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Abstract – This paper presents a wide-angle scan-
ning and high isolation base station antenna array.
The antenna element employs a compact dual-polarized
umbrella-shaped printed dipole with a small size of
0.23λ 0 × 0.23λ 0 × 0.26λ 0, which provides the pos-
sibility for a small element spacing array. The antenna
element possesses wide 3 dB beamwidth of 84.6◦ ben-
efiting from the pulling down of the dipole arms. Then,
a dual-layer metal superstrate structure and metal wall
is adopted to mitigate different kinds of mutual cou-
pling between the dual-polarized antenna elements in
the array. Owing to the wide beamwidth of the ele-
ment and the low mutual coupling between the elements,
the final 4×6 antenna array can achieve a good beam-
scanning capability with maximum scanning angle up
to ±55◦ and a small gain variation of less than 3 dB
over the operation band 3.3-3.8 GHz. The fabricated
array shows the measured isolation between all ports
of the antennas is increased to more than 20 dB. Scan-
ning characteristics also agree well with the simulated
results. With the merits of wideband, low-cost (simple
design and easy fabrication), wide-angle beam-scanning
capacity, and good radiation performance, the proposed
design has potential for application in 5G base station
systems.

Index Terms – 5G base station antenna, dual-polarized
antenna, high isolation, phased array antenna, wide-
angle scanning.

I. INTRODUCTION
Fifth-generation (5G) communication technology

has brought high data rate, large channel capacity, and
low latency transmission experience to users. One of
the 5G key technologies is beam-scanning arrays, which
can realize multi-target communication and tracking. For
5G base station applications, dual-polarized capability
should be required, which can extend system capac-
ity without increasing size, and implement polariza-
tion diversity technology to achieve multipath fading
resistance. Thus, designing a dual-polarized wide-angle

scanning base station antenna array is an urgent task for
researchers. To date, many efforts have been devoted
to the single polarized wide beam-scanning array [1–
5]. Few papers focus on both the dual-polarized and
wide beam-scanning at sub-6 GHz simultaneously [6–
8]. Actually, high isolation between the elements in the
array is essential for wide-angle beam-scanning, oth-
erwise serious mutual coupling would deteriorate the
impedance matching and the radiation patterns of the
array antennas. Single and dual-polarized array decou-
pling has been done recently [9–18]. Mutual coupling
between the elements in the array is mainly blamed for
the space wave coupling and surface wave coupling.
Different decoupling methods have been used, such as
DGS [9], EBG [10], and neutral line [11], which are
devoted to reducing surface wave coupling. The DGS
structure might introduce back radiation, and have nar-
row decoupling bandwidth. EBG requires more area to
get better decoupling performance, which is not suitable
to be used in closely packed antenna. The neutral line
network needs a complicated design. Moreover, these
methods are difficult to be applied in the dual-polarized
antenna array. For space wave decoupling, frequency
selective surface (FSS) [12], array-antenna decoupling
surface (ADS) [13], meta-surface superstrate [14], baf-
fle [15], dielectric stub [16] and hybrid decoupling array
[17–18] have been employed to get better isolation.

In this paper, a dual-layer superstrate structure with
periodic metal patches, referred to as a metal superstrate,
has been introduced on top of the antenna to achieve
distinct decoupling performance. Meanwhile, a separa-
tion metal wall is inserted between the columns of the
array to reduce the cross polarization between the ele-
ments. Finally, a 4×6 antenna array is designed and fab-
ricated. The measured results show that the mutual cou-
pling between elements in the array is reduced to below
-20 dB in the wideband range while maintaining stable
radiation patterns. The array can achieve a good beam-
scanning capability with maximum scanning angle up to
±55◦and a small gain variation of less than 3 dB over the
band 3.3-3.8 GHz.
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II. DESIGN AND WORK MECHANISM
A. Antenna element configuration

