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Abstract – The study of the interaction between moving
plasma-coated objects and electromagnetic (EM) waves
is the essential factor for the EM problems of high-speed
targets. In this paper, the physical model of a moving
dispersive medium is developed based on the principle
of special relativity to study the EM properties of high-
speed moving targets coated with plasma sheath. First,
the Lorentz transform is used to introduce the incident
plane wave into moving frame. Second, based on the pro-
posed EM model, the EM problems are solved in moving
frame by the shift-operator (SO) FDTD numerical algo-
rithm. Finally, the EM results are further converted back
into the laboratory frame to analyze the scattered prop-
erties of high-speed plasma coated objects. The valid-
ity of the proposed algorithm is verified by comparison
with the reference solution. On this basis, the influence of
relativistic effects produced by the motion of the object
and the EM properties of the plasma on the scattering
fields of high-speed targets are investigated. This work
expands the applicability of the FDTD method and pro-
vides a theoretical foundation for solving the scattering
properties of high-speed plasma-coated complex shape
objects through numerical methods.

Index Terms – Electromagnetic (EM) scattering, finite
difference time domain (FDTD), moving plasma, rela-
tivistic effects.

I. INTRODUCTION
When a high-speed vehicle performs a highly

maneuverable cruise mission in the near space, it will
generate violent friction with the surrounding atmo-
sphere, which will promote the ionization of the air
around the vehicle, resulting in the formation of plasma
sheath wrapping around the vehicle [1, 2]. On the one
hand, the plasma sheath will seriously interfere with
the wireless communication between the target and the

detection radar, and will bring irreversible effects on
the electromagnetic (EM) transmission, scattering, and
imaging characteristics of high-speed moving targets [3–
5]. On the other hand, the relativistic effect due to the
high-speed motion of the radar target will modulate the
EM wave as well. Therefore, the influence of relativistic
effects must be considered in the study of EM scatter-
ing properties of high-speed moving targets coated with
plasma sheaths.

In real application environments, the acquisition of
the realistic flow field environment excited around a
high-speed target would be time-consuming and expen-
sive [6], which aggravates the difficulty of the research
and analysis of the EM problems about high-speed
moving targets coated with plasma sheaths. Numer-
ous EM numerical simulation approaches play a crucial
role in real-world applications as computer technology
advances. The finite-difference time-domain (FDTD)
approach can be used to solve EM problems in a wide
range of complicated situations with high accuracy and
efficiency, and it can also be effectively integrated with
other methods [7–9]. Zheng et al. proposed to intro-
duce the Lorentz transformation into the FDTD method
for calculating the EM scattering characteristics of a
high-speed moving conductor plate [10]. The EM trans-
mission characteristics of a high-speed moving multi-
layer dielectric plate are further investigated by using
the Lorentz-FDTD method [11]. To analyze the trans-
mission characteristics of EM waves obliquely inci-
dent into a high-speed moving left-handed metamate-
rial, the authors establish a connection between the
Lorentz transformation with the ADE-FDTD method
[12]. The total energy scattering, extinction, and absorp-
tion cross section of incident EM waves by a high-
speed moving target are analyzed based on the rela-
tivistic principles [13–14]. By transforming LFM waves
into the moving frame, the 1D range profile of a high-
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speed moving target is researched in [15] based on the
Lorentz-FDTD method. The interaction between EM
waves and spatiotemporally non-uniform moving plasma
plates is revealed in [16]. In [17], absorption character-
istics of EM waves by a non-uniform plasma moving at
high velocities were investigated by using the Wentzel-
Kramers-Brillouin method.

In summary, various numerical methods have been
developed and applied to study the EM scattering charac-
teristics of high-speed targets [7–12, 15] and the effect of
moving plasma plates on the EM transmission character-
istics [16–19]. However, there remains a dearth of studies
on the EM properties of high-speed moving complex-
shaped targets coated with plasma sheath based on the
relativity effect. In this paper, we investigate the influ-
ence of relativistic effects and EM parameters of plasma
sheath on the scattering characteristics of high-speed tar-
gets by using the Lorentz-FDTD method.

In Section II, the EM scattering model of the mov-
ing dispersive medium is established, and the procedure
for the calculation of the moving dispersive medium by
the Lorentz-FDTD method is derived. In Section III, the
validity and accuracy of the proposed algorithm is ver-
ified. In Section IV, the EM scattering problem from
a uniformly moving conical-spherical metal object and
that object coated with a plasma has been investigated
and analyzed. The conclusion of this research is pre-
sented in Section V.

II. RESEARCH METHOD
The fundamental principle of the calculation of a

high-speed moving dispersive medium target by the
Lorentz-FDTD method can be divided into two steps.
First, the dynamic EM scattering problem in the radar
frame (denote by K frame) is converted to the motion
frame (denote by K′ frame), which remains relatively
stationary with the moving target according to the prin-
ciple of relativity. Second, the EM problem is solved by
the conventional FDTD method in the K′frame, and then
the EM solution is further transformed into the K frame
according to the inverse Lorentz transformation. The
relationship between the two frames is shown in Fig. 1.
Before the solution of the dynamic EM problem for high-
speed targets by the conventional FDTD method, the
incident plane EM waves and the spatial-temporal sep-
aration intervals in both frames need to be converted
according to the relativistic principle. The algorithm flow
of the Lorentz-FDTD method for calculating the motion
dispersion medium is shown in Fig. 2.

