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Abstract – For homogeneous kernels, the memory
requirements associated with H2 representations of inte-
gral equation matrices can be reduced by incorpo-
rating translational invariance. Starting with a non-
translationally invariant H2 representation, this can be
accomplished using a left/right iterative algorithm. In
this paper, it is shown that a similar algorithm can also
be used to compress an existing fast multipole method
(FMM). It is observed that the iterative compression con-
verges faster when used to compress an FMM than when
it is applied to an H2 representation. Resulting savings in
floating-point operations are indicated, and extensions of
the reported method are discussed.

Index Terms – fast multipole method, integral equation.

I. INTRODUCTION

Integral equation (IE) based formulations provide
an effective method for formulating 3D electromagnetic
interaction problems over a range of frequencies. When
modeling fields on large and/or complex domains, it is
necessary to use compressed representations of the gen-
erally dense system matrix that results from the use of
an IE formulation. For static and low-frequency electro-
magnetic applications, fast multipole methods (FMM)
[1, 2] and the H2 representations [3] provide control-
lably accurate representations of IE system matrices and
have O(N) complexity, where N indicates the number of
unknowns in the discretized IE formulation.

Although similar in many ways, the FMM and H2

representations of integral equation matrices differ in
how they represent interactions between source and field
groups. In an FMM, all interactions are represented using
a common (e.g., multipole) basis. For translationally
invariant kernels, this enables significant time and mem-
ory savings when building the FMM since only a rela-
tively small number of unique translators are needed at

each level of an octree decomposition (at most 316 for a
homogeneous kernel).

In contrast, the H2 representation is often devel-
oped from sparse samples of the underlying matrix [4].
(The H2 representation in [4] is therein referred to as
an MLSSM representation; the MLSSM is equivalent
to an H2, as indicated by equation (21) of [4].) Since
the underlying geometry is not translationally invariant,
the H2 representation obtained via sparse matrix sam-
ples does not retain the translational invariance of the
underlying kernel, and each translation matrix is unique.
A result is that the time required to build an H2 represen-
tation can be significantly longer than the time required
to build a similarly accurate FMM.

Although the time required to build an FMM can
be much less than the time required to build a sim-
ilarly accurate H2, this saving comes at the expense
of requiring larger translation matrices. This increased
dimension of the FMM translators can lead to higher
costs for matrix-vector product operations when using an
FMM versus an H2 representation. Furthermore, when
fast direct solvers such as the O(N) H2 factorization
of [4] are used, the larger translators of the FMM can
also yield increased factorization costs relative to an H2.
These additional costs can offset the relative computa-
tional savings provided by an FMM when constructing a
sparse representation of the system matrix.

It was recently shown that, for translationally invari-
ant kernels, it is possible to reduce memory costs asso-
ciated with an H2 representation by converting a non-
translationally invariant H2 matrix into a translationally
invariant H2 representation using an iterative procedure
[5, 6]. However, the computational costs of the algo-
rithms used to compress the H2 have been found to be
too large to be practically useful.

In the remainder, a similar algorithm is reported for
compressing an existing FMM representation [2]. It is
found that the computational costs to compress an FMM
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are significantly less than the costs reported in [5, 6] for
compressing an H2.

II. SHIFT INVARIANT FORM

At a given level of an octree, the interactions
between non-touching groups in an FMM can be repre-
sented as:

Zfar = UTSI Vh, (1)
where U and V are block-diagonal matrices containing
the FMM aggregation and disaggregation operators that
map between the multipole representations of parent and
child groups (or between multipole representation and
the unknowns, if at the finest level). The matrix TSI con-
tains all translators at the level, of which only 316 (at
most) are unique. Further details are provided in [2].

To compress the FMM, we first compute a com-
pressed representation T from TSI . The matrix T is
obtained by computing the O(τ) truncated SVD of
column- and row-blocks of the FMM translation matrix
TSI . The resulting singular vectors are then used
to project the column-/row-blocks of TSI yielding T.
Herein, the SVD truncation tolerance τ is selected to be
equal to the accuracy of the FMM representation divided
by 10. (In the numerical examples below, τ=1e-7.)

Once T is obtained, block diagonal matrices L and
R are computed such that:

T = LT SIR, (2)
which has the same structure as equation (4) of [6].

III. SOLVING FOR L AND R

In the following, an iterative algorithm is outlined
for determining the blocks of the block-diagonal matri-
ces L and R. It is noted that, if the singular vec-
tors obtained in the column-/row-block analysis outlined
above are used to form L and R, then (2) holds; this is the
initialization used in the following algorithm. It is noted
that this initialization for L and R does not provide an
effective compression of the FMM for the following rea-
sons.

First, if the matrices LTSI R are multiplied together
in (2), then the redundancy of TSI is lost (the individual
translators that constitute the global translation matrix T

are each unique, whereas TSI is comprised of at most 316
unique submatrices). Second, if the representation on the
right side of (2) is used without multiplying the matrices
together, then the cost to apply TSI to a vector during an
iterative solve is not reduced relative to a standard FMM.
The purpose of the algorithm outlined below is to find
alternative diagonal blocks for L and R that utilize only
a fraction of the FMM DOF space, thus reducing the cost
to apply TSI without increasing the cost to store TSI . (In
this paper, the terms FMM DOF and DOF are used to
indicate the dimension of the FMM translator blocks and
the corresponding dimensions of the diagonal blocks in
L and R. This terminology differs from that used in [7].)

The algorithm used to compute the diagonal blocks
of L and R is summarized in Fig. 1, which is a reverse-
bootstrapping procedure This is a modified version of the
bootstrapping algorithm reported in [5, 6]. The algorithm
begins with the initialization summarized above.

In Fig. 1, matrices Lg and Rg are the diagonal blocks
of L and R, and subscript g implies a loop over the
groups at this level of the octree. The integer m is the
size of each block of TSI and is equal to the number of
columns/rows in each diagonal block of L and R. The
decrement d is the size of the reduction in the number
of FMM DOF to be tested in the current iteration of the
WHILE loop.

It has been observed that the compression converges
to nearly identical values of m for arbitrarily large val-
ues of d for cases tested. This property makes the algo-
rithm of Fig. 1 significantly more efficient than the boot-
strapping algorithms previously reported for compress-
ing H2 representations [5, 6], which required d=1. The
difference between those methods and the current appli-
cation to an FMM is likely due to the fact that, in devel-
oping a translationally invariant representation from an
existing H2, one starts with an inaccurate representation
that is iteratively improved by adding additional DOF. In
contrast, when compressing an existing FMM, one starts
with an accurate representation, that is compressed by
removing DOF.

 n=# DOF in FMM basis; err=0; d = round(n/4) 
 while err < τ 

1. m = n – d 
2. for k = 1:n_steps (n_steps=2 here) 

a. fix L and compute a least squares (LS) 
solution for Rg using only the first m DOF 
 when k=1, this reduces the number of 

rows in the Rg to m 
 when k>1, the Rg do not change in size 

b. fix R and compute a LS solution for Lg  
 when k=1, this reduces the number of 

columns in the Lg to m 
 when k>1, the Lg do not change in size 

3. err_new = || T – L TSI R || / ||T|| 
4. If (err_new < τ), n = m ; err = err_new;  

else,  
 if d>1, m=n; d = round(d/2)  
 else, m=n; end while 

Fig. 1. Algorithm for compressing an existing FMM.

IV. EXAMPLES

The following examples compress the black-
box FMM (bbFMM) [2] representation of the static
Green’s function, G(�r,�r′) = 1/ |�r−�r′|. Due to the scale-
invariance of the homogeneous kernel, the total number
of unique translation matrices needed in the bbFMM rep-
resentation of G across all levels of the octree is 316.
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The bbFMM representation of G is constructed with
an accuracy of 1e-6. The Chebyshev order and SVD trun-
cation tolerance [2] of the underlying bbFMM required
to obtain 1e-6 accuracy were determined as follows.
A dense (i.e., no empty groups), five-level octree was
formed, and source and observer points were densely
distributed over the surfaces of all octree boxes at the
finest level of the tree. The relative RMS error in the
bbFMM representation (versus the exact kernel evalua-
tions) was computed for all interactions between non-
touching groups at the finest level. Table 1 shows the
resulting error as a function of the SVD truncation tol-
erance when a 729-point bbFMM was used (9 points in
the x-, y-, and z-directions for each group). An RMS error
less than 1e-6 is obtained when the SVD truncation toler-
ance is 1e-7, resulting in approximately 157 FMM DOF
(the size of each translation matrix is 157-by-157). This
is the base FMM representation used in the following
examples.

Table 1: Number of FMM DOF remaining after the
global SVD compression step outlined in [2] as a func-
tion of the SVD tolerance. A 729-point grid of Cheby-
shev nodes is used, so that the total number of FMM
DOF prior to the SVD compression step is 729. Lower
order Chebyshev grids fail to provide sufficient accu-
racy, and higher order grids did not reduce the num-
ber of FMM DOF required to achieve 1e-6 accuracy
below 157.

SVD

Tolerance

# DOF

Before SVD

# DOF After

SVD

Base-10

log of

Error

1e-4 729 44 5.0e-4
1e-5 729 73 9.6e-5
1e-6 729 109 9.6e-6
1e-7 729 157 8.0e-7

A. Example: Points on a line

To illustrate the performance of the compression
algorithm, we first consider the static kernel G(�r,�r′)
when N=50000 points are distributed along the line
defined by x=0, y=0, -1<z<1. A six-level octree is used
to decompose the problem, with level-1 being the root
box. There are 8, 16, 32, and 64 non-empty groups at
levels 3, 4, 5, and 6 of the octree for this geometry.

After the bbFMM representation described above is
built, at each level the matrix T is constructed as dis-
cussed above, and the diagonal blocks of L and R in
(2) are found using the algorithm summarized in Fig. 1.
When the iteration completes, the number of remaining
FMM DOF at a given level is m. The values of m at
each level of the octree for this example are reported

in the third column of Table 2. The last column of the
table indicates the savings in the floating point costs
required to apply the compressed translation matrix TSI
to a vector. The resulting block-diagonal matrices L and
R of (2) are multiplied into the block-diagonal U and
Vh matrices shown in (1), effectively compressing the
basis matrices (in addition to the translator matrix) at
each level.

Table 2: Results of compressing the 1e-6 bbFMM for
points on a line. The initial number of FMM DOF at all
levels is 157. The last column indicates the reduction in
floating-point operations to apply that level’s translation
matrix to a vector

Octree

Level

# FMM DOF

Before

Compression

(n)

# FMM DOF

After

Compression

(m)

FP Savings

Factor

(n/m)2

3 157 7 503
4 157 17 85
5 157 21 56
6 157 23 47

Finally, it is noted that the relative RMS error in
the compressed FMM representation at each level (and
globally) is less than 1e-6 (see Step 3 of the algorithm
reported in Fig. 1). This ensures that the accuracy of
the original FMM representation is retained by the com-
pressed FMM representation.

B. Example: Points on a plane

Table 3 reports the result of applying the FMM com-
pression of Fig. 1 to the static kernel for the case of
source/observer points distributed on the square surface
shown in Fig. 2. For this geometry, each group has a
larger interaction list than for the line example, and more
FMM DOF are needed to retain an accuracy of 1e-6. This
yields a savings of slightly more than 4.5 in the floating-

Table 3: Results of compressing the 1e-6 bbFMM for the
square surface geometry illustrated in Fig. 2. The initial
number of FMM DOF at all levels is 157. The last col-
umn indicates the reduction in floating-point operations
to apply that level’s translation matrix to a vector

Octree

Level

# FMM DOF

Before

Compression

(n)

# FMM DOF

After

Compression

(m)

FP

Savings

Factor

(n/m)2

3 157 47 11
4 157 71 4.9
5 157 74 4.6
6 157 74 4.6
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Fig. 2. Surface point distribution (N=1e5 points).

point cost to apply the translation matrix to a vector (rel-
ative to the original, 1e-6 bbFMM representation).

C. Example: Points in a volume

Table 4 reports the result of applying the FMM com-
pression of Fig. 1 to the static kernel for the case of
source/observer points distributed within the cubic vol-
ume shown in Fig. 3. For this geometry, each group has a
larger interaction list than in the previous two examples,
and more FMM DOF are needed to retain an accuracy
of 1e-6. For this reason, the floating-point savings pro-
vided by the FMM compression is limited to a factor of
approximately 2, as indicated by the last column of the
table.

D. Example: Coil lattice

Finally, consider the 4-by-4 coil lattice geometry
shown in Fig. 4. There are a total of N=80000 point
sources/observers in this geometry, and the static ker-
nel, G(�r,�r′), is compressed using a six-level octree with
results shown in Table 5.

Table 4: Results of compressing the 1e-6 bbFMM for the
volumetric point distribution illustrated in Fig. 2. The ini-
tial number of FMM DOF at all levels is 157. The last
column indicates the reduction in floating-point opera-
tions to apply that level’s translation matrix to a vector
Octree

Level

# FMM DOF

Before

Compression

(n)

# FMM DOF

After

Compression

(m)

FP Savings

Factor

(n/m)2

3 157 91 3.0
4 157 108 2.1
5 157 109 2.1

Fig. 3. Volumetric point distribution (N=1e5 points).

Fig. 4. Coil lattice geometry (N=8e4 points).

Table 5: Results of compressing the 1e-6 bbFMM for
the coil lattice geometry illustrated in Fig. 4. The initial
number of FMM DOF at all levels is 157. The last col-
umn indicates the reduction in floating-point operations
to apply that level’s translation matrix to a vector

Octree

Level

# DOF Before

Compression

(n)

# DOF After

Compression

(m)

FP

Savings

Factor

(n/m)2

3 157 52 9.1
4 157 76 4.3
5 157 64 6.0
6 157 58 7.3

V. CONCLUSION

A method for compressing an existing FMM rep-
resentation of point-to-point interactions for homoge-
neous kernels in three dimensions has been reported.
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Previously reported methods for compressing an exist-
ing H2 representation [5, 6] relied on a bootstrapping
method, which caused them to be computationally inef-
ficient. The method reported here is a modified form of
[5, 6] and utilizes a reverse-bootstrapping algorithm. The
compression has been observed to be insensitive to the
reverse-bootstrapping step size that is used to reduce the
FMM DOF space. This insensitivity to step-size renders
the proposed method computationally efficient for prac-
tical 3-D applications.

The FMM compression algorithm has been applied
to the bbFMM representation of G(�r,�r′) = 1/ |�r−�r′| for
four different 3-D point distribution examples consist-
ing of points on a line, a surface, a volume and a coil
lattice. Significant compression is observed in several
cases, with the volumetric point distribution resulting in
the least amount of compression relative to the original
bbFMM representation. This result is expected, since the
bbFMM is already optimized for volumetric point distri-
butions.

Finally, we briefly consider the application of the
compression algorithm of Fig. 1 to more complex point
distributions, such as that shown in Fig. 5. Unlike the
other examples considered above, the point distribution
in Fig. 5 has different types of point distributions in dif-
ferent spatial regions. In one corner of the domain, points
are distributed along three intersecting lines; in another
corner of the domain, points are densely distributed
throughout a cubic sub-volume. Assuming that the point
distributions are dense, an application of the algorithm
in Fig. 1 to this problem at fine levels of the octree
can be expected to yield compression results more sim-
ilar to those shown in Table 4 than those shown in
Table 2. This is because the number of FMM DOF, m,

Fig. 5. Example of a mixed DOF distribution contain-
ing a region with a dense set of volumetric points and a
region with three intersecting lines of points.

retained by the compression algorithm of Fig. 1 is the
same for all groups at a given level, and m must be
sufficiently large to represent the interactions between
groups having dense interaction lists (i.e., octree groups
located in the region containing the volumetric point
distribution).

However, it has been observed that significant
additional compression can be obtained for prob-
lems involving non-uniform point distributions (such as
Fig. 5) through a straightforward extension the algorithm
reported in Fig. 1. The extension is achieved by allow-
ing the number of FMM DOF used for each source/field
group at a given level of the octree to vary independently
of one another, which leads to non-square translation
matrices while retaining translational redundancy. This
extended version of the algorithm will be reported sepa-
rately elsewhere.
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Abstract – This article proposes a new fast solution algo-
rithm (IGFBM-SAA), which combines the Improved
Generalized Forward and Backward Method (IGFBM)
with Spectral Acceleration Approach (SAA), which can
effectively solve the electromagnetic scattering problem
of layered rough surface. In this article, the electric field
integral equations (EFIE) for layered rough surfaces is
established, and the traditional forward and backward
method (FBM) is introduced. Then, based on the tra-
ditional FBM algorithm, an Improved Generalized For-
ward and Backward Method is proposed and, by using
the SAA technique in its iterative process, the com-
putation of matrix-vector multiplication is accelerated,
thus enabling rapid solution. In the algorithm valida-
tion, the same rough surface was calculated using the
MoM, FBM, and IGFBM-SAA. The study found that
when root mean square (RMS) heights are h1 = h2 =
0.1λ , the convergence accuracy can reach τ = 10−7 after
14 iterations. However, as the roughness increases to
h1 = h2 = 0.3λ and h1 = h2 = 0.5λ , the convergence
accuracy falling to τ = 10−5 and τ = 10−5, respec-
tively. This indicates that it is necessary to adjust the
integration parameters to improve the convergence accu-
racy. In addition, it was found that when the size of the
rough surface is 25.6λ , the computational times for cal-
culations are 91 s (IGFBM-SAA), 197 s (FBM), and
410 s (MoM), respectively. When the size of the rough
surface increases to 51.2λ , the computational time dif-
ferences become more significant, with 236 s, 756 s,
and 2547 s being the respective values. This indicates
that the proposed algorithm in this article has signifi-
cant computational speed advantages when dealing with
larger rough surfaces. Based on this algorithm, this arti-
cle studied the electromagnetic scattering characteris-
tics of layered rough surfaces with different parameters
(RMS height, dielectric constant, and correlation length),
and relevant research results can provide valuable ref-
erences for areas such as radar target recognition and
radar stealth technology, thereby enhancing the accuracy
and reliability of radar detection as well as radar stealth
performance.