Figure 1 (a) depicts the configuration of the pro-
posed compact dual-polarized umbrella-shaped dipole.
The antenna is composed of two orthogonal substrates,
a microstrip balun, and two pairs of umbrella-shaped
dipoles printed on both sides of the substrate. The ground
plane is utilized to achieve directional radiation. The two
substrates with thickness of 0.5 mm are made of FR4
with a relative dielectric constant of 4.4. Figure 1 (c)
shows the detailed structure of the feeding balun. Com-
pared with the conventional T-shaped dipole as shown
in Fig. 1 (b), the proposed dipole has a more compact
size, as the length of the substrate denoted Ln1 has been
reduced from 33 mm to L1=28 mm, which would con-
tribute to the high isolation between the elements when
the elements are formed into a compact array. Moreover,
the beamwidth of the dipole has been widened from 78◦

to 84.6◦ as shown in Fig. 2 (c). Figure 2 (a) shows the
simulated reflection coefficient and the port isolation. We
can conclude the proposed element has a bandwidth of
14.1% (3.3-3.8 GHz) and high port isolation of more
than 40 dB. The radiation patterns are stable in the whole
band with the cross polarization more than 20 dB, as
shown in Fig. 2 (b).

B. Antenna array decoupling scheme
With the small element distance in the array,

strong coupling would deteriorate the impedance match-
ing characteristics and the radiation patterns of the

(a) (b)

(c)

Fig. 1. Configuration of the antenna unit: (a) proposed
antenna unit, (b) conventional dipole, and (c) side view
of the proposed antenna (L1=28 mm, R=14 mm, R1=7
mm, H=21 mm, Ln1=33 mm, R2=2.5 mm, L2=15.4 mm,
W1=1 mm, W2=3 mm, L3=18 mm).

(a)

(b) (c)

Fig. 2. Simulation results of the dipole: (a) S-parameters,
(b) radiation patterns at different frequencies, and (c)
comparison of the beamwidth between the conventional
and the proposed dipole.

array antennas. A feasible hybrid decoupling method is
employed in this paper. A separation metal wall is ver-
tically placed between antenna elements, and a dual-
layer metal superstrate structure is placed directly above
the antenna array. These methods work together to real-
ize a wideband decoupling within 3.3-3.8 GHz. The
decoupling steps and mechanism will be illustrated in
detail.

(1) Separation metal wall and lower metal superstrate for
decoupling

As shown in Fig. 3 (a), it is a 1×4 linear array
with the element distance of 33 mm (0.4λ 0, where λ 0
is the free space wavelength at 3.55 GHz). The port
number has been marked in Fig. 3 (a). The separation
metal wall is placed between two adjacent antennas,
which block the propagation of spatially coupled waves
and contribute to the suppression of cross-polarized
coupling. The decoupling mechanism of the separation
metal wall is based on the partition principle. More-
over, a lower metal superstrate is located directly on the
top array as shown in Fig. 3 (b), which is used to fur-
ther reduce the cross-polarized coupling between the ele-
ments. At the same time, the lower metal superstrate
can also broaden the bandwidth of the antenna array.
Figure 4 shows the simulated S-parameters of the 1×4
antenna array with/without the lower metal superstrate
and metal wall. It is obvious that the reflection coeffi-
cients have been improved with the decoupling struc-
ture since they were deteriorating owing to the coupling,
especially the higher frequency band. The co-polarized
coupling achieves lower than -15 dB, and cross-polarized
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(a)

(b)

Fig. 3. The 1×4 dual-polarized antenna array: (a) with
the separation metal wall and (b) with the separation
metal wall and lower metal superstrate (w s=2 mm,
l s=11 mm, h w=12 mm, W1 L=6.5 mm, W2 L=1.5 mm,
L1 L=23 mm, L2 L=5 mm, H1=23 mm).

(a) (b)

(c)

Fig. 4. S-parameters of the 1×4 antenna array
with/without the separation metal wall and the lower
metal superstrate: (a) reflection coefficients, (b) co-
polarized coupling, and (c) cross-polarized coupling.

couplings are improved to -20 dB, almost the entire fre-
quency band with the two decoupling structures.