A. Physical model of moving plasma
When EM waves propagate in a moving isotropic

medium, their frequency will be shifted due to the
Doppler effect. Assuming that the angle between the EM
wave propagation vector k⃗ and the object velocity v⃗ is θ ,
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the EM wave frequency ω ′ after the Doppler shift can be
calculated as [16]

ω
′ = γω(1−β cosθ), (1)

where γ = 1/
√

1−β 2,β = v/c. c is the velocity of light
in free space.

The dielectric coefficient εr of a magnetized cold
plasma is generally described using Appleton’s formula.

εr(ω) = 1−
ω2

p

ω2 +ω2
c
− j

ωc

ω

ω2
p

ω2 +ω2
c
, (2)

where ωp is the plasma cut-off frequency and ωc is the
plasma collision frequency. ω is the operating frequency
of EM waves.

The EM wave frequency ω ′ in the K′ frame will be
red-shifted when the object moves away from the detec-
tion radar radiation. Conversely, the ω ′ will be blue-
shifted when the object is moves toward the direction of
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EM wave propagation. Therefore, the dielectric coeffi-
cient εr of plasma in the K′ frame can be further written
as

ε
′
r
(
ω

′)= 1−
ω2

p

ω ′2 +ω2
c
− j

ωc

ω ′
ω2

p

ω ′2 +ω2
c
. (3)

The EM field update equation for a moving plasma
based on the shift-operator (SO-FDTD) method [20–22]
is derived as follows. First, as the dielectric coefficient of
the plasma will change with the EM wave frequency, the
electric field frequency domain intrinsic relationship of
the moving plasma can be expressed as

D
′
(ω

′
) = ε0ε

′
r(ω

′
)E

′
(ω

′
), (4)

where the rational fraction of εr in the SO-FDTD method
is expressed in the form

ε
′
r(ω

′
) =

∑
N
n=0 pn( jω

′
)n

∑
M
m=0 qm( jω ′

)m
, (5)

where pn and qn denote the numerator and denom-
inator coefficients of the relative permittivity,
respectively.

To simplify the equation, we define the velocity fac-
tor C=γ(1–βcos θ ), then establish the equation jω ′=C
jω . The time domain forms of the electric field and
relative dielectric coefficients of plasma can be transi-
tioned by the conversion operator jω = ∂/∂ t between
the time and frequency domains. Therefore, the time-
domain form of (5) can be deduced further as

ε
′
r

(
∂

∂ t ′

)
=

∑
N
n=0 pnCn( ∂

∂ t )
n

∑
M
m=0 qmCm( ∂

∂ t )
m
. (6)

The time-domain intrinsic form of the electric field
can be acquired by bringing (6) into the electric field
intrinsic structure relation (4).[

M

∑
m=0

qmCm
(

∂

∂ t

)m
]
D

′
(t

′
)= ε0

[
N

∑
n=0

pnCn
(

∂

∂ t

)n
]
E

′
(t

′
).

(7)
By discretizing the time derivative in (7) with

the central difference
(

∂

∂ t

)l
→
(

2
∆t ·

zt−1
zt+1

)l
, where zt

denotes the discrete time-domain shift operator and l rep-
resents the order of time derivative [21]. The electric field
update equation in the SO-FDTD method is given by{[

q′0 +q′1
2
∆t

+q′2

(
2
∆t

)2
]

z2
t +

[
2q′0 −2q′2

(
2
∆t

)2
]

zt+[
q′0 −q′1

2
∆t

+q′2 ·
(

2
∆t

)2
]}

D′n
x ={[

p′0 + p′1
2
∆t

+ p′2

(
2
∆t

)2
]

z2
t +

[
2p′0 −2p′2

(
2
∆t

)2
]

zt+[
p′0 − p′1

2
∆t

+ p′2

(
2
∆t

)2
]}

ε0E′n
x .

(8)

The differential form of the electric field update equation
for a moving dispersive medium is as follows:

E′n+1 =
1
b0

{
1
ε0

(
a0D′n+1 +a1D′n +a2D′n−1) (9)

−b1E ′n −b2E ′n−1} ,
where the coefficients a0,a1,a2,b0,b1,b2 are as
follows:

a0 = q′0 +q′1
( 2

∆t

)
+q′2

( 2
∆t

)2
, b0 = p′0 + p′1

( 2
∆t

)
+ p′2

( 2
∆t

)2

a1 = 2q′0 −2q′2
( 2

∆t

)2
, b1 = 2p′0 −2p′2

( 2
∆t

)2

a2 = q′0 −q′1
( 2

∆t

)
+q′2

( 2
∆t

)2
, b2 = p′0 − p′1

( 2
∆t

)
+ p′2

( 2
∆t

)2
,

(10)
where q

′
n =Cnqn, p

′
n =Cn pn (n = 0,1,2), and the coef-

ficients qn and pn are determined by the EM parameters
of plasma.

B. Lorentz transformation of space-time increments
When the Lorentz transformation is introduced into

the FDTD method according to the principle of spe-
cial relativity, the relationship between the space-time
increments of two inertial systems satisfy the Lorentz
transformation equation. Suppose that the K′ frame
is moving with constant velocity v⃗ relative to the K
frame, and the origin of the two frames coincide at
the instantaneous moment t = t ′= 0. The space-time
increment between the two inertial frames is given
by (11).