Index Terms – electric field integral equations, elec-
tromagnetic scattering, Improved Generalized Forward
and Backward Method, layered rough surface, Spectral
Acceleration Approach.

I. INTRODUCTION

Rough surface electromagnetic scattering has
important application value in radar remote sensing and
communication fields. In practical applications, accu-
rately predicting and modeling the electromagnetic scat-
tering characteristics of rough surfaces have shown
important practical significance for optimizing radar
image interpretation and improving the performance of
communication systems. However, despite the existence
of some classical methods such as the large-scale Kirch-
hoff approximation [1–4], the small-scale perturbation
method [5–8], and the general Rayleigh method [9–
11], these methods typically rely on certain simplifying
assumptions, have limited applicability, and impose spe-
cific limitations on the parameters of the rough surface.
Therefore, studying computation methods for rough sur-
face electromagnetic scattering with universal applica-
bility and high accuracy has important theoretical and
practical significance.

In recent years, with the continuous development
of computer technology, numerical calculation meth-
ods such as the method of moment (MoM) [12–15],
the finite difference time domain method (FDTD) [16–
19], and the finite element method (FEM) [20–22] have
been widely used in the study of rough surface electro-
magnetic scattering. These methods can provide high-
precision calculation results and have no specific lim-
itations on the parameters of the rough surface. How-
ever, because numerical methods require discretizing the
rough surface, the resulting unknowns are numerous,
leading to high computational complexity. Currently,
most numerical methods have a computational cost that
grows cubically with the number of unknowns (o(N3))
when dealing with rough surface electromagnetic scat-
tering problems, which limits their practical applications
to some extent.
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In addition, accurate calculation of rough sur-
face electromagnetic scattering requires not only high-
precision numerical calculation methods but also effi-
cient numerical optimization techniques. Although many
researchers have conducted extensive and in-depth
research in this field, there are still many problems that
need to be addressed, for example how to improve com-
putational accuracy and efficiency.

Article [23] mainly investigated the electromagnetic
scattering problem based on the composite rough sur-
face modeling method and the improved SBR-FBSSA
algorithm. They placed objects in a canyon/valley envi-
ronment and analyzed the electromagnetic scattering
characteristics of that environment. This study extended
the environmental complexity of scattering research by
applying the composite rough surface modeling method
and the improved SBR-FBSSA algorithm to solve the
electromagnetic scattering problems in canyon/valley
environments. Article [24] proposed an efficient and
accurate method using the MoM-SMCG method com-
bined with adaptive integration to solve the electromag-
netic scattering problem of random rough surfaces. The
main contribution of this work included using MoM to
calculate the electromagnetic scattering coefficients of
rough surfaces, and then using the adaptive selection
integration point method (SMCG) to integrate and solve
the electromagnetic scattering of rough surfaces. This
study applied the MoM-SMCG method to the electro-
magnetic scattering problem of random rough surfaces,
improving the computational efficiency and accuracy.
Article [25] used the discrete two-level complex image
method (DSCM) to calculate the electromagnetic scat-
tering of completely conducting periodic rough surfaces.
A model of completely conducting periodic rough sur-
faces was established and DSCM was used to calculate
the electromagnetic scattering coefficients of rough sur-
faces. Then, the FDTD method was used to solve the
electromagnetic scattering problems of rough surfaces.
This study applied DSCM to the electromagnetic scatter-
ing problems of completely conducting periodic rough
surfaces, improving the understanding of these scatter-
ing problems. Article [26] mainly studied an innovative
method in the engineering field, the hybrid AMCFFM-
MAE method, which can quickly simulate the elec-
tromagnetic scattering of one-dimensional rough sur-
faces over a frequency band. The importance of this
research lies in that it provides a new engineering tool
to better understand and solve practical electromagnetic
scattering problems involving rough surfaces. Article
[27] proposed a hybrid method for solving the com-
posite scattering problem of targets and rough ground.
The uniqueness of this method lies in that it combines
the physical optics method and physical basis function
method, which can accurately simulate and solve the

electromagnetic scattering characteristics of rough sur-
faces. This study has made important extensions and
improvements to the application of physical optics meth-
ods in complex environments. Article [28] proposed a
fast algorithm mainly for calculating the electromag-
netic scattering of one-dimensional rough surfaces. This
algorithm is based on integral equation methods and
basis function expansion methods, and can effectively
simulate the electromagnetic scattering characteristics of
complex rough surfaces. The development of this algo-
rithm provides important theoretical basis and practical
guidance for understanding and solving electromagnetic
scattering problems involving rough surfaces in practical
environments. Compared to that, the layered rough sur-
faces studied in this paper are more common in nature,
such as the surface of a sea covered with floating ice,
ground covered with snow or leaves, etc. Therefore,
studying the electromagnetic scattering characteristics of
layered rough surfaces is of great significance. However,
the computational volume for calculating layered rough
surfaces using numerical methods is very large, so fast
algorithms need to be applied. The algorithm proposed
in this paper can effectively solve this problem and save
a lot of time, improving computational efficiency. This
advantage is more prominent when the rough surface
length is large.

This article proposes an efficient Improved Gener-
alized Forward and Backward Method-Spectral Accel-
eration Approach (IGFBM-SAA) algorithm for electro-
magnetic scattering from layered rough surfaces, aim-
ing to improve computational efficiency and thereby
enhance research efficiency. Firstly, an electric field inte-
gral equation (EFIE) for layered rough surfaces is estab-
lished, and the traditional forward and backward method
(FBM) is modified to propose the innovative IGFBM
method. At the same time, in order to reduce the error
caused by the artificial truncation of the rough surface,
a conical wave is used as the incident wave. This wave
has Gaussian characteristics, which gradually decrease
to zero as it approaches the boundary. This property
effectively avoids the abrupt change of surface current,
thereby improving the accuracy of the calculation. Then,
SAA technology is combined to accelerate the calcula-
tion to achieve rapid solution. Subsequently, the compu-
tational results of the IGFBM-SAA algorithm are com-
pared with those of MoM to verify the effectiveness and
accuracy of the proposed algorithm. Finally, the elec-
tromagnetic scattering characteristics of different lay-
ered rough surfaces are studied through several exam-
ples. The results show that the IGFBM-SAA algorithm
has significant advantages when calculating scattering
from long layered rough surfaces. The research find-
ings in this article have positive contributions to the
technological progress in areas such as target recogni-
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tion, target detection, radar stealth, and other related
fields.

II. IGFBM-SAA FAST ALGORITHM MODEL

Ground covered with leaves or snow, grassland,
and the sea surface covered with ice chunks can all be
regarded as layered rough media surfaces. Therefore,
studying the composite scattering of layered rough media
surfaces and targets has important significance.

A. Electric field integral equations (EFIE) for layered
rough surface

The rough surface of the three-layer medium is
shown in Fig. 1. The upper and lower rough surfaces
divide the medium into three layers, with parameters
(ε0,μ0), (ε1,μ1), and (ε2,μ2) for each region. The con-
tour S1 of the upper rough surface is represented by
z1 = f1(x), and the contour S2 of the lower rough surface
is represented by z2 = f2(x). The incident field is ψ inc.
ψ0, ψ1, and ψ2 represent the fields within each region
of the medium, and they satisfy the following boundary
equations:

ψ0(r)

2
−
∫

S1

[
ψ0(r

′)
∂G0(r,r

′)
∂n′

−G0(r,r
′)

∂ψ0(r
′)

∂n′

]
ds′ =ψ inc(r) r ∈ S1 , (1)

ψ1(r
′)

2
−
∫

S2

[
ψ1(r

′)
∂G1(r,r

′)
∂n′ −G1(r,r

′)
∂ψ1(r

′)
∂n′

]
ds′

+
∫

S1

[
ψ1(r

′)
∂G1(r,r

′)
∂n′ −G1(r,r

′)
∂ψ1(r

′)
∂n′

]
ds′ = 0

(2)

r ∈ S1 or r ∈ S2,

ψ2(r)

2
+
∫

S2

ψ2(r
′)

∂G2(r,r
′)

∂n′ −G2(r,r
′)

∂ψ2(r)

∂n′ ds′= 0 r∈ S2,

(3)
where

∫
S represents the integration over the rough sur-

face, G0(r,r
′) represents the Green’s function in free

Fig. 1. Schematic diagram of layered rough surface.

space, and G1(r,r
′) and G2(r,r

′) represent the Green’s
functions in medium 1 and medium 2, respectively. At
the same time, the fields in each region satisfy the fol-
lowing boundary conditions:

ψi(r) = ψi+1(r), (4)

∂ψi+1(r)

∂n
= ρ

∂ψi(r)

∂n
(i = 0,1). (5)

For TE wave, ρ = μi+1/μi. For TM wave, ρ =
εi+1/ε0.

Assuming that the length of the rough surface is L
and the discrete density Δx is uniform, equations (1-3)
can be simplified as follows:

A(0,1,1)U1 +B(0,1,1)ψ1 = ψ inc, (6)

ρ1A(1,1,1)U1 +B(1,1,1)ψ1 +A(1,1,2)U2 +B(1,1,2)ψ2 = 0,
(7)

ρ1A(1,2,1)U1 +B(1,2,1)ψ1 +A(1,2,2)U2 +B(1,2,2)ψ2 = 0,
(8)

ρ2A(2,2,2)U2 +B(2,2,2)ψ2 = 0. (9)
The expression for each matrix element is as

follows [29]:

A
(a,b,c)
mn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w(a,c) iΔx
4 H(1)

0

(
ka
∣∣rm,b − rn,c

∣∣)Δlm,b
(b = c,m �= n) or b �= c

w(a,c) iΔx
4

[
1+ i2

π ln
(

eγ kaΔxΔlm,b
4e

)]
(b = c,m = n)

,

(10)

B
(a,b,c)
mn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−w(a,c) ikaΔx
4

H(1)
1 (ka|rm,b−rn,c|)
||rm,b−rn,c|| ×

( f ′c(xn)(xn − xm)− ( fc(xn)− fb(xm)))
(b = c,m �= n) or b �= c

1
2 −w(a,c) fb

′′
(xm)

4π
Δx

1+ f ′b(xm)2

(b = c,m = n)

,

(11)
where

w(a,c) =

{
1 a = c
−1 a �= c , (12)

Ui,m =
√

1+( fi
′
(xm))2∂ψi(xm)

/
∂n (i = 1,2,3) .

(13)
In the equations above, the first superscript indicates

the region, the second superscript indicates the rough-
ness location where the field point is located, and the
third superscript indicates the roughness location where
the source point is located.

Therefore, equations (6-9) can be transformed into a
matrix equation:⎡
⎢⎢⎣

A(0,1,1) B(0,1,1) 0 0
ρ1A(1,1,1) B(1,1,1) A(1,1,2) B(1,1,2)

ρ1A(1,2,1) B(1,2,1) A(1,2,2) B(1,2,2)

0 0 ρ2A(2,2,2) B(2,2,2)

⎤
⎥⎥⎦ ·
⎡
⎢⎣

U1
ψ1
U2
ψ2

⎤
⎥⎦=

⎡
⎢⎣

ψ inc

0
0
0

⎤
⎥⎦ .

(14)
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B. Forward and backward method (FBM)

Solving scattering problems using numerical algo-
rithms ultimately requires transforming them into matrix
equation solutions:

ZI = V, (15)

where Z is the impedance matrix, V is the excitation vec-
tor, and I is the unknown vector to be solved. The tra-
ditional method for solving this system is to invert the
impedance matrix, which requires a computational cost
and storage cost of o(N3) (where N is the number of
unknowns). When the number of unknowns is large, this
approach requires significant memory and computation
time.

FBM [29–31] has good convergence properties for
problems involving scattering from rough surfaces. It
divides the induced current of each discrete element on
the rough surface into forward and backward contribu-
tions to the scattering field. The forward contribution is
generated by the incident electromagnetic wave and the
induced current of the source element located in front of
the receiving field element, while the backward contri-
bution is generated by the induced current of the source
element located behind the receiving field element. The
calculation process follows.

First, divide the impedance matrix into three matri-
ces:

Z = Z f +Zs +Zb. (16)

Among them, Z f is a lower triangular matrix repre-
senting the contributions of all source currents located
before the receiving unit, Zb is an upper triangular
matrix representing the contributions of all source cur-
rents located behind the receiving unit, and Zs is a diag-
onal matrix representing the contributions of each point
on the rough surface to itself.

Divide the unknown vector I to be solved into two
parts:

I = I f + Ib, (17)

where I f is the induced current on the rough surface con-
tributing to the forward propagation of electromagnetic
waves, and Ib is the induced current on the rough surface
contributing to the backward propagation of electromag-
netic waves.

The following equation system can be obtained from
the three equations above:

ZsI f = Z−Z f
[
I f + Ib

]
, (18)

ZsIb =−Zb
[
I f + Ib

]
. (19)

It can be transformed into the following iterative
form: [

Zs +Z f
]

I
(n)
f = Z−Z f I

(n−1)
b , (20)

[Zs +Zb]I
(n)
b =−ZbI

(n)
f . (21)

Define the convergence accuracy as follows:

τ =
Z
[
(I

(n)
f + I

(n)
b )− (I

(n−1)
f + I

(n−1)
b )

]
Z

< ε. (22)

The iterative process starts with I
(0)
b = 0 as the ini-

tial value, and first calculates I
(1)
f using equation (20),

then calculates I
(1)
b using equation (21). This process iter-

ates until the specified convergence accuracy is met. The
computational cost of this algorithm is o(N2), and it has
fast convergence speed, making it an effective algorithm
for solving scattering problems of rough surfaces.

However, if we want to use FBM to solve the matrix
equation (14), we need to improve the FBM method.
Next, we will introduce IGFBM.

C. Improved Generalized Forward and Backward
Method (IGFBM)

Decompose the impedance matrix into upper, lower,
and diagonal matrices denoted by U, L, and D, respec-
tively. For example, the submatrix denoted by (l, l, l) has
the following form:

A(l,l,l) = AU,(l,l,l) +AL,(l,l,l) +AD,(l,l,l), (23)

B(l,l,l) = BU,(l,l,l) +BL,(l,l,l) +BD,(l,l,l). (24)
The unknown vector is decomposed into forward

and backward components, Ui = Ui
f + Ui

b and ψi =
ψi

f+ψi
b, where Ui

f and ψi
f are the forward components,

and Ui
b and ψi

b are the backward components. There-
fore, the forward current iteration formula in equation
(14) is written as:

AL,(0,1,1)Uf
1 +BL,(0,1,1)ψ f

1 = ψ inc

−AD,(0,1,1)(Uf
1 +Ub

1)−BD,(0,1,1)(ψ f
1 +ψb

1 ), (25)

ρ1AL,(1,1,1)Uf
1 +BL,(1,1,1)ψ f

1 +AL,(1,1,2)Uf
2 +BL,(1,1,2)ψ f

2

=−ρ1AD,(1,1,1)(Uf
1 +Ub

1)−BD,(1,1,1)(ψ f
1 +ψb

1 )

−AD,(1,1,2)(Uf
2 +Ub

2)−BD,(1,1,2)(ψ f
2 +ψb

2 ), (26)

ρ1AL,(1,1,1)Uf
1 +BL,(1,1,1)ψ f

1 +AL,(1,1,2)Uf
2 +BL,(1,1,2)ψ f

2

=−ρ1AD,(1,2,1)(Uf
1 +Ub

1)−BD,(1,2,1)(ψ f
1 +ψb

1 )

−AD,(1,2,2)(Uf
2 +Ub

2)−BD,(1,2,2)(ψ f
2 +ψb

2 ), (27)

ρ2AL,(2,2,2)Uf
1 +BL,(2,2,2)ψ f

1 =

−ρ2AD,(2,2,2)(Uf
2 +Ub

2)−BD,(2,2,2)(ψ f
2 +ψb

2 ). (28)

The iterative formula for obtaining the backward
current can be obtained analogously. By iterative solu-
tion, the unknown variables at the i-th iteration are U

f,(i)
1 ,

U
b,(i)
1 , ψ f,(i)

1 , ψb,(i)
1 , U

f,(i)
2 , U

b,(i)
2 , ψ f,(i)

2 , ψb,(i)
2 , and the iter-

ative algorithm starts with initial values of U
b,(0)
1 = 0,

ψb,(0)
1 = 0, U

b,(0)
2 = 0, and ψb,(0)

2 = 0, and calculates
iteratively until the specified convergence accuracy is
reached.

For the forward iteration process of IGFBM, the
matrix-vector multiplication needs to be repeated, and
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the process can be expressed as:

V (1)
f (rn) =

n−1

∑
m=1

A(0,1,1)
mn ·U1,m +

n−1

∑
m=1

B(0,1,1)
mn ·ψ1,m, (29)

V (2)
f (rn) =

n−1

∑
m=1

A(1,1,1)
mn ·U1,m

+
n−1

∑
m=1

B(1,1,1)
mn ·ψ1,m +

n−1

∑
m=1

A(1,1,2)
mn ·U2,m +

n−1

∑
m=1

B(1,1,2)
mn ·ψ2,m,

(30)

V (3)
f (rn) =

n−1

∑
m=1

A(1,2,1)
mn ·U1,m +

n−1

∑
m=1

B(1,2,1)
mn ·ψ1,m

+
n−1

∑
m=1

A(1,2,2)
mn ·U2,m +

n−1

∑
m=1

B(1,2,2)
mn ·ψ2,m, (31)

V (4)
f (rn) =

n−1

∑
m=1

A(2,2,2)
mn ·U1,m +

n−1

∑
m=1

B(2,2,2)
mn ·ψ1,m, (32)

where n = 1,2, ...,N. V (i)
f (rn) (i = 1,2,3,4) represents

the radiation contribution generated by the source cur-
rent in the n-th receiving element upstream of the inter-
face, and the computational effort required for each itera-
tion is o(N2). Therefore, the SAA algorithm can be used
to accelerate the calculation and improve computational
efficiency.