(2) Upper metal superstrate for co-polarized decoupling
The addition of lower metal superstrate and sepa-

ration metal wall can reduce the cross-polarized cou-
pling to -20 dB and the co-polarized coupling to -15
dB, which cannot meet the requirements of high isola-
tion. Therefore, the upper superstrate is employed above
the array to further improve the co-polarized isolation.
The distance between the ground plane and upper metal
superstrate is H2=36.5 mm. Figure 5 shows the struc-
ture and the operating principle of the upper metal super-
strate. The electromagnetic wave emitted by Antenna 1
can be reflected by the upper metal superstrate and an
additional superstrate and an additional wave path is pro-
duced. When the reflected and coupling waves have the
same amplitude but opposite phases, they cancel each
other, reducing the mutual couplings. Figure 6 shows
the simulated S-parameters of the 1×4 antenna array
with/without the upper metal superstrate. It can be seen
that the co-polarized coupling has been suppressed to -
20 dB. Moreover, the reflection coefficients and cross-
polarized coupling get better results with the upper metal
superstrate. It can be observed from Fig. 7 that when an
element is excited, the electric field coupled to its neigh-
boring antenna is significantly weakened after loading
the decoupling structure.

(3) Decoupling parametric study
In order to illustrate how the lower and upper metal

superstrates affect the mutual coupling depression, a
simulated parametric study is performed. Figure 8 (a)
shows that when the parameter of the patch length

Fig. 5. The 1×4 antenna array with upper metal superst-
rate (L1 U=21 mm, L2 U=10 mm, a U=6 mm, b U=10
mm).
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(a) (b)

(c)

Fig. 6. S-parameters of the 1×4 antenna array
with/without the upper metal superstrate: (a) reflection
coefficients, (b) co-polarized coupling, and (c) cross-
polarized coupling.
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Fig. 4. S-parameters of the 1×4 antenna array 

with/without the separation metal wall and the lower 

metal superstrate: (a) reflection coefficients, (b) co-

polarized coupling, and (c) cross-polarized coupling.  
 

 
 

Fig. 5. The 1×4 antenna array with upper metal superst-

rate (L1_U=21 mm, L2_U=10 mm, a_U=6 mm, b_U=1
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Fig. 7. Electric field distribution of the two-element array 

(a) without and (b) with loading decoupling structure at 

3.5 GHz.  
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Fig. 7. Electric field distribution of the two-element array
(a) without and (b) with loading decoupling structure at
3.5 GHz.

(a) (b)

Fig. 8. S-parameters of the 1×4 antenna array with and
without the upper metal superstrate: (a) patch size analy-
sis on the lower metal superstrate and (b) patch size anal-
ysis on the upper metal superstrate.

L1 L on the lower metal superstrate increases, the
cross-polarization decoupling frequency point shifts to
higher frequency. Figure 8 (b) shows how the parame-
ter of the patch length L1 U on the upper metal super-
strate influences the co-polarized decoupling. When
L1 U increases, the co-polarized decoupling frequency
point shifts to the lower frequencies. That is to say,
the decoupling frequency can be controlled simply

by changing the size of periodic patch cells on the
superstrate.

III. ARRAY DESIGN AND RESULTS
To obtain the wide-angle scanning performance

for the large-scale array, generally, the following three
aspects should be considered: (a) the coupling among
array elements which would lead to the scanning blind-
ness, (b) the wide beamwidth of the array element to
ensure the lower gain reduction at the large scanning
angle, and (c) the small spacing to minimize the grat-
ing lobes. In this paper, the coupling has been reduced to
-20 dB and the element is compact to guarantee the small
spacing.

To verify the above analysis, a 4×6 array is
designed. The array configuration can be seen in Fig. 9

(a)

(b) (c)

(d)

(e) (f)

Fig. 9. Proposed 4×6 antenna array: (a) three-
dimensional view of the model, (b) top view, (c) side
view, (d) feeding network of the 4×6 array, (e) feeding
network for broadside radiation, and (f) feeding network
for 55◦ radiation (La = 95.96 mm, Lb = 15.38 mm, Lc =
47.3mm, Ld = 15.48 mm, Le = 14.43 mm, Lf = 16.6 mm,
Lb1 = Lc1 = La2 = Le2 = 15.12 mm, La1 = 28.54 mm,
Ld1 = 8.54 mm, Lb2 = 68.64 mm, Lc2 = 16.44 mm, Lf2
= 33.94 mm, Ld2 = 8.44 mm, wa = 1.545 mm, wb = we
= 0.888 mm, wc = 0.61mm, wd = 1.13 mm, wa1 = 0.87
mm, wb1 = 1.56 mm, wa2 = 0.89 mm, wb2 = 1.56 mm).
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Fig. 10. Photograph of (a) fabricated 4×6 antenna array 

and (b) fabricated power divider. 
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Fig. 10. Photograph of (a) fabricated 4×6 antenna array
and (b) fabricated power divider.