 ∆x
∆y
∆z

=


1+(γ −1) v2

x
v2 (γ −1) vxvy

v2 (γ −1) vxvz
v2

(γ −1) vxvy
v2 1+(γ −1)

v2
y

v2 (γ −1) vyvz
v2

(γ −1) vxvz
v2 (γ −1) vyvz

v2 1+(γ −1) v2
z

v2


·

 ∆x′

∆y′

∆z′

 , (11-a)

∆t =
1√

1−β 2
(1−β âs · âv)∆t

′
, (11-b)

where vx = |⃗v|sinθv cosϕv,vy = |⃗v|sinθv sinϕv, vz =
|⃗v|cosθv. θv is the elevation angle of v⃗ with +z
axis, ϕv is the angle between the projection of v⃗
on xOy and +x axis. The symbol âs and âv denotes
the unit vectors of the scattered field and velocity,
respectively.

C. Incident EM field transformation
In order to solve the dynamic EM problem for high-

speed targets by the FDTD method, the incident plane
EM wave in the K frame need to be converted to the K′

frame. Assume that the unit vector of incident EM wave
propagating along arbitrary direction in the K frame is
defined as

−→
k i. According to the phase-invariant princi-

ple of EM waves [23], the wave vector
−→
k ′

i, angular fre-
quency ω ′

i and amplitude
−→
E ′

itransformation equations of
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the incident plane EM wave in the K′ frame are given by
(12)-(14).

k⃗
′
i = γ⃗ki

(
1−β

k⃗i · v⃗
|⃗v|

)
, (12)

ω
′
i = γωi

(
1−β

k⃗i · v⃗
|⃗v|

)
, (13)

|E⃗ ′
i |=

√
(E⃗0 cosθ)2 + γ2(E⃗0 sinθ + |⃗v× B⃗|)2, (14)

where the ω i, E⃗0are the angle frequency and amplitude
of the incident EM waves in the K frame.

D. Near- to far-field extrapolation
In the frame K′, the near-field scattered field of the

moving target can be obtained by using the time domain
EM field iteration of conventional FDTD. The far-field
scattered EM field can be obtained by extrapolation from
the near-field data. First, a closed virtual boundary is
set as the extrapolation boundary in the FDTD scatter-
ing field region according to the equivalence principle.
Second, the tangential current and tangential magnetic
current on the virtual boundary are calculated, and the
equivalent EM current on this surface is extrapolated
according to the Huygens’s principle. In addition, the
10-level uniaxial anisotropy perfectly matched (UPML)
layer as absorbing boundary is used to terminate the out-
ward propagating EM field in space. The 3D far-field
equation in the frame K′ can be expressed as

es′
θ

(
t ′
)
= u′x sinϕ

′
s −u′y cosϕ

′
s −η

(
w′

x cosθ
′
s cosϕ

′
s

+w′
y cosθ

′
s sinϕ

′
s −w′

z sinθ
′
s
) ,

(15-a)

es′
ϕ

(
t ′
)
= u′x cosθ

′
s cosϕ

′
s +u′y cosθ

′
s cosϕ

′
s −u′z sinθ

′
s

+η
(
w′

x sinϕ
′
s −w′

y cosϕ
′
s
) ,

(15-b)
where η is the wave impedance in free space. w′(t) and
u′(t) can be obtained by performing the inverse Fourier
transform on (16).

−→
W′ = jk−→A′

= jk
exp(− jk′r′)

4πr′

∫
A

(
n̂×−→H′

s
)

exp
(

jk′r′ · ê′r′
)

ds′
,

(16-a)−→
U ′ = jk

−→
F ′

= jk
exp(− jk′r′)

4πr′

∫
A
−
(

n̂×−→
E ′

s

)
exp
(

jk′r′ · ê′r′
)

ds′
,

(16-b)

E. Inverse Lorentz transformation of EM field
As the Maxwell system of equations satisfies the

covariance principle, its rotational equations remain
in the same form in all inertial systems. Therefore,

Maxwell’s rotational equations in K′ can be expressed
as

∂ D⃗
′

∂ t ′
= ∇× H⃗

′
, (17)

∂ H⃗
′

∂ t ′
=− 1

µ0
∇× E⃗

′
. (18)

In the previous section, the far-field scattered fields−→
E ′

sθ
and

−→
E ′

sϕ of the high-speed target were obtained by
near to far-field extrapolation. The electric and magnetic
field components will change in the two inertial systems
due to the relative motion between the K frame and the
K′ frame. The relationship between the EM fields in the
two frames follows the Lorentz transformation equation.
The inverse Lorentz transformation equation for the far-
field scattered EM field between two frames is given by
(20)-(21).

E⃗ = γ (⃗E
′
− v⃗× B⃗

′
)+(1− γ)

E⃗
′
· v⃗

v2 v⃗, (19)

B⃗ = γ (⃗B
′
− 1

c2 v⃗× E⃗
′
)+(1− γ)

B⃗
′
· v⃗

v2 v⃗, (20)

where spatial electric field
−→
E ′ and magnetic field−→

B ′ are represented in FDTD with Cartesian coordinates.
Therefore, the far-field

−→
E ′

sx,
−→
E ′

sy,
−→
E ′

sz can be obtained

by performing a coordinate transformation on
−→
E ′

sθ
and

−→
E ′

sϕ . In the SO-FDTD method, the far-field scattered
field in the K frame is derived as follows. The Lorentz
transformation equation of the spatial electric field in
FDTD is given below.