D. Spectral Acceleration Approach (SAA)
If SAA is applied to the calculation of equation (29),

both the computational load and memory requirements
are reduced to o(N). The basic principle is to define a
neighboring region Ls, where if a source element and
a receiver element are within a certain distance, they
are referred to as strong interaction group and produce
strong interaction Vs, otherwise they are referred to as
weak interaction group and produce weak interaction Vw.
Equation (29) can be rewritten as:

V (1)
f (rn) =V (1)

s +V (1)
w =

n−1

∑
m=n−Ns

(A(1,1,1)
mn ·U1,m +B(1,1,1)

mn ·ψ1,m)

+
n−Ns−1

∑
m=1

(A(1,1,1)
mn ·U1,m +B(1,1,1)

mn ·ψ1,m). (33)

The V (1)
s at position rn is the contribution from the

collective action of Ns source elements within a distance
Ls of the field element receiving at position rn, computed
accurately using MOM. The contribution V (1)

w is from the
collective action of n−Ns −1 source elements outside a
distance Ls, which involves a large computational cost
and reduces computational efficiency. Next, we discuss
acceleration methods for this contribution.

Based on the spectral integral form of the Green’s
function [32], we can derive:

V (1)
w (rn) =

n−Ns−1

∑
m=1

(A(1,1,1)
mn ·U1,m +B(1,1,1)

mn ·ψ1,m)

=
iΔx
4π

∫
Cθ

Fn(θ)exp(ik1z1,n sinθ)dθ , (34)

Fn(θ) = Fn−1(θ) · exp(ik1Δxcosθ)
+ [−ik1(−sinθ +ξx cosθ)ψ1,n−Ns−1 +U1,n−Ns−1]

· exp[ik1(Ns +1)Δxcosθ ] · exp[−ik1z1,n−Ns−1 sinθ ].
(35)

Similarly, we can obtain the spectral integral forms
of V (2)

w , V (3)
w , and V (4)

w . Cθ is the integration path. It can
be seen that the weak contributions of all far-field ele-
ments Fn(θ) are now continuously recursively calculated
by equation (35), with slowly changing field modes on
the integration path making the SAA algorithm efficient.

Due to the weak contribution of the far field on
the longer rough surface, Fn(θ) tends to have a narrow
main lobe and multiple narrow side lobes in the complex
plane. The choice of the integration path in equation (35)
can be considered from Cθ to Cδ , such that Fn(θ) has a
slowly varying mode with Cδ . The efficiency of the SAA
algorithm lies in this slowly varying far field mode. The
parameters chosen in Fig. 2 are as follows [31]:

Fig. 2. Schematic diagram of spectral integration path.

where δ = tan−1(1/b),b = max(
√

kRs/20 ·
θs − 1,1),θs,max = tan−1( zmax−zmin+d

Rs
),Rs =√

L2
s +(zmax − zmin +d)2.
Finally, choosing appropriate parameters, the dis-

crete spectral integral form of the far-field can be
obtained, for example, for A:

V (1)
w =

iΔxe−iδ

4π

Q

∑
p=−Q

W (θp)Fn(θp)eik1z1,n sinθp Δθ . (36)

E. Conical incident wave

In simulation calculations, it is not practical to deal
with the scattering of infinitely long rough surfaces, so
the size of the rough surface is usually limited to a cer-
tain range. To avoid the effects of reflection and edge-
bending caused by abrupt truncation of the rough sur-
face edge, a conical incident wave [33] is used instead
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of traditional plane wave incidence. This conical wave
gradually decreases to zero as it approaches the bound-
ary, effectively avoiding abrupt changes in surface cur-
rent and significantly improving the accuracy of the cal-
culation.

For the TE incident wave, the electromagnetic field
expressions are:

Einc (r) =
∫ +∞

−∞

∫ +∞

−∞
exp(jkxx+ jkyy− jkzz)

·E (kx,ky)hi (−kz)dkxdky, (37)

Hinc (r) =− 1
η0

∫ +∞

−∞

∫ +∞

−∞
exp(jkxx+ jkyy− jkzz)

·E (kx,ky)vi (−kz)dkxdky. (38)
For the TM incident wave, the electromagnetic field

expressions are:

Einc (r) =
∫ +∞

−∞

∫ +∞

−∞
exp( jkxx+ jkyy− jkzz)

·E (kx,ky)vi (−kz)dkxdky, (39)

Hinc (r) =− 1
η0

∫ +∞

−∞

∫ +∞

−∞
exp( jkxx+ jkyy− jkzz)

·E (kx,ky)hi (−kz)dkxdky, (40)
where E (kx,ky) is the incident spectrum, hi is the hor-
izontal polarization direction, vi is the vertical polar-
ization direction, η0 is the free space wave impedance,
and ki is the spatial spectral domains in the i directions,
respectively, kρ =

√
k2

x + k2
y .

The two-dimensional normalized conical incident
wave amplitude is shown in Fig. 3. It can be seen from
this that the magnetic field is strongest from the center
of the rough surface and slowly returns to zero at the
edges. Therefore, the tapered incident wave can be used
to reduce the error caused by truncating the rough sur-
face.

(a) (b)

Fig. 3. Normalized conical wave schematic.

III. VALIDATION OF ALGORITHM

Before applying the proposed IGFBM-SAA algo-
rithm to practical situations, we need to verify its effec-
tiveness and accuracy in calculating scattering from
layered rough surfaces. To avoid overlap for different

rough surfaces, all interfaces are modeled using Gaus-
sian rough surfaces with the same parameters. The char-
acteristics of these rough surfaces, including the root
mean square (RMS) height and correlation length of
the upper and lower layers, are described by parameters
h1, l1, h2, and l2. In addition, we also need to consider
the dielectric constants of the media, which are εr1 =
2.0+ i0.05 and εr2 = 25+ i0. Furthermore, we set the
following parameters: rough surface length L = 51.2λ ,
correlation length l1 = l2 = 1.0λ , upper rough surface
thickness d = 10λ , incident frequency f = 1 GHz, and
incident angle θi = 60◦.

In the verification process, we used this algorithm to
calculate an example of scattering from a layered rough
surface and stored the calculated results in Fig. 4. For
comparison of the accuracy of the algorithm, we used tra-
ditional MoM as validation algorithms. This algorithm is
relatively slow in calculation speed, but with high accu-
racy. We used MoM to calculate the same example and
plotted the calculated results on the same graph for com-
parison.

(a)

(b)

Fig. 4. Validation of algorithm: (a) horizontal polariza-
tion and (b) vertical polarization.

From Fig. 4 we can see that the calculated results of
the three methods are in good agreement, which indicates
that the IGFBM-SAA algorithm is effective in calculat-
ing scattering from layered rough surfaces.



103 ACES JOURNAL, Vol. 39, No. 02, February 2024

To more accurately evaluate the performance of
the algorithm, we used different rough surface lengths,
12.8λ , 25.6λ , and 51.2λ , corresponding to different
dimensions of the impedance matrix, 512, 1024, and
2048, respectively. Other parameters were kept con-
stant. Then we compared the computational time of the
IGFBM-SAA algorithm with that of FBM and MoM. To
ensure accurate statistical analysis, we averaged the time
taken for 20 calculations. As shown in Fig. 5, we con-
ducted a detailed comparison between the IGFBM/SAA
algorithm, traditional MoM, and FBM. The results
showed that the IGFBM/SAA algorithm exhibited sig-
nificant advantages in computational speed compared to
traditional MoM and FBM. This advantage was even
more pronounced when dealing with large-scale rough
surfaces. This enabled the algorithm to complete tasks
more efficiently when dealing with large-scale rough sur-
face scattering problems, providing strong support for
practical engineering applications.

Fig. 5. Computational time.

During the above computations and validation pro-
cess, we used a simulation computer with a CPU fre-
quency of 3.4 GHz and 8 GB of memory. These param-
eters are sufficient for running large-scale rough sur-
face scattering calculations. However, for more com-
plex or larger-scale computational requirements, higher-
performance computers or parallel computing tech-
niques may be required to meet computational needs.

We conducted research on the convergence perfor-
mance of this algorithm for different values of rough
surface RMS height. As shown in Fig. 6 (a), when TE
wave is incident, the algorithm achieves τ = 10−7 after
14 iterations when the roughness is h1 = h2 = 0.1λ , and
the error increases to τ = 10−5 after the same number of
iterations when the roughness is h1 = h2 = 0.3λ . How-
ever, when the roughness is h1 = h2 = 0.5λ , the con-
vergence accuracy can only reach τ = 10−3, indicating
that as the roughness increases, the convergence perfor-
mance of IGFBM-SAA decreases. This is mainly due to
the increase in error in solving spectral integral equation

(a)

(b)

Fig. 6. Algorithmic convergence analysis chart: (a) TE
incident wave and (b) TM incident wave.

(36) with increasing roughness. To improve the conver-
gence accuracy, it is necessary to reselect integral param-
eters. In addition, it was found that the characteristics of
TM wave incidence are different from those of TE wave
incidence. As shown in Fig. 6 (b), it can be clearly seen
that the convergence speed of TM wave is faster, but its
convergence accuracy is lower than that of TE wave inci-
dence.

In summary, when studying rough surface scattering
problems, appropriate algorithms and parameter settings
need to be carefully selected for different incident waves
and roughness to ensure good convergence performance
and computational accuracy of the algorithm. Especially
when the roughness increases, it may be necessary to
readjust parameters of the algorithm to reduce the error
in spectral integral solution and improve convergence
accuracy. This finding has important guiding significance
for practical applications in dealing with complex rough
surface scattering problems.
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IV. CALCULATION RESULTS AND
ANALYSIS

This section mainly studies and analyzes the electro-
magnetic scattering characteristics of layered rough sur-
faces under different parameters. Unless otherwise spec-
ified, the relevant parameters are set as: dielectric con-
stants of the media εr1 = 2.0+ i0.05 and εr2 = 25+ i0,
rough surface length L = 51.2λ , h1 = h2 = 0.2λ , corre-
lation length l1 = l2 = 1.0λ , upper rough surface thick-
ness d = 6λ , incident frequency f = 1GHz, and incident
angle θi = 40◦.

Figure 7 demonstrates the impact of changes in the
RMS height of a layered rough surface on the bistatic
scattering coefficient under TM wave incidence, with
RMS heights chosen as h1 = h2 = 0.2, h1 = h2 = 0.5, and
h1 = h2 = 1.0, respectively. The correlation length of the
rough surface follows l1 = l2 = 1.0λ , and the incident
angle is θi = 40◦. Upon close examination, it is observed
that the bistatic scattering coefficient of the layered rough
surface tends to decrease in the specular direction with
increasing RMS height, particularly evident when the
RMS height is h1 = h2 = 0.2 and h1 = h2 = 0.5.
Conversely, in the non-specular scattering directions,
the bistatic scattering coefficient increases with increas-
ing RMS height, particularly prominent when the RMS
height is h1 = h2 = 1.0. Additionally, compared to the
specular direction, the bistatic scattering coefficient is
generally smaller in the non-specular directions, indicat-
ing a stronger scattering ability of the layered rough sur-
face in the specular direction.

Fig. 7. Scattering coefficient comparison chart for differ-
ent root mean square (RMS) heights.

This observed phenomenon indicates that the RMS
height of rough surfaces has a significant impact on
bistatic scattering coefficients that depends on the direc-
tion of scattering. This finding can provide valuable ref-
erence and applications in areas such as electromagnetic
scattering and radar target characterization. For exam-
ple, in radar target recognition, by studying the scat-

tering characteristics of layered rough surfaces, targets
can be identified and classified more accurately, thereby
enhancing the accuracy and reliability of radar detection.
Additionally, in radar stealth technology, surface struc-
tures with lower scattering coefficients can be designed
and implemented based on studies of layered rough sur-
faces to decrease the probability of targets being detected
by radar, thus enhancing their radar stealth performance.
Furthermore, this research can also be applied to electro-
magnetic compatibility analysis and prediction.

Figure 8 shows the dependence of the scattering
coefficient of a layered rough surface on the correla-
tion length when TM wave incidence. As seen from the
figure, the scattering coefficient increases with increas-
ing correlation length in the specular direction. How-
ever, at large scattering angles, the scattering coefficient
decreases with increasing correlation length. This obser-
vation is consistent with the conclusions of many electro-
magnetic scattering studies, indicating that the scattering
characteristics of rough surfaces are not only determined
by their surface structure but also affected by the incident
conditions of electromagnetic waves.

Fig. 8. Scattering coefficient comparison chart for differ-
ent correlation lengths.

In the specular direction, as the correlation length
increases, the details and fluctuations of the surface
structure become more significant, which leads to an
increase in the scattering coefficient. This trend can be
understood as follows: as the surface structure changes,
the complexity of scattering increases, causing more
electromagnetic energy to be scattered into different
directions.

However, in the region of large scattering angles,
the situation is different. In this region, the decrease in
scattering coefficient is related to the increase in surface
structure size and the propagation characteristics of elec-
tromagnetic waves. More specifically, when electromag-
netic waves propagate from regions with larger surface
structures, the coherence of the wave may be affected,
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leading to a decrease in scattering coefficient. Addition-
ally, larger surface structures may provide more prop-
agation paths for electromagnetic waves, causing some
waves to bypass the surface structure rather than undergo
strong scattering.

In the subsequent study, we applied the IGFBM-
SAA method to deeply explore the impact of the changes
in the dielectric constant ε2 of the lower rough surface on
electromagnetic scattering coefficients. In the simulation
calculations, both the upper and lower media were loss-
less, with the dielectric constant of the upper medium
being ε1 = 5.0 and the dielectric constants of the lower
media being ε2 = 5.0, ε2 = 10.0, and ε2 = 20.0, respec-
tively. The rms and correlation length of the upper-lower
interface were h1 = h2 = 0.5 and l1 = l2 = 1.0λ , respec-
tively, and the incident angle was θi = 40◦.

To visually present the changes in the scattering
coefficients, we plotted Fig. 9 (a), which demonstrated
the trend of the scattering coefficient varying with the
dielectric constant ε2 throughout the entire scattering
angle range. It could be clearly observed from the figure
that with the increase in the dielectric constant ε2, the
scattering coefficient changed at each scattering angle
but this change was not monotonous. At some specific
scattering angles, a significant peak was observed in the
scattering coefficient; at other angles, it might decrease.
This complex trend reflected the complex impact of the
dielectric constant ε2 on the scattering process.

To better reveal the changing rules of the scatter-
ing coefficient with respect to the dielectric constant, we
plotted Fig. 9 (b), which presented the changes in the
scattering coefficient within the scattering angle range -
90◦∼75◦. In particular, when the dielectric constant was
ε2 = 5.0, the electromagnetic scattering of the layered
rough surface would simplify to that of a single rough
surface. It could be seen from Fig. 9 (b) that at large
scattering angles, the scattering coefficient of the lay-
ered rough surface was always greater than that of a
single rough surface. Additionally, with the increase in
|ε1 − ε2|, the scattering coefficient of the layered rough
surface also showed an increasing trend. This trend
might be attributed to the gradually enhanced scattering
effect of electromagnetic waves by the lower medium as
|ε1 − ε2| increased.

In summary, through applying the IGFBM-SAA
method, we conducted an in-depth investigation into
the impact of changes in the dielectric constant on the
scattering process of rough surfaces. The investigation
revealed that, regardless of how the dielectric constant
changed, the scattering coefficient of the layered rough
surface at some specific scattering angles was always
greater than that of a single rough surface. Especially at
large scattering angles, the scattering coefficient of the
layered rough surface showed an increasing trend. This

(a)

(b)

Fig. 9. Scattering coefficient comparison chart for differ-
ent lower rough surface permittivity values: (a)-90◦∼90◦
and (b) -90◦∼75◦.

trend might be because the layered rough surface exhibits
more complex scattering characteristics during the prop-
agation of electromagnetic waves.

V. CONCLUSION

This article proposes an innovative I-GFBM-SAA
algorithm for effectively solving the electromagnetic
scattering problem of rough surfaces. This algorithm sig-
nificantly reduces the calculation workload from o(N3)
to o(N), thereby greatly saving computational time and
improving computational efficiency. At the same time,
this algorithm exhibits good convergence behavior under
different calculation conditions, making it able to meet
the computational needs of different application sce-
narios. The next research direction will be to incorpo-
rate targets (conductors and dielectrics) into the environ-
ment to further improve the electromagnetic scattering
model and study composite electromagnetic scattering
problems.
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Abstract – Multibranch basis functions have been con-
firmed to be effective for local refinement of domain
decomposition methods in the application of solving sur-
face and volume integral equations. Surface-volume inte-
gral equations (SVIEs) are applied for solving the hybrid
electromagnetic scattering problems involving perfect
electric conductors (PEC) and dielectrics, especially
inhomogeneous and anisotropic media. In this paper,
multibranch Rao-Wilton-Glisson basis functions (MB-
RWGs) are applied in conjunction with multibranch
Schaubert-Wilton-Glisson basis functions (MB-SWGs)
for solving the SVIEs. Block diagonal preconditioners
(BDPs) are used to accelerate the iteration convergence
based on generalized minimum residual (GMRES) algo-
rithms. The numerical results demonstrate the accuracy
of the multibranch basis functions in solving SVIEs, and
also show that proper BDPs can accelerate the iteration
convergency.

Index Terms – block diagonal preconditioner, MB-
RWG, MB-SWG, surface-volume integral equations
(SVIEs).

