.5 # unit cell period
sheet = jerusalemcross(class=’M’, ntri=3400, P=P,

w=P/8, L1=3P/4, L2=P/8,
A=P/2, B=P/16, units=cm)

pl = plot(sheet, unitcell=true, linecolor=:red,
size=(600,600))

strata = [Layer()
sheet
Layer(ϵᵣ=2.0, tanδ=0.05, width=0.02cm)
Layer()]

freqs = 1:0.05:20; steering = (ϕ=1, θ=45)
reslt = analyze(strata, freqs, steering)
T_TM = extract_result(reslt, @outputs s21db(tm,tm))

exploited by PSSFSS to avoid redundant calculations, 3)
the elements used herein fill only a small portion of the
unit cell and are not resonant, reducing the number of tri-
angles required, and 4) the smoothly varying GSM over
this analysis bandwidth required only 13 full solutions out
of 101 analysis frequencies in the fast sweep algorithm.

Listing 2 is a fragment of the log file created by
PSSFSS when analyzing the CPSS. It recapitulates the
layup of the structure and displays the number of Floquet
modes assigned to each dielectric layer in the final col-
umn. The layers labeled 1 and 11 are the semi-infinite
vacuum regions on either side of the FSS structure. Note
that the thin substrates adjacent to the FSS sheets, labeled
as layers 2, 4, 6, 8, and 10, are assigned zero modes.
This is because a very large number of modes would be
required to cascade GSMs for very thin layers adjacent to
FSS sheets. Instead, PSSFSS defines a so-called “GSM
Block” consisting of the sheet and any neighboring thin
layers. A single, composite GSM is computed for this
GSM Block using the stratified media Green’s functions.
For the remaining foam spacer layers, it is observed that
10 modes are used in the 3.81 mm layers 3 and 9, while
18 modes are used in the thinner 2.61 mm layers 5 and 7.Of course, this use of multi-mode GSM cascading
is only possible because all sheets in this structure share
the same periodicity. For structures with sheets of differ-
ent periodicity, PSSFSS employs the usual approxima-
tion where only the principal TE and TM Floquet modes
are included in the GSMs used for cascading.

D. Loaded cross slots bandpass filter
This example, originally from [21, Fig. 7.9], was

also used in [22]. The geometry, shown in Fig. 6, con-
sists of two identical loaded cross slot-type elements sep-
arated by a 6 mm layer of dielectric constant 1.9. Out-
board of each sheet is a 1.1 cm layer of dielectric con-
stant 1.3. The closely spaced sheets provide another good
test of the generalized scattering matrix cascading formu-

(a)

(b)

Fig. 5. 5-Sheet CPSS from [20]: (a) All 5 sequentially
rotated sheets share the same 5.2 mm unit cell and (b)
RHCP → RHCP axial ratio and insertion loss computed
by PSSFSS and CST Microwave Studio.

ual sheet triangulations. Each sheet shares the same unit
cell, a 5.2 mm square. Sheets are etched on dielectric sub-
strates separated from their neighbors by foam layers. The
structure consists of 9 dielectric layers and 5 FSS sheets.
Below the sheet triangulations is a plot of computed inser-
tion loss and transmitted axial ratio (AR) for a right-hand
circular polarization (RHCP) wave normally incident on
the structure, both computed by PSSFSS and CST, the lat-
ter digitized from plots in [20]. The differences in the two
models’ results are attributed to finite metalization thick-
ness used in the CST model, a feature not yet supported
by PSSFSS. Analysis of the 5-sheet composite structure
at 101 frequencies required only 20 s for PSSFSS, com-
pared to the 17 min and 1 hr reported in [20] for CST
using a coarse and fine mesh, respectively. The speed
of PSSFSS for this case is due to multiple factors: 1)
analysis is fastest at normal incidence, 2) meanderlines
and strips are triangulated using structured meshes which
are exploited by PSSFSS to avoid redundant calculations,
3) the elements used herein fill only a small portion of
the unit cell and are not resonant, reducing the number
of triangles required, and 4) the smoothly varying GSM
over this analysis bandwidth required only 13 full solu-
tions out of 101 analysis frequencies in the fast sweep
algorithm.