−→
E x−→
E y−→
E z

= γ


−→
E ′

x−→
E ′

y−→
E ′

z

− γ

 x̂ ŷ ẑ
vx vy vz−→
B ′

x
−→
B ′

y
−→
B ′

z


+(1− γ)

−→
E ′

xvx +
−→
E ′

yvy +
−→
E ′

zvz

v2
−→v .

(21)

The frequency domain field value
−→
E i( f ) of the

incident EM wave can be obtained by Fourier trans-
forming the time domain incident field

−→
E i(t). The 3D

radar scattering cross section (RCS) can be calculated
by (25).

RCS( f ) = lim
r→∞

10log

4πr2

∣∣∣∣∣ E⃗s( f )
E⃗i( f )

∣∣∣∣∣
2
 . (22)

F. Stability and dispersion
It is necessary to ensure the stability and dispersion

stability of Lorentz–FDTD method in the analysis the
moving target coated with plasma sheath. Assume the
time and space grids of the Lorentz–FDTD in the frame
K′ are set to dx′= dy′ = dz′ = δ and dt ′ = δ /2c. The
Courant stability criterion for the FDTD in the K′ frame
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is given by equation (23), according to the principle of
invariance of the speed of light [22]:

∆t
′ ≤ δ√

3c
. (23)

Given that the EM wave will be modulated by the
velocity of the target and the effect of strong dispersion
of the plasma, to guarantee the dispersion stability of the
FDTD is necessary, and it can be achieved by selecting a
suitable spatial increment δ . The spatial grid parameters
to satisfy the FDTD dispersion stability in the frame K′

are given in (24) [23]:

δ ≤ λ
′

12
, (24)

where λ ′ is the minimum wavelength in plasma sheath
corresponding to the maximum frequency after the blue-
shift of the EM wave, which can be calculated accord-
ing to the frequency-resolved formula for the scattered
field of a moving target [16]. Equation (24) reveals that
the velocity of the object affects the EM wave frequency
and thus imposes certain restrictions on the spatial grid
of the FDTD. In turn, the maximum frequency fmax that
can be calculated with the FDTD is determined once the
space-time increments are set. Therefore, the dispersion
stability of the FDTD can be guaranteed when the veloc-
ity is less than the critical velocity (herein, the critical
velocity is defined as the maximum frequency equal to
the fmax after the blue-shift of the EM wave frequency
caused by the target moving at that velocity). Simulating
higher velocities of the moving object can be achieved
by reasonably reducing the space-time increments of the
FDTD.

The frequency domain field value ( )Ei f
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B. Accuracy in analysis of moving dispersive medium
Here, we adopt a plasma sphere with a diameter of

7.5 mm as a validation example for dispersive media,
where the plasma frequency ω p is 1.8 × 1011 rad/s and
the collision frequency ωc is 20 GHz. The Lorentz–
FDTD method is used to calculate the monostatic RCS
of the plasma sphere, and the results would be compared
with that calculated with Mie theory to verify the valid-
ity and accuracy of the proposed algorithm in analyzing
EM scattering from dispersive-medium objects. The spa-
tial and time increments of the Lorentz–FDTD are set as
dx′= dy′= dz′= 0.05 mm and dt ′= dx′/ 2c. A Gaussian
pulsed plane wave with a pulse width τ of 60dt ′ is inci-
dent along the directions θ i = π / 2 and ϕ i=π / 2.

Figure 5 presents the results of monostatic RCS
calculated with the Lorentz–FDTD and Mie theory
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where the 
'

0E  is the amplitude of incident wave in the 

K' frame, and γt = γ (1 - βcos θ). The direction of 

incidence is θi = 90° and φi = 90°, the polarization angle 

α is set to 90°, the receiving angle θs = 90° and φs = 270°. 

The corresponding calculation time to update EM field 

components 3 × 103 times is 0.5 h by using a 

microcomputer. 
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A. High-speed moving metal cone-sphere target

In this section, the EM scattered properties of a 3D
metal cone-sphere target without plasma sheath coating
are investigated. The cone-sphere target has a height of
15 cm and base radius of 5 cm. The model of this tar-
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dz′= λ /20 and dt ′= dx′/2c, where λ = c / f 0 is the wave-
length of the EM wave at the modulation frequency. The
simulation space is defined as Tx ×Ty ×Tz= (180 × 180
× 180)δ . The incident plane wave source is a modulated
Gaussian pulse with the parameters of center frequency
of f 0 = 4 GHz, bandwidth of B = 4 GHz, pulse width of τ

= 1.7/B, and time delay of t0 = 0.8τ . The plane EM wave
was introduced in the SO-FDTD method by using the 3D
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where the E ′
0 is the amplitude of incident wave in the

K′frame, and γ t = γ (1 - βcos θ ). The direction of inci-
dence is θ i = 90◦ and ϕ i = 90◦, the polarization angle α

is set to 90◦, the receiving angle θ s = 90◦ and ϕs = 270◦.

The corresponding calculation time to update EM field
components 3 × 103 times is 0.5 h by using a microcom-
puter.