I. INTRODUCTION

With the increasing complexity of electronic struc-
tures and material characteristics, the analysis of scat-
tering problems becomes more and more challenging.
We need to consider hybrid structures with perfect elec-
tric conductors (PEC) and dielectric scatterers, or even
including inhomogeneous and anisotropic media. Inte-
gral equation methods have been widely used for electro-
magnetic scattering problems. PEC and simple medium
can be efficiently analyzed with surface integral equa-
tions (SIEs) [1–4], while for anisotropic and inhomo-
geneous media, volume integral equations (VIEs) [5–
8] may have to be used. To solve these two types of
integral equations (IEs), Rao-Wilton-Glisson basis func-
tions (RWGs) [1] and Schaubert-Wilton-Glisson basis
functions (SWGs) [5] have been widely applied for over
four decades. Recently, as an extension of the two kinds
of basis functions, multibranch Rao-Wilton-Glisson
(MB-RWGs) and multibranch Schaubert-Wilton-Glisson

(MB-SWGs) basis functions are proposed for domain
decomposition and local refinement [3][7]. It has been
confirmed that these two kinds of basis functions have
almost the same characteristics of the related traditional
basis functions and have advantages in flexibility when
applied for solving SIEs and VIEs. In this paper, we
focus on analyzing hybrid objects that include inho-
mogeneous and anisotropic dielectric scattering objects.
Both MB-RWGs and MB-SWGs are applied, together
with traditional RWGs and SWGs, to solve the surface-
volume integral equations (SVIEs) [9–12] for these
objects.

When applying method of moments (MoM), the
impedance matrix is usually a dense matrix and it
is time-consuming to solve the matrix equation with
LU decomposition directly. Iterative algorithms, like
the generalized minimum residual (GMRES) algorithm,
conjugate gradient (CG) algorithm, and so on, are well
used as solvers. However, with more complex struc-
tures and diversified materials, the characteristics of
the impedance matrix becomes worse. It is difficult to
converge even using iterative algorithms. An effective
approach to improve the behavior of the matrix is to
apply preconditioners [13–15]. In this paper, we use
block diagonal preconditioners (BDP) to accelerate the
iterative process.

The remainder of this paper is organized as fol-
lows: SVIEs are introduced in Section II, along with the
matrix equations applied with (MB-)RWGs/SWGs and
the method to generate BDPs. Two numerical examples
are shown in Section III, with a conclusion in Section IV.

II. SVIES FORMULATION

Consider an arbitrary hybrid PEC and anisotropic
dielectric scattering body (Spec and VD) illuminated by
an incident field

(
EincHinc

)
. The relative tensor permit-

tivity and permeability of the dielectric are ε̄r and μ̄r. The
SVIEs can be written as:

LE
(
J
(
r′
))

+K
(
M
(
r′
))

+LE
(
JS
(
r′
))

+Etot (r)

= Einc(r),r ∈VD,
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LM
(
M
(
r′
))−K

(
J
(
r′
))−K

(
JS
(
r′
))

+Htot (r)

= Hinc(r),r ∈VD,

n̂×{LE
(
J
(
r′
))

+K
(
M
(
r′
))

+LE
(
JS
(
r′
))}

= n̂×Einc(r),r ∈ Spec, (1)
where the operators are formulated as:

LE(f) = jωμ0

∫
Ω

(
Ī +

∇∇
k2

0

)
g0•fdr′,

LM(f) = jωε0

∫
Ω

(
Ī +

∇∇
k2

0

)
g0•fdr′,

K (f) = p · v ·∇×
∫

Ω
f ·g0dr′, (2)

and g0 = e− jkR
/

4πR,R = |r− r′|is three dimensional
Green’s function in free space, r and r′ represent the
field point and source point, respectively. The integration
region Ω is VD and Spec means volume integral for dielec-
tric scatterer and surface integral for PEC scatter, respec-
tively. In equation (1), J, M, Js are polarized electric
current, polarized magnetic current, and equivalent sur-
face current, respectively. Etot and Htot are total electric
and magnetic fields in the interior region of the dielectric
scattering object. According to the constitutive relation,
J, M, Etot , and Htot can be replaced by polarized elec-
tric displacement Dand polarized magnetic flux density
B as:

J = jω (ε̄r − Ī)gε̄−1
r gD

M = jω (μ̄r − Ī)gμ̄−1
r gB

Etot = ε̄−1
r gD/ε0

Htot = μ̄−1
r gB/μ0

. (3)

To solve the SVIEs, traditional RWG and SWG
basis functions are defined as:

f(r) =

⎧⎨
⎩

l
2A+

(
r− r+0

)
,r ∈ S+

l
2A−

(
r− r−0

)
,r ∈ S−

0, otherwise
,

h(r) =

⎧⎨
⎩

s
3W+

(
r− r+0

)
,r ∈ T+

s
3W−

(
r− r−0

)
,r ∈ T−

0, otherwise
, (4)

where S± and T± response to positive/negative trian-
gle and tetrahedron in RWGs and SWGs, r±0 is the pos-

itive/negative free node in both basis functions, l and
A± are the length of common line and the area of pos-
itive/negative triangle for RWGs, meanwhile s and W±
are the area of common surface and the volume of pos-
itive/negative tetrahedron for SWGs. The MB-RWGs
and MB-SWGs are defined with similar formulation as
shown in equations (5) and (6) [3], [7]:

fMB(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l+i
2A+

i

(
r− r+i

)
,r ∈ S+i , i = 1, L,N+

l−j
2A−

j

(
r− r−j

)
,r ∈ S−j , j = 1, L,N−

0, otherwise

, (5)

hMB(r)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s+i
3W+

i

(
r− r+i

)
,r ∈ T+

i , i = 1, L,N+

s−j
3W−

j

(
r− r−j

)
,r ∈ T−

j , j = 1, L,N−

0, otherwise

. (6)

If meshing the PEC surface and the dielectric sepa-
rately, we may encounter nonconformal meshes on the
interface between them. It is also possible to use half
SWG basis functions (HSWGs) hH in the analysis [6].
Then, D, B, and Js, are expanded by these basis functions
(shorted as b in total) mentioned above and formulated
as:

D(r) =
NS

∑
i=1

cNS
D,ihi(r)+

NHS

∑
i=1

cNHS
D,i hH

i (r)+
NMBS

∑
i=1

cNMGS
D,i hMB

i (r),

B(r) =
NS

∑
i=1

cNS
B,i hi(r)+

NHS

∑
i=1

cNHS
B,i hH

i (r)+
NMBS

∑
i=1

cNMGS
B,i hMB

i (r), (7)

Js(r) =
NR

∑
i=1

cNR
J,i fi(r)+

NMBR

∑
i=1

cNMBR
J,i fMB

i (r),

where S, HS, MBS, R, and MBR are the labels to
represent related SWG, HSWG, MBSWGs RWG, and
MBRWG basis functions (shorted as BF in total), NBF

are the numbers of basis functions, respectively, and
cNBF

m , where m = D,B,J, are the coefficients of different
sources and basis functions.

According to MoM, testing the first two equations
in equation (1) by SWG series functions and testing the
tangential components of the fields in the last equation
in equation (1) by the tangential components of RWG
series functions, we can convert it in matrix formulation
as equation (8), with elements formulas listed under it⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ZS,S
1 ZS,S

2 ZS,HS
1 ZS,HS

2 ZS,MBS
1 ZS,MBS

2 ZS,R
E ZS,MBR

E
ZS,S

3 ZS,S
4 ZS,HS

3 ZS,HS
4 ZS,MBS

3 ZS,MBS
4 ZS,R

H ZS,MBR
E

ZHS,S
1 ZHS,S

2 ZHS,HS
1 ZHS,HS

2 ZHS,MBS
1 ZHS,MBS

2 ZHS,R
E ZHS,MBR

E
ZHS,S

3 ZHS,S
4 ZHS,HS

3 ZHS,HS
4 ZHS,MBS

3 ZHS,MBS
4 ZHS,R

H ZHS,MBR
H

ZMBS,S
1 ZMBS,S

2 ZMBS,HS
1 ZMBS,HS

2 ZMBS,MBS
1 ZMBS,MBS

2 ZMBS,R
E ZMBS,MBR

E
ZMBS,S

3 ZMBS,S
4 ZMBS,HS

3 ZMBS,HS
4 ZMBS,MBS

3 ZMBS,MBS
4 ZMBS,R

H ZMBS,MBR
H

ZR,S
1 ZR,S

2 ZR,HS
1 ZR,HS

2 ZR,MBS
1 ZR,MBS

2 ZR,R
E ZR,MBR

E
ZMBR,S

1 ZMBR,S
2 ZMBR,HS

1 ZMBR,HS
2 ZMBR,MBS

1 ZMBR,MBS
2 ZMBR,R

E ZMBR,MBR
E

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

•

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CS
D

CS
B

CHS
D

CHS
B

CMBS
D

CMBS
B
CR

CMBR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ES

HS

EHS

HHS

EMBS

HMBS

ER

EMBR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8)
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ZS,S
1 (hm,hn) =

〈
hm, jωLE

(
(ε̄r − Ī)• ε̄−1

r •hn
)

+ε̄−1
r •hn/ε0

〉
,

ZR,S
1 (fm,hn) =

〈
fm, jωLE

(
(ε̄r − Ī)• ε̄r

−1 •hn
)〉

,

ZS,S
2 (hm,hn) =

〈
hm, jωK

(
(μ̄r − Ī)• μ̄r

−1 •hn
)〉

,

ZR,S
2 (fm,hn) =

〈
fm, jωK

(
(μ̄r − Ī)• μ̄r

−1 •hn
)〉

,

ZS,S
3 (hm,hn) =

〈
hm, jωK

(
(μ̄r − Ī)• μ̄r

−1 •hn
)〉

,

ZS,S
4 (hm,hn) =

〈
hm, jωLM

(
(μ̄r − Ī)• μ̄−1

r •hn
)

+μ̄−1
r •hn/μ0

〉
,

ZR,R
E (fm, fn) = 〈fm,LE (fn)〉 ,

ZS,R
E (hm, fn) = 〈hm,LE (fn)〉 ,

ZS,R
H (hm, fn) = 〈hm,−K (fn)〉 ,

where〈a,b〉 is the inner product of vector a and b. The
number of test functions is subscripts m = 1, · · · ,NS for
SWGs and m = 1, · · · ,NR for RWGs as test functions,
n = 1, · · · ,NS for SWGs and n = 1, · · · ,NR for RWGs as
basis functions.

If we rearrange the variables according to the type of
the basis functions, the impedance matrix can be simply
denoted by:

Z̄ =

⎛
⎜⎜⎜⎜⎝

ZS,S ZS,HS ZS,MBS ZS,R ZS,MBR

ZHS,S ZHS,HS ZHS,MBS ZHS,R ZHS,MBR

ZMBS,S ZMBS,HS ZMBS,MBS ZMBS,R ZMBS,MBR

ZR,S ZR,HS ZR,MBS ZR,R ZR,MBR

ZMBR,S ZMBR,HS ZMBR,MBS ZMBR,R ZMBR,MBR

⎞
⎟⎟⎟⎟⎠ .

(9)
To accelerate the iterative progress, it is important to

establish a proper precondition matrix P̄ to improve the
convergence rate of the iterative solver. In this paper, a
left BDP matrix is used to transform:

Z̄ •C = E, (10)
into:

(P̄)−1 • Z̄ •C = (P̄)−1 •E. (11)
The left BDP matrix has different formulations.

Here, four different BDPs are constructed and applied
to the matrix function independently.

The first preconditioner is constructed by the block
matrix along the diagonal line in equation (9) and formu-
lated as:
P̄1a = diag

(
ZS,S ZHS,HS ZMBS,MBS ZR,R ZMBR,MBR

)
.

(12)
According to the difference between J (M) and D

(B) in equation (3), in order to balance the elements of
dielectric part and PEC part, the second preconditioner
is constructed by dividing the jω and formulated as:

P̄1b = diag
(

ZS,S

jω
ZHS,HS

jω
ZMBS,MBS

jω ZR,R ZMBR,MBR
)
.

(13)
Similarly, the third and the fourth preconditioners

are constructed by the block matrix along the diagonal

Fig. 1. Two-layered sphere with a PEC core and a dielec-
tric shell.

line in equation (8) with jω only divided in the fourth
preconditioner, and formulated as:

P̄2a = diag
(

ZS,S
1 · · · ZMBS,MBS

4 ZR,R
E ZMBR,MBR

E

)
,

(14)
P̄2b = diag

(
ZS,S

1
jω · · · ZMBS,MBS

4
jω ZR,R

E ZMBR,MBR
E

)
. (15)

Finally, according to equations (10) and (11), these
four BDPs are applied to original matrix equation inde-
pendently.

III. NUMERICAL EXAMPLES

Two numerical examples are considered. In both
cases, the scattering objects consist of a PEC part and
a dielectric part. They are illuminated by a x-polarized
plane wave travelling in -z axis. The PEC part and the
dielectric part are independently constructed and meshed
using COMSOL software. The relative error is defined
as 20log

(‖x̄− x̄0‖2
/‖x̄0‖2

)
to calculate the difference

between results x̄ and reference results x̄0.
We use the first numerical example to verify the

accuracy of the algorithm and the effect of the precon-
ditioners. The object is a two-layer sphere, centered at
(000). The radius of the outer surface is 1.0 m, while the
radius of the inner surface is 0.7 m. The frequency of the
incident plane wave is 30 MHz. The inner part is a PEC
sphere and the outer layer is a dielectric with relative per-
mittivity and permeability as 5.0 and 2.0, respectively.

We have used two mesh structures to compare the
accuracy and the convergence behavior. In case 1, the
PEC surface and the dielectric part are meshed into
1320 triangles and 1946 tetrahedrons, respectively. The
average length of the triangles is about 0.01λ0, λ0
is the wavelength in free space. The average length
of tetrahedrons is about 0.0763λD, λD is the wave-
length in the interior region of dielectric part. The mesh
structure generates 1980 RWGs, 3543 SWGs, and 698
HSWGs. Hence, the dimension of the impedance matrix
is 10462×10462. The mesh in case 2 is generated based
on the mesh of case 1. From the meshes in case 1, we
have selected the 162 triangles and 244 tetrahedrons in
the region x≥ 0, y≥ 0, and z≤ 0 for local refinement. By
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adding 3 additional nodes at the middle of the 3 edges of
the triangle, each selected triangle is divided into 4 small
triangles. Similarly, by adding 6 additional nodes at the
middle of the 6 edges of the tetrahedron, each selected
tetrahedron is divided into 8 small tetrahedrons. Hence,
the refined meshes generate 2664 RWGs, 6692 SWGs,
962 HSWGs, 30 MBRWGs, and 54 MBSWGs in total.
The dimension of the impedance matrix is changed to
18110×18110.

To reduce the number of iterations, the four precon-
ditioners, discussed in Section II, are applied. All the pre-
conditioners can greatly accelerate the convergence of
the GMRES iteration solver under nearly the same accu-
racy. The Bi-RCSs, obtained for the two mesh structures,
are compared with those obtained by Mie series, as illus-
trated in Fig. 2. The relative error is -17.65 dB in case 1
and -25.05 dB in case 2. Moreover, we have applied four
BDPs in case 2.

The relative error stays the same when different
BDPs are applied. The iteration property and singular
values of the impedance matrix in different cases are
illustrated in Figs. 3 and 4, respectively. The condition
numbers of case 2 with or without different BDPs and
numbers of iterations to achieve a residual error of 0.005
are listed in Table 1. Obviously, the singular values are
more clustered and the number of iterations is smaller
after application of preconditioners [16][17].

The second example is used to show the effect of
local refinement for different materials. We consider a
PEC cuboid, surrounded by two different materials and
illuminated by a plane wave with frequency of 260 MHz,
as shown in Fig. 5. The lengths of PEC cuboid along x,
y, and z axis are 0.6 m, 0.1 m, and 0.1 m, respectively.
The thickness of dielectric shell is 0.05 m. It consists
of two kinds of materials. The dielectric in region 1 is

Fig. 2. Bistatic RCSs for case 1, case 2, and case 2 with
two BDPs, Mie series.

Fig. 3. Iteration convergencies for different methods.

Fig. 4. The s values of SVD for different methods.

Table 1: Condition numbers and numbers of iterations
Case 2 Condition

Number

Number of Iterations

without BDP 1.438×1013 /
with BDP1a 1.356×1018 35
with BDP1b 7.250×1013 9
with BDP2a 1.356×1018 35
with BDP2b 1.842×1014 12

anisotropic materials, with parameters of:

ε̄r1 =

⎡
⎣ 8+0.2 j −0.4 j 0

0.4 j 8+0.2 j 0
0 0 8−0.1 j

⎤
⎦ ,

μr1 = 2. The parameters of region 2 are εr2 = 2, μr2 =
1.5. The wavelengths in the dielectric part are labeled as
λn, where n = 1,2 for different regions.

Firstly, we generate a fine mesh structure as a base
for comparison. The surface of the PEC part is divided
into 360 triangles, and the dielectric part is divided into
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(a) (b)

Fig. 5. Model of the cuboid scatterer divided in w
regions: (a) dielectric part and (b) PEC part.

2462 tetrahedrons. The fine mesh structure generates
4449 SWGs, 950 HSWGs, and 540 RWGs. The dimen-
sion of the impedance matrix is 11338×11338. The aver-
age lengths are 0.036λ0 for the PEC part, 0.19λ1 and
0.089λ2 for the dielectric part.

Secondly, we generate a coarse mesh structure as the
base for local refinement, where the surface of the PEC
part is divided into 104 triangles, and the dielectric part is
divided into 402 tetrahedrons. The coarse mesh structure
generates 658 SWGs, 292 HSWGs, and 156 RWGs. The
dimension of the impedance matrix is 2056×2056. The
average lengths are 0.066λ0 for the PEC part, 0.37λ1 and
0.16λ2 for the dielectric part.