Listing 2 is a fragment of the log file created by
PSSFSS when analyzing the CPSS. It recapitulates the
layup of the structure and displays the number of Flo-
quet modes assigned to each dielectric layer in the final
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column. The layers labeled 1 and 11 are the semi-infinite
vacuum regions on either side of the FSS structure. Note
that the thin substrates adjacent to the FSS sheets, labeled
as layers 2, 4, 6, 8, and 10, are assigned zero modes.
This is because a very large number of modes would be
required to cascade GSMs for very thin layers adjacent to
FSS sheets. Instead, PSSFSS defines a so-called “GSM
Block” consisting of the sheet and any neighboring thin
layers. A single, composite GSM is computed for this
GSM Block using the stratified media Green’s functions.
For the remaining foam spacer layers, it is observed that
10 modes are used in the 3.81 mm layers 3 and 9, while
18 modes are used in the thinner 2.61 mm layers 5 and 7.

(a)

(b)

Fig. 5. 5-Sheet CPSS from [20]: (a) All 5 sequentially
rotated sheets share the same 5.2 mm unit cell and (b)
RHCP → RHCP axial ratio and insertion loss computed
by PSSFSS and CST Microwave Studio.
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Fig. 6. Bandpass filter geometry consisting of two iden-
tical loaded cross slots in a three-layer, symmetrical,
dielectric sandwich structure.

lation implemented in PSSFSS. Analysis of this struc-
ture with PSSFSS at 381 frequencies over a 20:1 band-
width was performed for a few different mesh discretiza-
tions. A total of 18 Floquet modes in the center dielec-
tric layer was selected by the code to accurately model
interactions between the two closely spaced FSS sheets.
Computed transmission amplitudes from PSSFSS and
HFSS are compared in Fig. 7, where good agreement is
observed over a very wide dynamic range of nearly 80 dB.
Timings for the different discretizations are given in the
figure legend.

E. Other
The complete scripts for all the above cases along

with numerous other usage examples can be found in [4],
including reflectarray elements, rabsorbers, and a fully

Listing 2 Portion of the log file produced by PSSFSS
when analyzing the CPSS of Fig. 5.
Layer Width units epsr tandel mur mtandel modes
----- ----------- ------ ------ ------ ------ -----

1 0.000 mm 1.00 0.0000 1.00 0.0000 2
2 0.127 mm 2.17 0.0009 1.00 0.0000 0

================= Sheet 1 ======================
3 3.810 mm 1.04 0.0017 1.00 0.0000 10
4 0.127 mm 2.17 0.0009 1.00 0.0000 0

================= Sheet 2 ======================
5 2.610 mm 1.04 0.0017 1.00 0.0000 18

================= Sheet 3 ======================
6 0.127 mm 2.17 0.0009 1.00 0.0000 0
7 2.610 mm 1.04 0.0017 1.00 0.0000 18
8 0.127 mm 2.17 0.0009 1.00 0.0000 0

================= Sheet 4 ======================
9 3.810 mm 1.04 0.0017 1.00 0.0000 10

================= Sheet 5 ======================
10 0.127 mm 2.17 0.0009 1.00 0.0000 0
11 0.000 mm 1.00 0.0000 1.00 0.0000 2

Fig. 7. Normal incidence transmission amplitude versus
frequency for the bandpass filter.

worked-out design optimization for a CPSS using an evo-
lutionary algorithm.

V. CONCLUSIONS
An open-source code PSSFSS for analysis of pol-

arization and frequency selective surfaces has been
described. PSSFSS can be obtained, installed, and used
easily and without cost. It is written in the relatively new
Julia programming language; therefore, some of the fea-
tures of Julia that were especially convenient and useful in
developing PSSFSS were highlighted. PSSFSS employs
multi-threading and several novel algorithms to enhance
computational efficiency. Examples were provided that
demonstrate the speed, ease of use, and accuracy of the
code.
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frequency for the bandpass filter.

Timings for the different discretizations are given in the
figure legend.

E. Other
The complete scripts for all the above cases along

with numerous other usage examples can be found in [4],
including reflectarray elements, rabsorbers, and a fully
worked-out design optimization for a CPSS using an evo-
lutionary algorithm.

V. CONCLUSIONS
An open-source code PSSFSS for analysis of pol-

arization and frequency selective surfaces has been
described. PSSFSS can be obtained, installed, and used
easily and without cost. It is written in the relatively new
Julia programming language; therefore, some of the fea-
tures of Julia that were especially convenient and useful in
developing PSSFSS were highlighted. PSSFSS employs
multi-threading and several novel algorithms to enhance
computational efficiency. Examples were provided that
demonstrate the speed, ease of use, and accuracy of the
code.
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