Figure 6 shows the backscattering properties of the
target with different velocities. The results in Fig. 6 (a)
illustrate that when the target moves along the incident
direction, the scattered waves in the time domain are
delayed and the amplitude decreases slightly, whereas
the opposite phenomenon is observed when moving
close to the incident wave. In Fig. 6 (a), as the target
moves away from the incident wave at v = 0.02c, the
scattered waveform received in the time domain delays
about 0.075 ns compared with that received when the
target is stationary. And the time delay will be 0.15
ns for the receding velocity v of 0.04c. Conversely, the
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Fig. 6. Scattering fields radiated from a metallic cone-
sphere target with motion direction as θ v = 90◦ and ϕv =
90◦: (a) Scattering field in the time domain and (b) mono-
static RCS.
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scattered waveform in the time domain will advance by
about 0.075 ns for v of 0.02c when the target is moving
close to the incident source. Further simulations reveal
that the time delay of the scattered waveform caused
by the motion will differ if the shape of the target is
changed. As shown in Fig. 6 (b), the monostatic RCS has
a frequency shift toward the low-frequency band if the
object moves along the incident direction (v > 0). Con-
versely, RCS has a frequency shift to the high-frequency
band while the target moves toward the incident
waves (v < 0).

For a high-speed moving rotating target, the EM
scattering strongly depends on its state of motion, ori-
entation, and shape [14]. To further investigate the rela-
tionship between the backward echo characteristics and
the velocity of a moving target, the EM echoes of a high-
speed moving-cone-sphere target are simulated for dif-
ferent ratios, where the ratio is defined as ratio = height
/ base radius. The details of the target dimensions at dif-
ferent ratios are given in Table 1. The incident wave is
incident along the tip of the moving target, and the dis-
tance of the plane wave to each cone tip is ensured to be
constant.

Table 1: Dimension parameters of cone-sphere target
Ratios Height

(cm)
Base Radius

(cm)
0.1 1.5 15
0.5 5.5 11
1.0 17 17
5.0 25 5
10 34 3.4

Figure 7 (a) shows the time-domain waveform of the
incident signal. Figures 7 (b)-(f) present the time tracks
of backscattered pulse fields of the cone-sphere targets
with different ratios and at different velocities. The result
in Fig. 7 shows that the backscattered waveform from
the target contains abundant information about the tar-
get. First, the variation of the scattered wave in terms of
delay and amplitude reflects the motion velocity of the
object. Second, the waveform variation of the scattered
field in the time domain is strongly correlated with the
ratio of the target. The maximum amplitude of the scat-
tered field decreases with the target ratio raising, and the
scattered field lags significantly in the time domain. For
the different ratios and same motion velocity of target,
the time delay of the scattered field from the targets has
a big difference, and the degree of time delay slightly
increases with ratio enlarging. However, as the velocity
is 0.04c, the time delay (compared with the stationary
target) is twice as long as that when the velocity is 0.02c
for all cone ratios.

Fig. 6. Scattering fields radiated from a metallic cone-

sphere target with motion direction as θv = 90° and φv = 

90°: (a) Scattering field in the time domain, (b) 

monostatic RCS. 
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distance of the plane wave to each cone tip is ensured to 

be constant. 

 

Table 1: Dimension parameters of cone-sphere target 

Ratios 
Height 

(cm) 

Base radius 

(cm) 

0.1 1.5 15 

0.5 5.5 11 

1.0 17 17 

5.0 25 5 

10 34 3.4 

 

Figure 7 (a) shows the time-domain waveform of 

the incident signal. Figures 7 (b)-(f) present the time 

tracks of backscattered pulse fields of the cone-sphere 

targets with different ratios and at different velocities. 

The result in Fig. 7 shows that the backscattered 

waveform from the target contains abundant information 

about the target. First, the variation of the scattered wave 

in terms of delay and amplitude reflects the motion 

velocity of the object. Second, the waveform variation of 

the scattered field in the time domain is strongly 

correlated with the ratio of the target. The maximum 

amplitude of the scattered field decreases with the target 

ratio raising, and the scattered field lags significantly in 

the time domain. For the different ratios and same 

motion velocity of target, the time delay of the scattered 

field from the targets has a big difference, and the degree 

of time delay slightly increases with ratio enlarging. 

However, as the velocity is 0.04c, the time delay 

(compared with the stationary target) is twice as long as 

that when the velocity is 0.02c for all cone ratios. 

 

 
 

Fig. 7. The incident signal and backscattered waveform
of moving cone-sphere targets with different ratios.

B. Moving cone-sphere target coated with plasma
sheath

In this section, the influence of the typical EM char-
acteristic parameters of the plasma sheath on the scat-
tered field of the moving cone-sphere target is studied by
referring to the measured data of the flow field around a
high-speed vehicle [26–27]. A modulated Gaussian pulse
source with parameters of f 0 = 4 GHz, B = 4 GHz, τ =
1.7 / B, and t0 = 0.8τ is applied to irradiate the mov-
ing target. The space-time increment of Lorentz–FDTD
are set to dx′= dy′= dz′= λ / 54 and dt ′= dx′/ 2c. The
cone-sphere target with a height of 0.045 m and a base
radius of 0.015 m moves at 0.01c along the +y axis. The
direction of incident wave is θ i = 90◦ and ϕ i = 90◦ in
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Table 2: EM parameters of the plasma sheath
Case Electron

Density ne
(× 1016 m−3)

Collision
Frequency
ωc (GHz)

Incident
Angle
φi (◦)

a 1, 5, 10, 20, 100 20 0
b 10 1,5, 10, 20 0
c 20 5 0, 30, 45, 60

simulations of case (a) and (b). In simulation of case
(c), the angle of incidence θ i = 90◦, and ϕ i is given in
Table 2. The EM parameters of the plasma sheath and
incident angle are given in Table 2. In additional, the cal-
culation time for the computer to update EM field 4.2 ×
103 times is 0.8 h.