Thirdly, based on the coarse mesh structure, pro-
gressive local refinements are considered to show the
effect of different local refinement strategies. The refin-
ing approach for the selected part of meshes is the same
as that in the first example.

In case 1, we only select the triangles/tetrahedrons
in region 1 of PEC/dielectric part for local refinement,
generating 2326 SWGs, 592 HSWGs, 12 MBSWGs,
312 RWGs, and 4 MBRWGs. The dimension of the
impedance matrix is 6176×6176.

Case 2 is based on case 1. We find the 4 triangles on
the PEC surface in region 2 that have one side locating
on the bordering line with region 1, and then add them as
additional region for local refinement. The numbers of
RWGs, MBRWGs, and the dimension of the impedance
matrix are changed to 324, 8, and 6192×6192, respec-
tively.

Case 3 is also based on case 1. We find the 50 tetra-
hedrons in region 1 and region 3 of dielectric part that
have a surface locating at the interface with region 2,
then we add them for local refinement. The numbers of
SWGs, HSWGs, MBSWGs, and the dimension of the
impedance matrix are changed to 2446, 628, 24, and
6512×6512, respectively.

In case 4, both of the additional meshes in case 2 and
case 3 are selected for local refinement. The dimension
of the impedance matrix is changed to 6528×6528.

Obviously, the local refinement in case 1 has abrupt
variation in mesh sizes in different material regions; in
case 2, a transition region on the PEC surface is added;

in case 3, a transition region in the dielectric region is
added; and in case 4, both the transition regions are
added. This is to show the effect of the different local
refining strategies.

The results of the surface current on the PEC part
and the Bi-RCSs of the object in the xoz plane in differ-
ent cases are shown in Figs. 6 and 7, respectively. The

(a) (b)

(c) (d)

(e) (f)

Fig. 6. The surface currents of different cases (unit:
mA/m): (a) fine case, (b) coarse case, and (c-f) case 1-
4.

Fig. 7. The results of bistatic RCSs of different cases in
xoz plane.
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relative errors of Bi-RCSs of the coarse mesh and cases
1-4 are -24.47 dB, -21.44 dB, -30.31 dB, -20.52 dB, and
-28.61 dB compared with the Bi-RCSs of the fine mesh
as a reference result.

It can be seen that surface current on the PEC sur-
face is greatly affected by the discontinuity between
different materials where there is no transition area on
the surface of the PEC object. The local refinement in
coarse meshes improves the Bi-RCSs result. Hence, the
MBSWGs and MBRWGs can be applied for hybrid PEC
and dielectric structures, especially when local refine-
ment is needed.

IV. CONCLUSION

MB-RWGs can be applied for solving SIEs, and
MB-SWGs can be applied for solving VIEs. Both have
nearly the same accuracy as that of using traditional
RWGs and SWGs [3][7]. In this paper, it is demonstrated
that MB-RWG and MB-SWG can also be applied for
solving SVIEs in hybrid systems even consisting of inho-
mogeneous and anisotropic materials.

Although MB-RWGs and MB-SWGs are flexible
for local refinement, numerical examples show that,
when performing local refinement among different types
of materials, it would be better to refine the regions
in a progressive way so that the scale of the mesh
structures between neighboring elements is not too
different.

ACKNOWLEDGMENT

This work was supported by the National Science
Foundation of China under Grant 62188102.

REFERENCES

[1] S. M. Rao, D. R. Wilton, and A. W. Glisson,
“Electromagnetic scattering by surfaces of arbitrary
shape,” IEEE Trans. Antennas Propagat., vol. 30,
no. 3, pp. 409-418, 1982.

[2] P. Yla-Oijala and M. Taskinen, “Well-conditioned
Müller formulation for electromagnetic scatter-
ing by dielectric objects,” IEEE Trans. Antennas
Propagat., vol. 53, no. 10, pp. 3316-3323, Oct.
2005.

[3] S. Huang, G. Xiao, Y. Hu, R. Liu, and J. Mao,
“Multibranch Rao-Wilton-Glisson basis functions
for electromagnetic scattering problems,” IEEE
Trans. Antennas Propagat., vol. 69, no. 10, pp.
6624-6634, Oct. 2021.

[4] F. P. Andriulli, F. Vipiana, and G. Vecchi, “Hier-
archical bases for nonhierarchic 3-D triangular
meshes,” IEEE Trans. Antennas Propagat., vol. 56,
no. 8, pp. 2288-2297, Aug. 2008.

[5] D. H. Schaubert, D. R. Wilton, and A. W. Glisson,
“A tetrahedral modeling method for electromag-
netic scattering by arbitrarily shaped inhomo-

geneous dielectric bodies,” IEEE Trans. Anten-
nas Propagat., vol. 32, no. 1, pp. 77-85, Apr.
1984.

[6] L. M. Zhang and X. Q. Sheng, “Solving volume
electric current integral equation with full- and
half-SWG functions,” IEEE Antennas and Wirel.
Propaga. Lett., vol. 14, pp. 682-685, 2015.

[7] R. Liu, G. Xiao, S. Huang, and Y. Hu, “Multi-
branch Schaubert-Wilton-Glisson basis functions
for electromagnetic scattering problem,” IEEE
Trans. Antennas Propagat., vol. 70, no. 4, pp. 3100-
3105, Apr. 2022.

[8] R. R. Chang, K. Chen, J. Wei, and M. S. Tong,
“Reducing volume integrals to line integrals for
some functions associated with Schaubert-Wilton-
Glisson basis functions,” IEEE Trans. Antennas
Propagat., vol. 69, no. 5, pp. 3033-3038, May
2021.

[9] C. C. Lu and W. C. Chew, “A coupled surface-
volume integral equation approach for the calcula-
tion of electromagnetic scattering from composite
metallic and material targets,” IEEE Trans. Anten-
nas Propagat., vol. 48, no. 12, pp. 1866-1868, Dec.
2000.

[10] Q. M. Cai, Y. W. Zhao, W. F. Huang, Y. T. Zheng,
Z. P. Zhang, Z. P. Nie, and Q. H. Liu, “Volume
surface integral equation method based on higher
order hierarchical vector basis functions for EM
scattering and radiation from composite metallic
and dielectric structures,” IEEE Trans. Antennas
Propagat., vol. 64, no. 12, pp. 5359-5372, Dec.
2016.

[11] A. C. Yucel, L. J. Gomez, and E. Michielssen,
“Internally combined volume-surface integral
equation for EM analysis of inhomogeneous neg-
ative permittivity plasma scatterers,” IEEE Trans.
Antennas Propagat., vol. 66, no. 4, pp. 1903-1913,
Apr. 2018.

[12] B. J. Ward, “Hybrid surface electric field volume
magnetic field integral equations for electromag-
netic analysis of heterogeneous dielectric bodies
with embedded electrically conducting structures,”
IEEE Trans. Antennas Propagat., vol. 69, no. 3, pp.
1545-1552, Mar. 2021.

[13] W. D. Li, W. Hong, and H. X. Zhou, “An IE-
ODDM-MLFMA scheme with DILU precondi-
tioner for analysis of electromagnetic scattering
from large complex objects,” IEEE Trans. Anten-
nas Propagat., vol. 56, no. 5, pp. 1368-1380, May
2008.

[14] B. Kong, X. W. Huang, and X. Q. Sheng, “A
discontinuous Galerkin surface integral solution
for scattering from homogeneous objects with
high dielectric constant,” IEEE Trans. Antennas



LIU, XIAO, HU: SOLVING SURFACE-VOLUME INTEGRAL EQUATIONS FOR PEC AND INHOMOGENEOUS/ANISOTROPIC MATERIALS 114

Propagat., vol. 68, no. 1, pp. 598-603, Jan.
2020.

[15] S. Z. Gu, L. Zhang, D. M. Yu, K. W. Xu, L. M.
Si, and X. M. Pan, “On preconditioners of the FFT-
JVIE for inhomogeneous dielectric objects,” IEEE
Trans. Antennas Propagat., vol. 71, no. 6, pp. 5493-
5497, June 2023.

[16] S. B. Adrian, A. Dely, D. Consoli, A. Merlini,
and F. P. Andriulli, “Electromagnetic integral equa-
tions: Insights in conditioning and precondition-
ing,” IEEE Open Journal of Antennas and Propa-
gation, vol. 2, pp. 1143-1174, Dec. 2021.

[17] X. Antoine and M. Darbas, “An introduction to
operator preconditioning for the fast iterative inte-
gral equation solution of time-harmonic scattering
problems,” Multiscale Sci. Eng., vol. 3, pp. 1-35,
Feb. 2021.

Rui Liu received B.S. degree
from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2017. He
is currently pursuing Ph.D. degree in
electronic engineering in Shanghai
Jiao Tong University. His research
interests include computational elec-
tromagnetics and inverse scattering

problems.

Gaobiao Xiao received the B.S.
degree from Huazhong University
of Science and Technology, Wuhan,
China, in 1988, M.S. degree from
the National University of Defense
Technology, Changsha, China, in
1991, and Ph.D. degree from Chiba
University, Chiba, Japan, in 2002.

He has been a faculty member since 2004 in the
Department of Electronic Engineering, Shanghai Jiao
Tong University, Shanghai, China. His research interests
are computational electromagnetics, coupled thermo-
electromagnetic analysis, microwave filter designs, fiber-
optic filter designs, phased array antennas, and inverse
scattering problems.

Yuyang Hu received B.S. degree
in telecommunications engineering
from Xidian University, Xi’an,
China, in 2018. He is currently
pursuing Ph.D. degree with the State
Key Laboratory of Radio Frequency
Heterogeneous Integration, Shang-
hai Jiao Tong University, Shanghai.

His current research interests include computational
electromagnetics and its application in scattering and
radiation problems.



115 ACES JOURNAL, Vol. 39, No. 02, February 2024

A Numerical Analysis of Conformal Energy Selective Surface Array with
Synthetic Functions Expansion

Ning Hu1, Yanlin Xu2, and Peiguo Liu2

1Information Engineering University
Zhengzhou 450001, China

1141832906@qq.com

2College of Electronic Science of National University of Defense Technology
Changsha 410073, China

13298656824@163.com, pg731@qq.com

Abstract – Energy selective surface (ESS) is a special
kind of metasurface with great potential in high-power
microwave protection. In this paper, the electromagnetic
(EM) properties of an ESS array are analyzed with syn-
thetic functions expansion (SFX) method. A cylindri-
cal conformal ESS array based on an I-shape element is
designed for demonstration. The Bistatic RCS as well as
electric field distribution of the ESS array is calculated
with SFX and traditional full-wave numerical methods.
The results show that SFX exhibits great advantages in
memory cost while maintaining the same level of accu-
racy and efficiency with the multi-layer fast multipole
method (MLFMM). Besides, the EM performance of the
designed ESS is calculated with an array with finite ele-
ments and unit cell with periodic boundaries, respec-
tively. The results show a good agreement. The proposed
method can also be applied to the analysis of other kinds
of metasurfaces whose elements share similar geome-
tries with periodic or quasi-periodic arrangement. Espe-
cially for large-scale arrays, this method could well over-
come the difficulty of balancing accuracy, efficiency, and
resource consumption.

Index Terms – Energy selective surface (ESS), large-
scale arrays, metasurface, method of moment (MoM),
synthetic functions expansion (SFX).

I. INTRODUCTION

Energy selective surface (ESS) is a special kind of
metasurface posing nonlinear transmission characteris-
tics with respect to the field intensity of incident waves
[1]. More specifically, ESS is supposed to be trans-
parent to low-power microwaves but shield high-power
microwaves adaptively. Therefore, ESS is regarded as a
potential method in the fields of high-power microwave
protection [2].

In the past several years, ESS has attracted great
interest and significant progresses have been made [3–
8]. In terms of the analytical and numerical modeling
of ESS, an approximation method based on periodic
boundary conditions is mostly adopted. In that case, ESS
is regarded as an infinite array and its electromagnetic
(EM) properties are obtained using Floquet model anal-
ysis [6]. However, this method is not valid for finite and
conformal arrays [7]. On the one hand, the edge effects of
a finite array should be taken into account. On the other
hand, for most conformal arrays, they do not strictly sat-
isfy the periodic boundary conditions. Thinking of this,
full-wave numerical methods are usually adopted to sim-
ulate the EM properties of a finite conformal ESS array.

Nevertheless, traditional full-wave algorithms face
several difficulties such as a tremendous cost of memory,
low computational efficiency, and so on, when applied
to large-scale arrays. For instance, method of moment
(MoM) is a classic frequency-domain full-wave numer-
ical method which is well known for high accuracy and
pretty good adaptability for arbitrary 3D objects. When
it comes to large-scale arrays, MoM requires significant
memory cost which is usually unbearable for a single
PC because of the complex dense matrix equations. Fur-
thermore, the computational complexity is terrible. In
contrast, time-domain full-wave numerical methods like
finite difference time domain (FDTD) and finite inte-
gration technique (FIT) perform better than frequency-
domain methods in memory consumption and compu-
tational efficiency in general. As a tradeoff, computa-
tional accuracy of time-domain methods is usually less
than frequency-domain methods. Hence, for the mod-
eling and analysis of large-scale conformal ESS arrays,
an efficient and accurate full-wave numerical method is
what we desire [9–12].

In this paper, an improved method of MoM called
synthetic functions expansion (SFX) is used to analyze
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the EM properties of a large-scale cylindrical conformal
ESS array. SFX is first presented by Matekovits et al., the
core idea of which is using synthetic functions instead of
low order basis functions to discretize EM integral equa-
tions [13–14]. After that, several meaningful works on
SFX have been published which mainly focus on the
following topics such as the construction of synthetic
functions [15–16], the unsolved integral equations [17–
18], and the parallel algorithm [12]. Compared to tra-
ditional full-wave numerical methods, the advantages of
SFX are:

1) Since synthetic functions are adopted to discretize
the integral equations, memory cost and efficiency of
SFX will perform much better than MoM.

2) For an ESS array, synthetic functions defined on
different elements can be reused because of the geomet-
rical similarity between these elements. This feature is
of vital importance in the analysis of large-scale arrays
which can improve the computational efficiency greatly.

3) For a cylindrical conformal array, SFX only needs
to mesh the surface of objects rather than the total space
which means the memory cost of SFX will be less than
traditional time-domain numerical methods.

The paper is arranged as follows. In Section II, a
cylindrical conformal ESS array working at 10 GHz is
designed and analyzed based on periodic boundary con-
ditions. In Section III, we introduce the basic theory
of SFX, then the modeling of ESS and the construc-
tion of synthetic functions are discussed. In Section IV,
Bistatic RCS, electric field distribution, and high-power
microwave protection performance of the designed cylin-
drical conformal ESS array are calculated using SFX
and other numerical methods. Furthermore, the compu-
tational performance are discussed, from which we can
see that SFX exhibits great advantages in memory con-
sumption while maintaining the same level of compu-
tational accuracy and efficiency compared to traditional
full-wave numerical methods.

II. MODEL DESIGN

For demonstration, a cylindrical conformal ESS
array is designed and analyzed, and the detailed geom-
etry parameters are shown in Fig. 1. The array includes
21*10=210 unit cells covering an azimuth angle of 1800.
The radius of the conformal array is 1.27λ 0 (λ 0=30 mm
at 10 GHz) and the height is about 2λ 0. The unit cell is
composed of an I-shaped metal structure with two diodes
loaded on the vertical arm.

Transmission properties of the unit cell, shown in
Fig. 2, are obtained with a commercial full-wave soft-
ware (CST MWS 2021) under periodic boundary con-
ditions where diodes are modeled as lumped elements,
namely, a capacitor C=0.018pf and a resistor R=2Ωfor
OFF and ON states, respectively [4]. It is not difficult

Fig. 1. Illustration of the cylindrical conformal ESS
array.

to see that the transmission coefficient is near to 0 dB
and smaller than -20 dB at the central frequency (10
GHz) when the diodes are in different states. The phys-
ical mechanism may be illustrated briefly by the shift of
the resonance frequency. When the diodes are OFF under
low-power EM waves, the resonance frequency is much
higher than 10 GHz and the structure is supposed to be
transparent to low-power EM waves. By contrast, when
the structure is illuminated by high-power EM waves,
the diodes will be triggered on by the induced voltage,
and the ESS structure will resonate at 10 GHz. Then,
the high-power EM waves will be reflected. By this way,
electronic equipment in the area enclosed by the ESS
array is able to receive low-power EM waves, which is
the working signals. Meanwhile, high power EM waves
are shielded by the ESS array adaptively to protect the
electronic equipment.

In this work, our focus is not on the design method
of the ESS structure or the underlined mechanism. We
aim at the fast and accurate numerical analysis of a
designed ESS array. In previous works, the performance
of ESS is mainly evaluated by two important indexes
- the insertion loss (IL) and the shielding effectiveness
(SE) - which are defined as the transmission coefficient
of the ESS under different states (Diodes OFF for IL and
Diodes ON for SE). However, the transmission coeffi-
cients used in these definitions are obtained from an infi-
nite array with periodic boundary conditions, which only
illustrate an ideal situation. Thus, from a more practical
perspective, we define the IL/SE as the average attenua-
tion of the electric field in the area enclosed by the ESS
array in different states. In more detail, IL and SE are
defined as:

IL/SE = 20log(
∮

s |Einc|ds∮
s |Et |ds

), (1)
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Fig. 2. The transmission properties of the unit cell of ESS
under periodic boundary condition.

where S is the area enclosed by ESS array; Eincand Et
indicate the electric field with and without ESS array. In
this paper, considering the ESS array is half-open, we
select a semi-circle S in the transverse (to z) plane at z=30
mm as the area to calculate IL and SE. That is:

x2 + y2 ≤ R,x ≥ 0,z = 30mm. (2)

III. SFX ANALYSIS
A. Theory

Since SFX is an improved approach of MoM, we
will begin with a brief introduction of MoM and the elec-
tric field integral equation (EFIE) is adopted for example.