(a), the element distance in y-axis is 65 mm (0.77 λ 0,
where λ 0 is the free space wavelength at 3.55 GHz).
Note that power dividers used to feed the subarrays are
omitted in the figure for clearer illustration. Figure 9 (a-
c) illustrates the simulated model of the 4×6 antenna
array and the 1 to 6 power divider model are shown in
Fig. 9 (d). Figures 9 (e-f) are the 1 to 4 power dividers to
feed the four subarrays in order to realize the broadside
and wide-angle scanning. Figures 10 (a-b) illustrate the
fabricated 4×6 antenna array model and power divider
model.

The simulated and measured S-parameters are
shown in Fig. 11. It is seen that the measured reflection
coefficients correspond well to the simulated ones. Both
the co-polarized and cross-polarized mutual coupling are
reduced to below -20 dB. Figure 12 shows the simulated
active reflection coefficients of the subarrays in the array

(a) (b)

(c)

Fig. 11. Measured and simulated S-parameters of the
4×6 dual-polarized antenna array with the decoupling
method: (a) reflection coefficient, (b) S13 and S35, and
(c) S14 and S36.

(a) (b)

Fig. 12. Simulated active reflection coefficients of the
subarrays in the array and at different scanning angles:
(a) port 1 and (b) port 3.

(a) (b)

Fig. 13. Simulated and measured scanning performance
of the proposed array: (a) 3.3 GHz and (b) 3.8 GHz.

and at different scanning angles. It can be observed that
even at wide scanning angle, the active reflection coeffi-
cients are less than -10 dB, which would guarantee the
realization of wide-angle scanning. The radiation pat-
terns and the scanning performance of the antenna array
at 3.3 GHz / 3.55 GHz / 3.8 GHz are also presented in
Fig. 13. It can be concluded that the main beam is able
to scan up to -55◦ and the scan losses are lower than 2.5
dB at 3.3 GHz and 3.8 GHz. The measured and simu-
lated realized gain are also given in Fig. 14. The mea-
sured gain is up to 19.4 dBi, which is about around 1 dB
lower than the simulated gain. It may be mainly caused
by fabrication and measurement errors.

Fig. 14. Measured and simulated realized gain of the 4×6
dual-polarized antenna array.
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Table 1: Comparison of the related arrays
Ref. BW (GHz)

(%)
Polarization AS MSA GF ID

[6] 4.4-5
(10.5%)

±45◦ dual
linear

4×4 60◦ 3.0
dB

>20
dB

[7] 5.2-5.3
(2.1%)

dual
linear

6×6 66◦ 3.5
dB

>16
dB

[17] 1.7-2.22
(5.6%)

±45◦ dual
linear

4×4 - - >20
dB

[19] 3.3-3.8
(14.1%)

±45◦ dual
linear

1×4 55◦ >3.0
dB

>13
dB

This
work

3.3-3.8
(14.1%)

±45◦ dual
linear

4×6 55◦ 3.0
dB

>20
dB

BW = Bandwidth, AS = Array scale, MSA = Maximum
scanning angle, GF = Gain fluctuation, ID = Inter-port
decoupling

In Table 1, the comparison between our work and
other antenna arrays is presented. The proposed antenna
array has a broader operating bandwidth than the designs
in [6–7] and [17] owing to the wideband characteristic
of the proposed antenna and the decoupling structure.
Meanwhile, the proposed antenna in this paper exhibits
higher isolation than [19].

IV. CONCLUSION
A wide-angle beam-scanning with high isolation

base station antenna array has been proposed in this
paper, benefiting from the compact element and effective
hybrid decoupling methods. The measured 4×6 antenna
array achieved a good beam-scanning capability with
maximum scanning angle up to ±55◦ and a small gain
variation of less than 3 dB over the whole band. Plus,
the measured isolation between all ports of the array is
increased to more than 20 dB. With the merits of wideb-
and, low-cost (simple design and easy fabrication), wide-
angle beam-scanning capacity, and good radiation per-
formance, the proposed design has potential for applica-
tion in large-scale 5G base station systems.
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