Figure 8 displays the variation in monostatic RCS
under different plasma electron densities when the tar-
get moves at 0.01c along the +y axis. It can be seen that
the monostatic RCS varies substantially at different elec-
tron densities because the cut-off frequency of plasma
increases as electron density increases. When the oper-
ating frequency of the EM wave is less than the cut-
off frequency of plasma (f < 2 GHz), the backscatter-
ing ability of the plasma sheath for EM waves increases
with increased electron density. Therefore, monostatic
RCS increases with increased electron density in the
low-frequency band. However, when the operation fre-
quency is greater than the cutoff frequency of plasma (f
belongs to 2-12 GHz), the reflection caused by plasma
decreases, and the absorption of EM waves increases.
Eventually, RCS decreases rapidly as electron density
increases. Moreover, the maximum absorption position
of the RCS for EM waves gradually shifts toward high
frequencies with the increase in electron density. When
the electron density of plasma is set to 1 × 1018 m−3, theFig. 7. The incident signal and backscattered waveform 

of moving cone-sphere targets with different ratios. 
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moves at 0.01c along the +y axis. It can be seen that the 
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operating frequency of the EM wave is less than the 
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increases with increased electron density. Therefore, 

monostatic RCS increases with increased electron 

density in the low-frequency band. However, when the 

operation frequency is greater than the cutoff frequency 

of plasma (f belongs to 2-12 GHz), the reflection caused 

by plasma decreases, and the absorption of EM waves 

increases. Eventually, RCS decreases rapidly as electron 

density increases. Moreover, the maximum absorption 

position of the RCS for EM waves gradually shifts 

toward high frequencies with the increase in electron 

density. When the electron density of plasma is set to 1 

× 1018 m–3, the cut-off frequency of plasma is greater 

than other values, but monostatic RCS decreases very 

rapidly. This 
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scattered in the forward-scattering direction, thereby 

causing a rapid decrease in backscattering direction. 

Figure 9 shows the change in monostatic RCS 

under different plasma collision frequencies ωc. When 

the EM wave operating frequency f ranges within 0-2 

GHz, monostatic RCS increases with decreased collision 

frequency. RCS has a more dramatic change with 
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to the cut-off frequency of EM waves. When the 
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decreases first and then increases with increased 
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frequency ωc = 5 GHz. This finding is due to that the 

absorption of EM waves is more remarkable by the 

Fig. 8. Monostatic RCS of cone-sphere target coated by
plasma sheath with different electron densities ne.

cut-off frequency of plasma is greater than other values,
but monostatic RCS decreases very rapidly. This find-
ing is due to most of the EM waves being scattered in
the forward-scattering direction, thereby causing a rapid
decrease in backscattering direction.

Figure 9 shows the change in monostatic RCS under
different plasma collision frequencies ωc. When the EM
wave operating frequency f ranges within 0-2 GHz,
monostatic RCS increases with decreased collision fre-
quency. RCS has a more dramatic change with colli-
sion frequency when the plasma frequency is close to the
cut-off frequency of EM waves. When the operating fre-
quency f is 2-4 GHz, monostatic RCS decreases first and
then increases with increased collision frequency, and
decay is maximum at collision frequency ωc = 5 GHz.
This finding is due to that the absorption of EM waves is
more remarkable by the plasma sheath when collision
frequency wave is close to the cut-off frequency. The
monostatic RCS decreases rapidly with increased colli-
sion frequency when the operating frequency is greater
than the cut-off frequency.
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absorption of EM waves is more remarkable by the 

Fig. 9. Monostatic RCS of cone-sphere target coated by
plasma sheath with different collision frequencies ωc.

Figure 10 shows monostatic RCS variation with the
angle of the incident wave. The angle of the incidence
plane wave has a remarkable effect on monostatic RCS
when the operating frequency f ranges within 2-5 GHz.
In this frequency range, RCS increases significantly as
the incident angle increases. This is mainly because the
frequency of EM waves is close to the cut-off frequency,
and in this condition the direction of incidence of EM
waves has a greater influence on the monostatic RCS.
However, the monostatic RCS does not increase with the
increase of the incident angle when the operating fre-
quency of EM waves is higher than the cut-off frequency
(f > 6 GHz).
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plasma sheath when collision frequency wave is close to 

the cut-off frequency. The monostatic RCS decreases 

rapidly with increased collision frequency when the 

operating frequency is greater than the cut-off frequency. 
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Fig. 11. Bistatic RCS of cone-sphere target coated by 

plasma sheath with different electron densities ne in 

Fig. 10. Monostatic RCS of cone-sphere target coated by
plasma sheath with different angles φ i of incident wave.

To illustrate the effect of the electron density of a
plasma sheath at different operating frequencies on the
EM-scattering ability of the moving cone-sphere target,
the bistatic RCS of the cone-sphere target varies with dif-
ferent electrons at different operating frequencies f of
1, 4, and 9 GHz. The operating frequency f = 1 GHz
is less than the plasma frequency, f = 4 GHz is within
the range of plasma frequency, and f = 9 GHz is greater
than the plasma frequency. The collision frequency ωc
of the plasma sheath is 20 GHz, and the thickness of the
plasma sheath is 1 cm. The target moves along the +y
axis with velocity 0.01c. The plane wave is incident in
the direction of θ i = 90◦ and ϕ i = 90◦, and the electric
field is polarized along the +z direction. When the scat-
tering angle θ s = 90◦, the bistatic RCS in the xOy scat-
tering plane is observed. The bistatic RCS of moving the
cone-sphere target at different operation frequencies of
EM waves is shown in Fig. 9.