Usually, EFIE can be compactly written as:
n̂×L(J) = n̂×Einc, (3)

where Jand n̂ are the surface current and a unit vector,
respectively. For a vector X (circled by S), L is the elec-
tric integral operator and defined as:

L(X) = jωμ
∫

S
[X +

1
k2 ∇(∇ ·X)]gdS, (4)

where ω ,μand k are the frequency, the permeability, and
the wave number in the free space, respectively. In addi-
tion, g is the Green’s function in the free space.

To solve the vector integral equation using MoM,
we first need to use Rao-Wilton-Glisson (RWG) func-
tions to discretize the unknown vector J and then to make
Galerkin test. Then, (3) can be transformed into a linear
scalar matrix equation as:

ZI=V, (5)
where Z is the impedance matrix, V is the excitation vec-
tor, and I is the current coefficient vector of basis func-
tions.

Elements in Z and V can be calculated as:{
zmn =< fm,L( fn)>
vm =< fm,Einc >

, (6)

where f m and f n are the basis functions (RWG func-
tions in general), Einc stands for the electric field of the
incident wave, <A, B> represents the inner product of
A and B.

Different with the case in MoM, synthetic functions
are used in SFX to discretize the surface current J and to
make Galerkin test which will yield the following lin-
ear scalar matrix equation, as shown in the following
term [19]: ⎧⎨

⎩
[WSBF ] [Y] = [GSBF ]

[WSBF ] = [P]H [Z] [P]
[GSBF ] = [P]H [V]

, (7)

where [P] and [Y] are expansion coefficients and cur-
rent coefficients of synthetic functions; [Z] and [V] are
impedance matrix and exciting matrix of the traditional
MoM.

From (7) we can see that impedance matrix [WSBF ]
and exciting matrix [GSBF ] of SFX can be got on the
basis of [Z] and [V] once [P] is obtained. In SBFM, syn-
thetic functions are usually defined as linear combina-
tions of RWG functions, as shown in the following equa-
tion:

Fm(r) =
N

∑
k=1

Pk fk(r); m = 1, · · · ,M, (8)

where N is the number of RWG functions, M is the num-
ber of synthetic functions; Fm represents the m-th syn-
thetic functions, and Pk is the expansion coefficient of
the k-th RWG function.

Thus, [P]={Pk}N×M can be viewed as the expansion
coefficient matrix of synthetic functions.

In [14], Matekovits et al. propose a concrete way to
calculate [P] and we conclude it as the following three
steps:

Step 1: setting a series of auxiliary exciting sources
around the target, as shown in Fig. 3.

(a) (b)

Fig. 3. A cube is surrounded by a series of auxil-
iary exciting sources: (a) auxiliary exciting sources are
defined on a series of discrete small RWG functions and
(b) auxiliary exciting sources are defined on a meshed
surface (shown in the wire-frame model).

Initially, Matekovits et al. define auxiliary exciting
sources on a series of discrete small RWG functions
around the target, as shown in Fig. 3 (a). After that,
Bo Zhang et al. define auxiliary exciting sources on a
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meshed surface [17], as shown in Fig. 3 (b). Since the
surface is meshed into triangular patches in an irregular
way, auxiliary exciting source defined on them will be
with diverse polarizations which is helpful for improv-
ing accuracy. In the following work, the second method
of setting auxiliary exciting sources will be adopted.

Step 2: solving the responses of targets to exciting
sources to get a solution space (both natural exciting
source and auxiliary exciting source are included).

If we define the mutual coupling impedance matrix
between the target and auxiliary exciting sources as Ve,
the solution space R of synthetic functions can be com-
puted as:

[R]N×(Q+1) = Z−1(V +Ve), (9)

where N is the number of RWG functions defined on the
target, and Q is the number of RWG functions defined on
auxiliary exciting sources.

Notably, (9) indicates that the solution space con-
tains two parts:

1) response to natural excitations (incident wave)

r1 = Z−1V, (10)

2) responses to auxiliary exciting sources

[r2r3...rQ+1] = Z−1Ve, (11)

where ri (i=1,2,. . . ,Q+1) represent the i-th column of
solution space R.

Step 3: extracting independent items from solution
space.

To extract independent items (expansion coefficients
of synthetic functions) from the solution space R, singu-
lar value decomposition (SVD) is usually adopted:

R =UρV H ,ρ = diag(ρ1,ρ2, ...,ρN), (12)

where ρi is the i-th singular value of R and ρ1 > ρ2 >
· · ·> ρN

U is a unitary matrix, and if ρM/ρ1<ρSBF (trunca-
tion error), we will take the first M columns of U as the
expansion coefficients [P] of synthetic functions. Thus,
it will be:

[P]N×M =UN×N

[
IM
0

]
N×M

, (13)

where IM is the identity matrix.
The truncation error ρSBF is usually determined by

the operator and, in different applications, ρSBF is also
usually different.

Having got the expansion coefficients [P] of syn-
thetic functions, we can compute the current coefficients
[Y] of synthetic functions according to (7):

[Y] = [WSBF ]
−1 [GSBF ] =

[
PHZP

]−1
[P]H [V] . (14)

Then, according to (8), we can obtain the current
coefficients of RWG functions defined on the surface of
targets:

[I] = [P] [Y] = [P]
[
PHZP

]−1
[P]H [V] . (15)

Finally, based on the current coefficients of RWG
functions, it is not difficult to calculate other EM proper-
ties of the target. As it is similar to the traditional MoM,
we are not going to explain it in detail.

B. ESS Modeling

In SFX, triangular meshes and RWG functions are
usually adopted. For the ESS array shown in Fig. 1,
each element is divided into 164 triangular meshes
and 188 RWG functions are defined on these meshes,
as shown in Fig. 4. Thus, there are 188*210=39480
unknowns in total for the whole ESS array. In tradi-
tional MoM, the impedance matrix is a N*N (the num-
ber of unknowns) dense matrix of complex coefficients
which means the memory cost impedance matrix will be
39480*39480*2*4 Byte/float≈11.6 GByte. To decrease
the number of unknowns, synthetic functions are used to
compress the scale of the matrix equation.

To construct synthetic functions, a virtual meshed
surface is created around each element and 288 RWG
functions are defined on these meshes working as the
auxiliary sources, as shown in Fig. 4.

Fig. 4. Each element is divided into 164 triangular
meshes and a virtual meshed surface is created around
the element.

Fortunately, for the ESS array, synthetic functions
defined on different elements can be reused based on the
geometric similarities between these elements [10]. This
feature is rather appealing to us, especially in the anal-
ysis of quasi-periodic structures. It means the construc-
tion of synthetic functions only needs to be carried out
once, which is helpful to improve efficiency for large-
scale arrays. In this paper, after optimization, only 5 syn-
thetic functions for each element are enough to get a
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satisfying accuracy. Thus, for the whole ESS array, the
number of unknowns will be only 210*5=1050 for SFX.
So, the scale of the matrix equation in (7) is 1050*1050,
which is much smaller than that of traditional MoM.

For the analysis of ESS, another emphasis is on the
modeling of diodes. In this paper, a thin strip is used to
approximate the feeder line and the diodes are viewed as
a complex impedance in the middle of the feeder line, as
shown in Fig. 5. Technically, arbitrary two-port equiva-
lent circuit models could be handled in this method.

Fig. 5. A thin strip is used to approximate the feeder line
and the diodes can be viewed as a complex impedance in
the middle of the feeder line.

To take the diodes into consideration, we need to
modify the diagonal elements of the impedance matrix,
as shown in (16):

Diode OFF : znn → znn + l2
n(1/ jωC)

Diode ON : znn → znn + l2
nR

(16)

where R = 2.0Ω,C = 0.018pF, which are consistent with
the simulation setup in the Section II.

Compared to the simulating model in Feko, the
model used in this paper can transform the connection
from a wire-surface problem to a surface-surface prob-
lem and can be perfectly addressed by RWG functions,
shown in Fig. 6.

Fig. 6. The diode simulating model in Feko (right) and
in this paper (left).

IV. RESULTS

To illustrate the accuracy and efficiency of SFX, the
EM properties of the ESS array are numerically analyzed

with different methods based on commercial software for
comparison. Specifically, the following numerical meth-
ods are adopted: MOM and multi-layer fast multipole
method (MLFMM) with Feko (Altair Feko 2020), FIT
with CST (CST Studio Suite 2021). Considering that the
boundary conditions play a critical role in the accuracy
in time domain calculations, the boundary conditions
in CST are set as open boundary conditions (perfectly
matched layers, PML) with a minimum distance to struc-
tures of 4λ , and the estimated refection level is 0.0001.
The outer excitation is a plane wave which comes from
+x axis and polarizes +z axis with its frequency being
10 GHz. Both the far-field (Bistatic RCS) and near field
(electric field at z=0 mm cut-plane) are calculated. All
the simulations are carried on a computer poses 8 Intel
Core i7-7700K Processors with 4 cores per CPU running
at 4.2 GHz.

The results of the Bistatic RCS of the ESS array
obtained by different methods are shown in Figs. 7 and 8
with diodes in different states, respectively. When the
diodes are in OFF state, the transmission coefficient
of ESS is high and almost transparent to the incident
waves. Therefore, the RCS is supposed to be low and
the results are smaller than -20 dB (Fig. 7). On the con-
trary, the RCS is much larger because the incident wave
is strongly reflected when the diodes are in ON state
(Fig. 8). Notably, in Fig. 7, when the diodes are OFF, the
RCS of ESS array obtained by different methods shows
a similar trend with an error smaller than 2.6 dB. On
the main lobe, the largest RCS value comes from Feko
(MLFMM) (-20.4 dB) and then follows CST (FIT) (-20.9
dB) and SFX (-23.0 dB). Because the absolute value of
RCS is very low, the real error between different meth-
ods is actually small. As the RCS becomes much larger

Fig. 7. The RCS of the cylindrical conformal ESS array
calculated by different methods when diodes are in OFF
state.
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Fig. 8. The RCS of the cylindrical conformal ESS array
calculated by different methods when diodes are in ON
state.

in Fig. 8, the results obtained with different values are in
good agreement, which confirms the accuracy of SFX.
It should be pointed out that the results of Feko (MoM)
and Feko (MLFMM) are the same, therefore, only Feko
(MLFMM) is presented.

The distribution of electric field obtained with dif-
ferent methods at the cut-plane z=30 mm are demon-
strated in Figs. 9, 10, and 11. As we can see, the electric
field is more uniform when the diodes are OFF, which
means the ESS array generates a minor influence on the
incident waves. However, when the diodes are ON, the
incident wave is reflected rather than propagate through
the ESS array from the left to the right. As a result,
the electric field at the right side of ESS array is much
smaller than that at the left side. That is to say, the inci-
dent wave will be isolated out of the ESS array.

Furthermore, the IL and SE of the ESS array are
calculated with different methods, as given in Table 1.
Results obtained with the periodic boundary conditions
are also provided here for comparison. Obviously, the
results show a significant difference between IL and SE,

(a) (b)

Fig. 9. The electric field distribution of the cylindri-
cal conformal ESS array calculated with SFX when the
diodes are in different states (a) OFF and (b) ON.

(a) (b)

Fig. 10. The electric field distribution of the cylindrical
conformal ESS array calculated with Feko (MLFMM)
when the diodes are in different states (a) OFF and (b)
ON.

(a) (b)

Fig. 11. The electric field distribution of the cylindrical
conformal ESS array calculated with CST (FIT) when
the diodes are in different states (a) OFF and (b) ON.

Table 1: The IL and SE of ESS obtained with different
methods

IL (dB) SE (dB)

SFX -0.45 -16.5
CST (FIT) -1.26 -18.4

Feko (MoM) -0.3 -17.7
Feko (MLFMM) -0.3 -17.7

Unit cell -0.1 -20

confirming the capability of ESS for high-power EM
wave protection. As we can see, the IL obtained from the
finite ESS array is larger but the SE is smaller than that
of the unit cell, where ESS is regarded as infinite arrays.
The results can be attributed to several reasons. Firstly,
the array is not a strictly enclosed one, which may lead
to some EM leaks. Secondly, the IL and SE are obtained
based on the field intensity in the near field area of the
ESS array while that of the unit cell are calculated with
field intensity in the far field area, which also leads to
some error. Generally, the results obtained by different
methods are in agreement.

Table 2 illustrates the computational performance
of different methods in terms of time consumption,
peak memory cost, and root mean square error (RMSE).
Notably, the peak memory cost and time consumption
of Feko and CST are obtained from the software log-
file. It is not difficult to see that the proposed SFX
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exhibits outstanding performance in accuracy, efficiency,
and memory cost. More concretely:

1) According to the RMSE in Table 2, SFX has
the same level of accuracy with CST (FIT) and Feko
(MLFMM).

2) As for the computational efficiency, according to
the indexes of time consumption, SFX is slightly lower
than CST (FIT) and Feko (MLFMM), but exceeds tradi-
tional Feko (MoM).

3) When it comes to memory cost, SFX shows
a huge advantage over other methods, especially CST
(FIT) and Feko (MoM).

It is not difficult to draw the conclusion that SFX is
especially suitable for the analysis of ESS. Compared to
traditional full-wave numerical methods, SFX well over-
comes the difficulty of balancing accuracy, efficiency,
and resource consumption.

Table 2: Performance and comparison of different algo-
rithms (RMSE is obtained in comparison with the results
of Feko)

Elapsed

Time

Peak

Memory

Cost

RMSE

SFX 387.56 s 8.41 MByte 0.13
CST (FIT) 266 s 1.11 GByte 0.47

Feko (MoM) 2350.95 s 6.55 GByte -
Feko

(MLFMM)
262.16 s 618.25 Mbyte -

V. CONCLUSIONS

ESS is a potential method of high-power EM protec-
tion. In this paper, SFX is adopted to numerically analyze
the EM properties of ESS and an I-shape cylindrical con-
formal ESS array is designed for demonstration. Com-
pared to traditional full-wave numerical methods, SFX
exhibits great advantages in memory cost while main-
taining the same level of accuracy and efficiency with
MLFMM and FIT. Moreover, this method not only suits
ESS, but also suits other quasi-periodic arrays whose
elements share similar geometries. Especially for large-
scale array, this method can well overcome the dif-
ficulty of balancing accuracy, efficiency, and resource
consumption.
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Abstract – A new global 3-D finite-difference time-
domain (FDTD) model is introduced to simulate
electromagnetic wave propagation around the Earth,
including the lithosphere, oceans, atmosphere, and iono-
sphere regions. This model has several advantages over
existing global models, which include grids that fol-
low lines of latitude and longitude and geodesic grids
comprised of hexagons and pentagons. The advantages
of the new model include: (1) it may be run at the
Courant-Friedrichs-Lewy (CFL) time step (as a result,
it is termed the Courant-limit model); (2) subgrids may
be added to specific regions of the model as needed in
a straight-forward manner; and (3) the grid cells do not
become infinitely larger as the grid is extended higher
in altitude. As a result, this model is a better candidate
than the others for investigating electromagnetic phe-
nomena over long time spans of interest and for investi-
gating atmosphere-ionosphere-magnetosphere coupling.
The new model is first described and then validated by
comparing results for extremely low frequency (ELF)
propagation attenuation with corresponding analytical
and measurement results reported in the literature.

Index Terms – ELF, electromagnetic wave propagation,
FDTD, global propagation, long-time and high-altitude
simulations, scattering.

I. INTRODUCTION

The Earth-ionosphere waveguide is defined as the
spherical cavity between the Earth’s surface and the bot-
tom side of the ionosphere [1]. Within this waveguide,
ultra-low frequency (ULF:<3 Hz) and extremely low
frequency (ELF: 3 Hz–3 kHz) electromagnetic waves
are capable of propagating globally as quasi-transverse
electromagnetic (TEM) waves that experience very lit-
tle attenuation. TEM and higher-order waveguide modes
can also propagate globally in the Earth-ionosphere
waveguide at frequencies ranging from the upper ELF

band to very low frequencies (VLF: 3-30 kHz) [2] and
even high frequencies (HF: 3–30 MHz) [3]. The propa-
gation of electromagnetic waves in the Earth-ionosphere
waveguide has been of interest for a wide variety of
applications, including communications (e.g. [4]), geolo-
cation and communications with submarines (e.g. [5]),
studying lightning and sprites (e.g. [6, 7]), and remote
sensing (e.g. [8]).

Two generations of 3-D global finite-difference
time-domain (FDTD) models [9] of electromagnetic
wave propagation in the Earth-ionosphere waveguide
have been generated over the years: (1) latitude-
longitude models (e.g. [10, 11]) and (2) geodesic mod-
els (e.g. [12]). Both generations of models have been
used for a variety of applications (e.g. [13]), includ-
ing Schumann resonances, hypothetical earthquake pre-
cursors, remote-sensing of ionospheric anomalies, space
weather hazards to electric power grids, and remote sens-
ing of oil fields.

In order to model beyond the Earth-ionosphere
waveguide and to also pursue applications beyond those
listed above, a new generation of global FDTD models is
required. The reasons are three-fold:

(1) Both the latitude-longitude and geodesic grid cell
arrangements require a time step increment that is
smaller than the Courant-Friedrichs-Lewy (CFL)
limit [9]. In the case of the latitude-longitude grid,
this is due to the polar regions and the merging of
cells [11]. For the case of the geodesic grid, the
reduced time step is due to the reduction in the grid
cell dimensions as any of the smaller 12 pentagons
are approached (there are 12 pentagons in the
model, regardless of the grid resolution) [12]. As
a result of the reduced time step increment of these
grid arrangements, many simulations of interest are
challenging, if not infeasible, even using today’s
supercomputing capabilities. An example scenario
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wherein a large number of time steps is required
includes the generation of geomagnetically-induced
currents (GICs) during geomagnetic storms. GICs
are capable of causing blackouts to electric power
grids. These storms can last days at a time, although
the evolution of the storm over time spans of 30
minutes to two hours is often of most interest [14,
15]. Another example includes the global propaga-
tion of VLF to HF waves. It would take a large num-
ber of time steps for a wave to propagate around the
entire Earth at the required grid resolution for VLF
and HF waves. We note that the alternating direc-
tion implicit (ADI) FDTD approach [16–18] was
used to generate a global FDTD model of the Earth-
ionosphere waveguide [19]. However, that model
was found to exhibit a late time instability, which
limited the model’s utility, particularly for long time
spans of interest.