Figure 11 (a) shows that bistatic RCS increases
with the increase electron densities of plasma sheath in
both the forward-scattering direction ϕs = 90◦ and the
backscattering direction ϕs = 270◦. The increased reflec-
tion of the EM wave is caused by the increased elec-
tron densities of the plasma sheath when the operating
frequency f is less than the plasma cutoff frequency. In
Fig. 11 (b), the bistatic RCS increases as the electron
densities increases in the forward-scattering direction at
ϕs = 90◦. In the backscattering direction at ϕs =270◦,
the RCS reaches its minimum when the electron den-
sities ne = 2×1017 m−3. This occurs because the cut-
off frequency of plasma at electron densities ne = 2
× 1017 m−3 matches the operating frequency of EM
waves, leading to the most pronounced absorption of
EM waves by the plasma. Figure 11 (c) shows that the
bistatic RCS in the forward-scattering direction ϕs = 90◦

plasma sheath when collision frequency wave is close to 

the cut-off frequency. The monostatic RCS decreases 

rapidly with increased collision frequency when the 

operating frequency is greater than the cut-off frequency. 
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plasma sheath when collision frequency wave is close to 
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plasma sheath when collision frequency wave is close to 
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Fig. 11. Bistatic RCS of cone-sphere target coated by 
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Fig. 11. (a) HIS structure and (b) Equivalent circuit.

decreases with increased electron densities when ne ≤
2× 1017 m−3, but increases at ne = 1 × 1018 m−3 and
decreases rapidly with increasing electron density in the
backscattering direction ϕs = 270◦. The RCS changes
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more considerably in the backscattering direction than in
the forward-scattering one. Figure 8 (a) can be verified
again. When the electron density ne = 1 × 1018 m−3,
the reason for the rapid decreases of monostatic RCS at
high frequencies is that the EM wave is scattered to the
forward-scattering direction.

C. Doppler effect on scattered field
In this section, we examine the impact of the veloc-

ity on the Doppler effect of the scattered field of a high-
speed target. The parameters of the FDTD grid and the
dimensions of the target are the same as in Section B.
The EM parameters of the plasma sheath are set as the
electron density ne of 3 × 1016 m−3 and 3 × 1017 m−3,
ωc of 10 GHz, and a plasma thickness of 1 cm. The inci-
dent direction is set to θ i = π/2 and ϕ i = π/2. This object
is moving at velocities v of 0.02c, 0.04 c, -0.02c, and -
0.04c along the incident direction.

It is evident from Fig. 12 that the RCS experiences
a red-shift when the target moves away the incident
wave (v > 0) and a blue-shift when the target moves
toward the source. This phenomenon bears resemblance
to the frequency modulation law observed in moving
metal targets. However, the complexity of the amplitude
modulation law increases. Due to the variation in elec-
tron density, the RCS exhibits different levels of reduc-
tion across various frequency bands of EM waves. As
depicted in Fig. 12 (a), when the electron density ne = 3
× 1016 m−3, the operation frequency f of EM waves sig-
nificantly exceeds the cut-off frequency of the plasma.
Therefore, there is a lower absorbing and higher scatter-
ing of plasma on the EM waves. Figure 12 (b) presents
the variation of RCS with velocity when the electron
density ne = 3 × 1017 m−3. It can be seen that when
the operation frequency f is in the range of 3.5-5.0 GHz,
the RCS when the velocity v of 0.04 c is significantly
stronger than at the velocity v of −0.04 c. This finding is
due to the variations of the target velocity changes the
relative dielectric coefficient of plasma, which in turn
influences the absorbing and scattering of plasma on EM
waves. With the target moving away from the source,
the red-shift will decrease the frequency of EM waves,
which increases the scatter of plasma on EM waves. By
contrast, the blue-shift due to the target moving toward
the source will increase the EM wave frequency, which
increases the absorbing of plasma on EM waves. The
scattering EM echo from this plasma coated target at dif-
ferent velocities is presented in Fig. 13.

Finally, to investigate the impact of velocity on the
Doppler shift of the scattered field from the target, a
time-harmonic signal with a carrier frequency of 4 GHz
was used to irradiate the target. The backscattered field
in the time domain was then recorded. Further, the anal-
ysis of the variation of Doppler shift with object velocity

different operating frequencies f when the velocity of the 

target is v = 0.01c along the +y axis: (a) f = 1 GHz, (b) f 

= 4 GHz, and (c) f = 9 GHz. 
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5.0 GHz, the RCS when the velocity v of 0.04 c is 

significantly stronger than at the velocity v of -0.04 c. 

This finding is due to the variations of the target velocity 
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the source, the red-shift will decrease the frequency of 
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Figure 11 (a) shows that bistatic RCS increases 

with the increase electron densities of plasma sheath in 

both the forward-scattering direction φs = 90° and the 

backscattering direction φs = 270°. The increased 

reflection of the EM wave is caused by the increased 

electron densities of the plasma sheath when the 

operating frequency f is less than the plasma cutoff 

frequency. In Fig. 11 (b), the bistatic RCS increases as 

the electron densities increases in the forward-scattering 

direction at φs = 90°. In the backscattering direction at φs 

=270°, the RCS reaches its minimum when the electron 
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3 matches the operating frequency of EM waves, leading 
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increased electron densities when ne   2 × 1017 m-3, but 
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increasing electron density in the backscattering 

direction φs = 270°. The RCS changes more considerably 

in the backscattering direction than in the forward-

scattering one. Figure 8 (a) can be verified again. When 

the electron density ne = 1 × 1018 m–3, the reason for the 

rapid decreases of monostatic RCS at high frequencies is 

that the EM wave is scattered to the forward-scattering 

direction. 