(2) Adding efficient and stable subgrids to FDTD mod-
els continues to be a challenge. Many approaches
have been proposed over the years, but an approach
that is accurate and efficient for a wide variety of
scenarios and for long time spans has not been
established. Both the latitude-longitude grid and
geodesic grids have the added complexity that the
subgrids would have non-uniform cell sizes and
domain edges. Further, the strategy for adding a
subgrid to the geodesic model would need to change
depending on whether the subgrid includes a pen-
tagon or not.

(3) Both the latitude-longitude and geodesic grid cell
arrangements are comprised of grid cells that
become larger in the horizontal (East-West and
North-South) directions as the grid is extended to
higher altitudes. This becomes an issue for appli-
cations in which electromagnetic waves may cou-
ple into and propagate through the ionosphere and
even into the magnetosphere (e.g. [20]). It is also
an issue when studying the effects of space weather
since the sources of electromagnetic waves (i.e.,
disturbed currents) occur throughout the ionosphere
and magnetosphere regions [21].

In this paper, a new “global Courant-limit” FDTD
model is presented that does not suffer from the above
issues because all of the grid cells in the grid are
Cartesian-based and identical. This allows the model to
be run at the Courant limit, which is advantageous for
long time spans. Furthermore, since all of the cells are
uniform, the cells do not increase in size with increasing
altitude. Finally, if at any point any subgrids are added
to the model, the standard approach for regular Cartesian
FDTD models may be utilized.

One disadvantage of the global Courant-limit model
is that material interfaces, such as the Earth’s surface, are
stair-cased. However, the staircasing is minimal because
the grid resolution (5 km in this paper) is small com-
pared to the radius of the Earth (∼6.4 Mm). Further, the
staircasing reduces with increasing grid resolution, the
surface of the Earth, in reality, is already not completely
smooth, and techniques exist that may be used to miti-
gate the impact of staircasing as needed [22, 23].

The next section includes a description of the global
Courant-limit model. Section III then provides details of
the validation of the model. Section IV concludes the
paper.

II. METHODOLOGY
A. Global Courant-limit model description

An example two-dimensional (2-D) slice of a low-
resolution version of the three-dimensional (3-D) global
Courant-limit model is shown in Fig. 1 (a). A higher-
resolution 3-D view of the grid is shown in Fig. 1 (b).
Although the grid is uniformly comprised of regular
cubic grid cells, there are special considerations for the
model, such as how to efficiently store the grid in com-
puter memory, how to best center the grid, and how to
assign boundary conditions and varying material param-
eters.

In the first part of the code (Part A), the grid is gen-
erated, and all of the updating coefficients are computed.
The second part of the code (Part B) includes the time-
stepping loop and any output from the model.

In Part A, the altitude range of the grid and the reso-
lution of the cells are first defined. Thereafter, any Carte-
sian cells that are positioned within the altitude range of
the model are assigned positive integer grid cell numbers.
In the example slice of the grid shown in Fig. 1 (a), there
are 28 total cells to be included in the model. The cells
are positioned such that there are electric fields radiating
outwards from the center of the Earth, as shown in Fig. 1
(a) (the center of the Earth is unlikely to be included in
the model, so the electric field vectors shown at the cen-
ter of the Earth are for illustrative purposes only). This
field arrangement is optimal for dealing with the bound-
ary conditions at the surface of the Earth. That is, using
this arrangement the interface between the conductive
lithosphere and the atmosphere is spherically symmetric,
and it is comprised of a continuous string of tangential
electric field components.

When generating the grid, there are two primary
challenges. One of the biggest challenges is to ensure
that there are not too many “ghost” cells (this was also
true for the previous latitude-longitude model). Ghost
cells take up memory but are not used in the time-
stepping loop. The second challenge is to ensure that
each processor is assigned the same number of grid cells
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(a)

(b)

Fig. 1. (a) Example 2-D slice of the 3-D grid cells along
the prime meridian for the global Courant-limit model at
a very low spatial resolution. Each cell (“c”) included in
the model is labeled cn, where n represents the cell num-
ber. The arrows represent electric fields oriented radi-
ally from the center of the Earth, which is indicated by
a black dot. (b) Illustration of the outer layer of the 3-
D FDTD grid at a resolution of 5×5×5 km with the
Earth’s topography superimposed. Staircasing is mini-
mal due to the size of the Earth, although this is difficult
to fully visualize in an image of so many cells.

such that the time-stepping loop is efficient. To address
both of these issues, the field components in the global
Courant-limit model are stored in 1-D arrays instead of
3-D matrices. This allows us to assign the same number
of cells to each processor and prevents any ghost cells
from being included. An effort is made to assign neigh-
boring grid cells to the same processor to limit the num-
ber of communications required between processors (this
is described further in Section IIB).

In order to implement a source or to record
field values at specific locations, a weighted average

approach is used on neighboring field components. This
approach was also used in the latitude-longitude and
geodesic grids. Special care must be taken across the air-
lithosphere boundary (i.e., if a field observation in the
atmosphere is desired, then only field values above the
Earth’s surface should be utilized in the weighted aver-
age calculation).

Finally, for the second part of the code (Part B), the
global Courant-limit model uses the same update equa-
tions in the time-stepping loop as found in regular Carte-
sian FDTD models [9]. The main difference is that the
update equations use cell numbers in order to locate the
neighboring cells since the data is stored in 1-D arrays
instead of 3-D matrices. The updating coefficients and
information about neighboring field components are all
determined and stored in memory during the first part of
the code (Part A) before time-stepping begins.

B. Parallelization of the grid

Message passing interface (MPI) is used to commu-
nicate between processors. In general, MPI communica-
tions are slow relative to the types of computations per-
formed by each processor during the time-stepping loop.
As a result, the goal when parallelizing the model is to
minimize the amount of information that must be passed
between processors using MPI. This is accomplished by
assigning neighboring grid cells to the same processor as
much as possible.

There are several methodologies that could be used
to equally divide the cells onto different processors. One
approach, which we followed, is to divide the grid first
using a specific number of lines of longitude (with the
number depending on how many processors will be used
for the simulation). Thereafter, the grid is divided along
the lines of latitude in a manner that assigns each proces-
sor the same volume of space. If a further division of the
grid is needed, the volume of space may also be divided
in the radial direction so that additional processors may
be employed.

III. VALIDATION

The global Courant-limit model is validated by com-
paring the predicted ELF propagation attenuation with
the data reported in [24]. As for the validation performed
for the latitude-longitude model [25], the altitude range
is set to be from -100 to +100 km, and the daytime
exponential conductivity profile from [26] is used glob-
ally. Initially, the ground is considered to be a homoge-
neous perfect electric conductor (PEC) in order to test
the model for spherical symmetry. The global Courant-
limit model is run at a resolution of 5×5×5 km (rather
than the 40×40×5 km resolution used in the latitude-
longitude model of [11]). This grid resolution is chosen
to match the 5-km resolution used in the radial direction
of the latitude-longitude model.
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The source is a radial, 5-km-long current pulse hav-
ing a Gaussian time-waveform with a 1/e full-width of
1.44 ms. This current pulse is located just above the
Earth’s surface on the equator and at the prime meridian.
To ensure a smooth onset of the excitation, the temporal
center of this pulse is 2.88 ms.

The radial electric field is sampled along the surface
of the Earth in order to study its propagation characteris-
tics. A few steps are required in order to obtain this data.
Due to the staggering of the electric field components in
the FDTD model, spatial averaging is first applied to the
x-, y-, and z-electric field components in order to obtain
the corresponding co-located values of these components
at the specific observation points of interest. Specifically,
up to eight electric fields closest to the observation point
of interest are employed and averaged using an inverse-
distance weighting (IDW) approach [27]. Once these co-
located Cartesian components are obtained, they are con-
verted to spherical coordinates in order to obtain the
radial electric field.

A snapshot of the radial electric fields along the sur-
face of the Earth is plotted in Fig. 2 after the pulse has
propagated around the world and is in the process of
converging at the antipode. The snapshot is obtained by
recording the field values at 720x360 locations on the
longitude-latitude grid. The black circles superimposed
on the figure illustrate the model’s spherical symmetry
very well.

The radial electric field is also recorded vs. time at
several observation points along four different propaga-

 

1E 

2E 

2W 

1W 

Fig. 2. Visualization of the radial electric field projected
onto the surface of the Earth-sphere after the pulse has
propagated around the entire Earth and is converging at
the antipode. The units for the electric field are μV/m.
The spherical symmetry in the region of the antipode is
apparent from the black dashed circles superimposed on
the image.

tion paths between the source and its antipode. Point A
along each propagation path corresponds to 1/4 of the
distance to the antipode. Point B is 3/8th, Point C is
1/2, and Point D is 3/4 of the distance to the antipode.
The orientations of these propagation paths are shown
in Fig. 2 by the white dashed lines. Note that in 3-D,
each of these propagation paths includes wave propaga-
tion along a variety of directions across the Cartesian-
based grid cells.

Figure 3 shows the time waveforms of the FDTD-
calculated radial electric fields at the A, B, C, and D
observation points of all four propagation paths. Since
the waveforms at each distance overlap, this plot also
demonstrates the spherical symmetry of the model.

Next, the topographic and bathymetric data from
NOAA-NGDC is imported into the model, and litho-
sphere conductivities are assigned depending on whether
a grid cell is located directly below an ocean or within a
continent. A daytime profile is used globally as for the
propagation attenuation study presented in [11].

Figure 4 compares the FDTD-calculated ELF propa-
gation attenuation as calculated from the global Courant-
limit model versus frequency over the A1EB1E and
A1W B1W propagation paths of Fig. 3 with the analytical
results presented in [24] (which were also compared with
measurements). The FDTD data are obtained by form-
ing the ratio of the discrete Fourier transforms (DFTs) of
the time-domain responses at the corresponding observa-

Fig. 3. The FDTD-calculated time-domain response of
the radial electric field along the four white dashed prop-
agation paths shown in Fig. 2. The radial electric fields at
observation points to the East of the source (along paths
1E and 2E) are labeled as solid lines, and the fields at
points to the West of the source (along paths 1W and 2W)
are labeled as dashed lines. All of the lines at each dis-
tance overlap, which indicates the global Courant-limit
model’s spherical symmetrical.
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Fig. 4. Comparison between the FDTD-calculated ELF
propagation attenuation versus frequency over paths
A1EB1E and A1W B1W with analytical results reported in
[24], where the subscripts refer to the different propaga-
tion paths shown in Fig. 2.

tion points. Note that the time-domain responses at each
observation point are truncated at each zero-crossing pre-
ceding the slow-tail response in order to exclude the sig-
nal arriving from the long propagation path relative to
the source.

As seen in Fig. 4, over the frequency range of 50–
500 Hz, the FDTD-calculated propagation attenuation
agrees with the results in [24] within ±0.2 dB/Mm.

IV. CONCLUSION

A new global FDTD model was introduced that is
advantageous for long-time-span applications as well as
applications that will extend over large radial distances (a
wide range of altitudes). This grid arrangement is termed
the global Courant-limit model because it runs at the
Courant limit, the maximum permissible time step that
is free from instabilities. The model was described and
validated by comparing the FDTD-calculated frequency
attenuation with corresponding analytical and measure-
ment data in the literature [24].

As part of our ongoing work, we are using this
model to investigate magnetotelluric and geoelectric
fields at the surface of the Earth during geomagnetic
storms. By coupling this model with other models, such
as the Block Adaptive Tree Solar wind Roe-type Upwind
Scheme (BATS-R-US) model [28–31], this model may
help serve as an essential forecasting tool for predict-
ing space weather hazards to near-Earth electrotechnolo-
gies [32].
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Abstract – Optical nanoantennas demonstrate the abil-
ity to confine and enhance electromagnetic fields. This
ability makes nanoantennas essential tools for high-
resolution microscopy. The nanoantenna resonance and
response can be tuned by changing their size, shape, and
material as well as adjusting the probing conditions, e.g.
excitation wavelength. In this paper we simulated the
propagation and interaction of visible light with com-
puter generated models of butterfly nanoantenna arrays
using the finite-difference time-domain (FDTD) method.
The simulations were used to understand and predict
the experimental results obtained with scanning near-
field microscopy (SNOM) on commercially available
samples. Simulation parameters are chosen carefully to
reflect the measurement conditions.

Index Terms – finite-difference time-domain method,
Fischer nanostructures, near-field, resolution, SNOM.

I. INTRODUCTION

The interaction of light with metallic nanostructures
is of great research interest. Studies have shown that
metal-dielectric nanostructures are capable of manipulat-
ing light in subwavelength-scale. For example, nanoan-
tennas have been successfully utilized as near-field
apertures that work as localized evanescent sources,
effectively suppressing the background illumination [1].
Arrays of butterfly nanoantennas such as Fischer patterns
[2] have been used as platforms for surface-enhanced
Raman spectroscopy (SERS) [3].

In this study we investigate metallic Fischer patterns
using a combination of simulations and measurements.
The simulations are carried out using finite-difference
time-domain (FDTD) method while scanning near-field
optical microscopy (SNOM) is used to measure the near-
field intensity distributions with nm-resolution beyond
the classical Abbe diffraction limit for microscopy.

In the paper we (i) study the fundamental light inter-
action, in particular the field enhancement and localiza-
tion, and (ii) demonstrate the feasibility of SNOM to
resolve field intensity distributions beyond the classical
resolution limit for optical microscopy.

Simulations are conducted creating a model for one
unit of the Fischer pattern. The model consists of triangu-
lar nanostructures in a hexagonal arrangement. Different
simulation and structural parameters such as the electro-
magnetic field polarization, the distance of the field mon-
itor from the surface of the nanoantennas or the structural
size are considered. These simulation results show the
light localization, light enhancement or the surface plas-
mon resonance behavior of such a nanoantenna array as
a response to changes in structural, material properties,
and illumination conditions. The simulations are also
used to predict and analyze the measurements obtained
by SNOM.

The resolution of a microscope is one of the key
performance parameters that qualify the system perfor-
mance. The Abbe diffraction limit, in particular, sets
a physical limit to the minimum resolvable distance
that a microscope can achieve. It is defined by the
numerical aperture (NA) and the wavelength of the
excitation source (λ exc) used in the following manner:
dAbbe∼λ exc/2NA [4]. For visible light of 500 nm and
assuming a NA of common high magnification objec-
tive lenses around 0.9, the diffraction limited resolution
is ∼300 nm.

Therefore, in order to investigate smaller feature
sizes, switching to electron microscopy for probing the
sample, or techniques such as SNOM, are needed.

We utilize the transmission SNOM technique to
investigate periodic nanoantenna calibration patterns far
below the Abbe diffraction limit. The commercially
available Fischer pattern samples consist of arrays of
butterfly nanoantennas in a hexagonal arrangement.
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Each nanoantenna consists of a pair of metallic trian-
gles/hexagons. In our study the diameter of the center
aperture was changed from ∼200 nm to 1.1 um. It allows
us to study light-matter interaction effects in the Mie
regime, where the excitation wavelength λ exc is compa-
rable to the pattern size d.

The paper is outlined as follows. The modeling and
simulation of the Fischer pattern using the FDTD method
is discussed in Section II. Section III describes the exper-
imental setup, followed by the presentation of the mea-
surement results in Section IV. In Section V we discuss
the experimental observation in the light of simulation
results. Our main findings are concluded in Section VI.

II. FDTD MODELING OF FISCHER
NANOSTRUCTURES

A computer model is generated based on one unit
cell of the patterned nanostructures. The model features
three butterfly nanoantennas in a hexagonal arrangement.
Each nanoantenna consists of a pair of equilateral trian-
gular elements.

Two main model variants with different structural
parameters are considered. For the first model the mate-
rial of the nanoantennas is gold (Au) and the diameter of
the central aperture is 420 nm. The second variant con-
sists of aluminum (Al) nanoantennas with central aper-
ture diameters of 500 nm and 1.1 um, respectively.

The light propagation through each of the mod-
els is simulated using the FDTD method. FDTD is a
numerical method based on the Yee algorithm that solves
Maxwell’s equations [5–6]. In this paper we use a com-
mercial FDTD solver from Lumerical to compute the
near-field [7].

An electric dipole is created to represent the illu-
mination source to mimic the SNOM measurements [2].
The dipole is placed immediately below the structure
at the center of the xy-plane. The dispersive complex
refractive indices for both Au and Al used in simula-
tions are obtained from published reference data [7]. The
FDTD mesh is a nonuniform one that uses approximately
29.6 grid points/wavelength within the structure and 16.6
grid points/wavelength in the PML (absorbing boundary
condition) region.

Figure 1 (a) shows the first computer model. A side
of any of the nano triangles is 200 nm and the gap
between the tips of two adjacent triangles is ∼25 nm.
A constant thickness of the nanotriangles of 15 nm was
assumed for all simulations.

The distribution of the electric field intensity in the
xy-plane, parallel to the surface of the structure, is com-
puted for x and y orientations of the dipole, respec-
tively. The field distributions are recorded at a monitor
set at a height of 5 nm from the structure surface. In
order to model an unpolarised illumination condition, we

(a) (b)

Fig. 1. FDTD simulation of Au model: (a) First computer
model of one unit cell of the Fischer pattern and (b) xy-
plane distribution of the electric field intensity recorded
5 nm above the surface of the structure in (a).

averaged the electric field intensities obtained with the
two orthogonal orientations of the dipole. The normal-
ized and averaged electric field intensity distribution for
an excitation wavelength of 532 nm is shown in Fig. 1
(b). The field distribution reveals a partial light penetra-
tion into the metal covered areas. As a result, the metallic
elements cast partial shadows in the transmitted light.