 

C. Doppler effect on scattered field 

In this section, we examine the impact of the 

velocity on the Doppler effect of the scattered field of a 
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10 GHz, and a plasma thickness of 1 cm. The incident 
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along the incident direction.  
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plasma on EM waves. With the target moving away from 
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waves. By contrast, the blue-shift due to the target 
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Fig. 12. Monostatic RCS in different velocities when the
target coated with a plasma sheath with electron densities
(a) ne=3×1016 m−3 and (b) ne=3×1017 m−3.

coated target at different velocities is presented in Fig. 

13. 

Finally, to investigate the impact of velocity on the 

Doppler shift of the scattered field from the target, a 

time-harmonic signal with a carrier frequency of 4 GHz 

was used to irradiate the target. The backscattered field 

in the time domain was then recorded. Further, the 

analysis of the variation of Doppler shift with object 

velocity can be conducted through the examination of the 

echo spectrum.  Table 3 presents the numerical and 

theoretical results (26) of the frequency of the scattered 

field for a high-speed target. The results indicate that the 

relative error between the two outcomes falls within an 

acceptable range. This finding further supports the 

accuracy and validity of the proposed method: 
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Fig. 13. EM echo in different velocities when the plasma 

coated target with electron densities ne of 3 × 1016 and 3 

× 1017 m-3. 

 

 

Table 3: Doppler shift and relative error of scattered field 

in different velocities 

Velocity 

Numerica

l Results 

(GHz) 

Theoretic

al Results 

(GHz) 

Error 

0.02c 3.8435 3.8431 0.013% 

0.04c 3.6929 3.6923 0.016% 

-0.02c 4.1637 4.1633 0.010% 

-0.04c 4.3338 4.3333 0.012% 

 

 

V. CONCLUSION 

In this paper, the EM model of a moving dispersive 

medium is established by utilizing the relativistic 

principle. In this study, we aim to investigate the 

scattering properties of high-speed moving plasma 

coated targets and their interaction with EM waves. To 

achieve this, we present and analyze two cases in order 

to reveal the nature of this work. 

The first research example reveals that scattering 

and echo characteristics of the object exhibit a significant 

dependence on the velocity of the target, the direction of 

its motion, and the shape of the object. The second 

example examines the impact of plasma parameters, 

incidence direction, frequency of electromagnetic 

waves, and object velocity on the scattered field. The 

research findings indicate that the relative dielectric 

coefficient of the plasma sheath undergoes changes as a 

result of the object's velocity, thereby influencing the 

scattering and absorption of electromagnetic waves by 

the plasma. Additionally, the RCS exhibits distinct 

variations in pattern with target velocities when 

subjected to EM waves at different operating 

frequencies. 

In future research, the Lorentz-FDTD algorithm 

will be applied to investigate and analyze more-complex 

EM scattering scenarios, such as considering the flow 

field properties of plasma sheaths and investigating the 

effect of spatial-temporal non-uniformity of plasma on 

EM imaging of high-speed moving object. 
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Table 3: Doppler shift and relative error of scattered field
in different velocities

Velocity Numerical
Results
(GHz)

Theoretical
Results
(GHz)

Error

0.02c 3.8435 3.8431 0.013%
0.04c 3.6929 3.6923 0.016%
-0.02c 4.1637 4.1633 0.010%
-0.04c 4.3338 4.3333 0.012%

can be conducted through the examination of the echo
spectrum. Table 3 presents the numerical and theoretical
results (26) of the frequency of the scattered field for a
high-speed target. The results indicate that the relative
error between the two outcomes falls within an accept-
able range. This finding further supports the accuracy
and validity of the proposed method:

ωs = γω
′
(

1−β
cosθ +β

1+β cosθ

)
. (26)

V. CONCLUSION
In this paper, the EM model of a moving dispersive

medium is established by utilizing the relativistic prin-
ciple. In this study, we aim to investigate the scattering
properties of high-speed moving plasma coated targets
and their interaction with EM waves. To achieve this,
we present and analyze two cases in order to reveal the
nature of this work.

The first research example reveals that scattering
and echo characteristics of the object exhibit a signifi-
cant dependence on the velocity of the target, the direc-
tion of its motion, and the shape of the object. The sec-
ond example examines the impact of plasma parameters,
incidence direction, frequency of electromagnetic waves,
and object velocity on the scattered field. The research
findings indicate that the relative dielectric coefficient
of the plasma sheath undergoes changes as a result of
the object’s velocity, thereby influencing the scattering
and absorption of electromagnetic waves by the plasma.
Additionally, the RCS exhibits distinct variations in pat-
tern with target velocities when subjected to EM waves
at different operating frequencies.

In future research, the Lorentz-FDTD algorithm will
be applied to investigate and analyze more-complex EM
scattering scenarios, such as considering the flow field
properties of plasma sheaths and investigating the effect
of spatial-temporal non-uniformity of plasma on EM
imaging of high-speed moving object.
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