The dependance of the near-field on the orientation
of the dipole is shown in Fig. 2. The electric field dis-
tribution in Fig. 1 (b) is an average over all six orienta-
tions of the dipole shown in Fig. 2. The average intensity
is representative of the unpolarised incident illumination
condition used in the experiments.

As seen in Fig. 2, the near-field intensity patterns
depend on the orientation of the dipole. In particular the
near-field pattern generated when the dipole orientation
is parallel and perpendicular to the gap between the tips
of adjacent triangular nanoelements. For example, orien-
tations parallel to the gaps (−30deg (Fig. 2 (a)), 30deg
(Fig. 2 (c)), and 90deg (Fig. 2 (e))) appear to be differ-
ent from orientations perpendicular to the gaps (60deg
(Fig. 2 (b)), 120deg (Fig. 2 (d)), and 180deg (Fig. 2 (f))).

Averaging over any two pairs of orthogonal dipole
orientations yields identical results. However, if we con-
sider a structural anisotropy of the modeled structures,
e.g. unequal gap distances between two adjacent ele-
ments, the effect of anisotropy in the simulation results
can be ameliorated by averaging over all six polariza-
tion orientations. Averaging also makes the pattern more
symmetric with regards to the central aperture. Never-
theless, penetration of light in metal covered areas, and
light confinement in the central aperture region with sim-
ilar intensities, is observed for all the considered dipole
configurations irrespective of their alignment relative to
the butterfly antennas.

The dependence of the field distribution on the mon-
itor distance is studied by increasing the monitor height
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Field dependence on dipole orientation. Electric
field intensity distribution in the xy-plane at a monitor
height of 5 nm from the surface of the structure. Dipoles
are oriented along directions parallel and perpendicular
to each pair of gaps between adjacent nanotriangles. The
dipole orientations are (a) −30deg, (b) 60deg, (c) 30deg,
(d) 120deg, (e) 90deg, and (f) 180deg from the +y-axis,
respectively.

in four steps from 10 nm to 200 nm from the surface
of the structure. At each step (height along the z-axis),
the corresponding electric field pattern is recorded for
the three pairs of orthogonal in-plane orientations of the
dipole excitation source, and averaged to mimic an unpo-
larised illumination condition. The aim of this study is to
better predict the SNOM measurement conditions where
the field distribution is recorded by an objective lens in
the um-range away from the sample surface.

The normalized average intensity profiles for the
four monitor heights of 10 nm, 50 nm, 100 nm, and 200
nm are shown in Fig. 3.

(a) (b)

(c) (d)

Fig. 3. Field dependence on monitor height. Evolution
of the field pattern with increasing height of the monitor
from the surface of the structure. The averaged and nor-
malized distribution of the electric field intensity in the
xy-plane was calculated for a monitor z-distance of (a)
10 nm, (b) 50 nm, (c) 100 nm, and (d) 200 nm.

At a distance of less than 10 nm, light confinement
is most pronounced and the shape of the center hexago-
nal aperture is more discernible. As the distance of the
monitor is increased, the finer details of intensity varia-
tions gradually disappear from the near-field pattern. It
indicates that the light confinement seen in the near-field
is due to evanescent waves that dissipate with increas-
ing the distance of the monitor from the surface of the
nanostructure.

A third main parameter influencing the near-field
behavior of the nanoantenna is the pattern dimension
compared to the excitation wavelength. The simulated
field distribution of the first model (Fig. 1 (a)), obtained
with an excitation wavelength of 405 nm, is shown in
Fig. 4. In order to directly compare the result with the
earlier shown intensity pattern after 532 nm laser exci-
tation in Fig. 1 (b), the 405 nm intensity pattern (Fig. 4
(b)) is normalized using the maximum intensity found
in Fig. 1 (b). Compared to Fig. 1 (b), Fig. 4 (b) shows
that, at 405 nm excitation, the central higher intensity
lobe diminishes both in size and intensity.

Figure 5 (a) shows the second computer model of an
Al Fischer nanostructure with a larger central aperture of
1.1 um in diameter. A side of any of the triangular ele-
ments is 300 nm, the gap between the tips of two adjacent
triangles is 250 nm, and the metal thickness of 15 nm is
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(a) (b)

Fig. 4. Field distribution with 405 nm excitation. The
averaged and normalized field intensity distribution sim-
ulated for the geometry in Fig. 1 (a) for an excitation
wavelength of 405 nm, at a monitor height of 5 nm. Field
intensity pattern normalized to (a) the maximum inten-
sity and (b) the maximum intensity found at 532 nm exci-
tation from Fig. 1 (b).

the same as used for the first model. Figure 5 (b) shows
the normalized electric field intensity averaged over three
pairs of orthogonal orientations of the dipole at an exci-
tation wavelength of 532 nm and recorded at a monitor
height of 5 nm.

Figure 5 (b) shows that light penetrates into metal
covered antenna elements partially as in the case of the
Au model (Fig. 1 (b)). However, the intensity and lateral
depth of penetration is less. Most of the transmitted light
intensity in Fig. 5 (b) originates from the central aperture,
while only a small fraction is passed through the gaps in
Fig. 5 (a).

Figure 6 (a) shows a slight variation of the second
computer model where the central aperture diameter is
changed to 500 nm. Figure 6 (b) depicts the correspond-
ing distribution of intensity pattern. The intensity pattern

(a) (b)

Fig. 5. Second computed model of a 1.1 um Al pattern:
(a) Computer generated model of a hexagonal arrange-
ment of Al antenna elements with a central aperture
diameter of 1.1 um and (b) xy-plane distribution of the
electric field intensity at a monitor height of 5 nm for the
structure in (a).

(a) (b)

Fig. 6. Second model of Al with reduced pattern diameter
of 500 nm: (a) Geometry of nanoantenna elements with
a central aperture diameter of 500 nm and (b) xy-plane
distribution of the averaged and normalized electric field
intensity at a monitor height of 5 nm from the structure
surface.

shows strong enhancements along the edges and at the
tips of the metallic antenna elements.

III. SNOM SETUP

A commercially available Raman/SNOM system
based on a confocal microscope (WITec alpha300) [8]
was used to study microscopy resolution and electric
field enhancement effects. In the Raman and Photo-
luminescence mode the maximum spatial resolution is
diffraction limited by the chosen objective lens and
restricted to ∼300-400 nm (532 nm excitation wave-
length, 100x objective lens with NA=0.9) [4, 10].
However, confining the excitation spot by introducing
an aperture can help to overcome the diffraction limit.
This principle is used in the SNOM mode, where a hol-
low truncated pyramid is scanned in contact mode across
the sample surface. The height control is achieved by
an atomic force microscopy-like feedback loop, allowing
to simultaneously record the sample topography (height
information) and SNOM intensity [9–10].

SNOM was performed in the transmission geometry
(Fig. 7). An excitation laser is focused by a 20x objective
lens (NA=0.4) on the backside of an aluminum coated
silicon cantilever which acts as a near-field SNOM exci-
tation probe [9–10]. The apex opening of the cantilever
directly defines the spatial resolution. For our study, two
different tip sizes of 90 nm and 150 nm were used to
investigate the maximum achievable spatial resolution
and the influence on the signal-to-noise ratio (SNR).

The transmitted light from the sample is collected
by a long-range 100x (NA=0.75) objective lens and
detected using a photomultiplier tube (PMT). By lat-
eral scanning of the sample under the SNOM tip, spa-
tially resolved maps of the transmitted SNOM intensity
and topography across the sample could be generated.
To analyze the multidimensional dataset as well as to



BANERJEE, MARQUEZ PERACA, FRANKE: NEAR-FIELDS OF BUTTERFLY NANOANTENNAS: A COMPARATIVE SIMULATION 134

Fig. 7. Schematics of the transmission SNOM setup used
in our experiments.

control the microscope system, WITec software Control
6 and Project 5 were used.

IV. MEASUREMENT RESULTS

Achieving a high image quality and lateral resolu-
tion in a SNOM system most importantly relies on the
cantilever tip size and quality as well as the chosen exci-
tation conditions. The influence of those parameters were
investigated on commercially available metallic projec-
tion patterns provided by Kentax GmbH [11]. To fab-
ricate these samples, monolayers of hexagonal closely
packed latex spheres are used as a mask for physical
vapor deposition of a ∼10 nm Al or Au layer. After
removal of the latex spheres, the resulting structure con-
sists of a periodic hexagonal metal array deposited on a
0.15 mm-thick glass substrate.

Lower resolution scans covering an area of 5 um
× 5 um (scan resolution 50 nm) on Au Fischer pattern
featuring a central aperture diameter of about 400 nm
are depicted in Fig. 8. The top row shows the sample
topography (height map) while the SNOM intensity pro-
file is visualized in the bottom row. The images are com-
plementary. Metal coated areas are opaque for the exci-
tation laser and light is backscattered towards the inci-
dent direction. Those regions appear as black dots, while
bright areas originate mainly from areas not covered by
metal.

The SNOM resolution is basically defined by the
geometric confinement (tip aperture). Any scattering and
diffraction loss at the cantilever tip is expected to have

(a) (b) (c)

Fig. 8. Cantilever tip size and excitation wavelength
dependency. Topography (top row) and SNOM intensity
(bottom row) for a hexagonal Au pattern having a central
aperture diameter of d∼400 nm. Different excitation and
scan conditions were investigated: (a) 90 nm cantilever
opening in conjunction with an excitation wavelength of
405 nm, (b) 532 nm, and (c) a 150 nm tip together with
λexc = 532 nm.

a negligible effect. This is because the tip is scanned
in contact mode across the sample surface, exciting the
near-field. Changing the excitation laser wavelength and
keeping the tip opening aperture constant should have
a negligible influence on the resolution since both laser
wavelength are almost similar (Δλexc<d), and pass the
same tip aperture. These expectations are confirmed by
the scans shown in Fig. 8. Altering the excitation wave-
length from 405 nm (Fig. 8 (a)) to 532 nm (Fig. 8
(b)) doesn’t change the SNOM intensity pattern signif-
icantly. On the other hand, the chosen cantilever opening
is seen to mainly determine the lateral SNOM resolution.
Smaller and more crisp features are obtained using the
smaller 90 nm tip (Fig. 8 (b)) compared to the more than
twice as large 150 nm tip (Fig. 8 (c)).

Besides the resolution, the achievable SNR is an
important SNOM parameter. A higher SNR enables
faster, more stable, scans (less sample drift), and stronger
SNOM intensity signals. Due to a higher output power of
the 532 nm laser, the SNR after 532 nm excitation (Fig. 8
(b)) is increased compared to 405 nm (Fig. 8 (a)). For
the 405 nm laser (Fig. 8 (a)), an almost constant back-
ground intensity over the whole scan area is detected, at
532 nm excitation the dominant SNOM signal originates
from the center part of the hexagonal shaped Fischer pat-
tern. A closer look at the edges and gap regions between
the butterfly pattern reveal fine details which could
not be resolved at 405 nm excitation. This observation
reveals the importance and influence of the SNR on the
resolution.
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(a) (b)

Fig. 9. High resolution SNOM measurements. Topogra-
phy (top) and SNOM intensity (bottom) for the same Au
sample investigated in Fig. 8 using (a) 90 nm and (b) 150
nm tip opening.

Figure 9 shows the images of a 2 um × 2 um scan
with two different tip sizes. A clear superior topography
height contrast (top row of Fig. 9), and a significantly
improved SNOM resolution was achieved using the 90
nm cantilever. Edges appear fuzzy in the SNOM inten-
sity image using the 150 nm tip (Fig. 9 (b)). In com-
parison, fine lines connecting adjacent hexagonal trans-
missive parts as well as light from metal covered areas
are resolved using the 90 nm cantilever (Fig. 9 (a)). It
should be highlighted that there is a small lateral shift
expected between the topography and SNOM intensity
images. Due to the finite cantilever thickness at the apex
(rim), the topography signal will respond first to any
height change at the metal pattern edge, followed by
the intensity signal when light is transmitted through the
cantilever tip opening [9].

Summarizing our instrument related SNOM study,
the optimum measurement conditions to achieve high
resolution and a high SNR for our system are found for
a cantilever with the smallest available opening of 90
nm and using a high power laser emitting at λexc = 532
nm.

The influence of pattern size on light-matter inter-
action is highlighted in size series in Fig. 10. Aluminum
Fischer pattern with an intended central aperture diame-
ter ranging from 230 nm (d<λexc) up to 1.1 um (d>λexc)
were investigated. First it should be noted that the small-
est pattern with an intended central aperture diameter of

(a) (b) (c)

Fig. 10. Aluminium Fischer pattern size series. Fischer
patterns with a central aperture diameter ranging from
(a) intended 230 nm to (c) 1.1 um were investigated using
the best known SNOM conditions: 90 nm tip and 532 nm
laser excitation.

230 nm shows the potential of SNOM in terms of resolu-
tion. Features below the theoretical diffraction limit for
optical microscopy are observed. The topography images
in the top row of Fig. 10 as well as SNOM intensity (bot-
tom row) reveal features on a lateral length scale below
100 nm. However, due to fabrication inhomogeneities
and absent hexagonal features, the 230 nm pattern can-
not be used to study the change of the near-field intensity
as the Fischer pattern size increases.

By enhancing the pattern size from 300 nm to 1.1
um, a change in the morphology is observed. The 1.1
um structure (Fig. 10 (c)) exhibits a well separated tri-
angular pattern with noticeable gaps in between. For
300 nm (Fig. 10 (b)), the gaps are nearly closed and a
hexagonal symmetry of the metal parts is present. Clas-
sically one would expect almost no light transmitting
through the small or almost closed gaps between the pat-
tern. However, in the SNOM intensity image (Fig. 10
(b), bottom), transmitted light is also detected in areas
covered by metal. We attribute this to a field enhance-
ment effect which is expected to be more pronounced
when the feature size is close to the laser wavelength.
This hypothesis is confirmed by the measurement at
the d∼400 nm gold pattern shown in Fig. 9 (a). The
light enhancement and propagation in the metal cov-
ered area is even more pronounced. Note the extended
bright lines/features exceeding the expected gap opening
between adjacent hexagonal metal patterns and connect-
ing different bright hexagonal openings (examples high-
lighted by arrow in Fig. 9 (a)).

A further increase of the pattern size to d>λexc
(Fig. 10 (c)) marks the transition to the classical regime
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in which the transmitted light originates mainly from the
center aperture of the Fischer pattern and the larger gap
openings between adjacent metal structures.

V. DISCUSSION

As highlighted in Section II, partial light penetration
and confinement is observed for the metallic nanoan-
tenna array at a monitor distance less than 10 nm from
the surface of the nanostructures (Fig. 1 (b), 3 (a)).
Light is predominantly transmitted through the trans-
parent, central aperture of the Fischer pattern for all
investigated diameter sizes, ranging from ∼300 nm to
1.1 um (Figs. 1 (b), 5 (b), and 6 (b)). In addition,
antenna elements cast a partial shadow blocking the light
from passing through these areas. Those findings are
validated by SNOM measurement results depicted in
Figs. 9 and 10.

In order to allow for a comparison between our sim-
ulations and the measurements, the modeled conditions
were adjusted to the experimental ones. A main differ-
ence between the simulated and measured intensity maps
is the occurrence of more details or finer intensity grada-
tions in the simulated patterns. This is most pronounced
for the light transmitted through the central aperture.
While the measurement results, e.g. Fig. 9 (a), show only
a weak intensity reduction from the center of the inner
aperture to the outer regions close to the metal pattern,
the computed center field distribution in Fig. 1 (b) con-
sists of concentric rings with gradually reduced intensity.
Starting at a maximum intensity of 100% in the middle
of the center aperture, the value drops to ∼40% close to
the edges of the metal covered regions adjacent to the
center aperture.

This observation could be explained considering
the change of the near-field intensity distribution with
increasing monitor height, summarized in Fig. 3. As the
monitor height increases to 50 nm and 100 nm, the finer
intensity variations in the center aperture area slowly
disappear and the absolute intensity value reduces sig-
nificantly. For the measurement configuration used, the
objective lens to collect the transmitted light is actu-
ally at a larger distance compared to the maximum
simulated monitor distance of 200 nm (Fig. 3 (d)).
Therefore only a small intensity variation in the center
aperture part as well as a reduced overall intensity is
expected.

Furthermore the chosen excitation wavelength and
power will affect the intensity gradation observed in the
center aperture part. Lowering the excitation wavelength
from 532 nm (Fig. 1 (b)) to 405 nm (Fig. 4 (b)) results
in a smaller lateral extension of the center intensity dis-
tribution, which reduces the ability to resolve finer inten-
sity features. Evidence for an experimental confirmation
of this simulation result are given in Figs. 8 (a) and (b).

Only a very small intensity enhancement in the center of
the clear aperture region of the Fischer pattern is found
for 405 nm excitation. The transmitted SNOM intensity
is almost homogeneously distributed across the whole
scanned area, in contrast to the 532 nm laser scan (Fig. 8
(b)). The center part of the aperture is clearly of highest
intensity and the intensity is reduced towards the edges
of the center aperture. This observation is in good agree-
ment with the simulation shown in Fig. 1 (b) for the pat-
tern center region.

However, in experimental investigations the laser
power and therefore the achieved signal-to-noise ratio
needs to be considered. Since the output power for the
532 nm laser is larger compared to that of the 405
nm laser, the transmitted SNOM intensity and SNR is
enhanced in the first case. This will help to resolve
finer intensity details in the SNOM image as seen in
Figs. 8 (a) and (b). Consequently, our best measurement
conditions are found at high power 532 nm excitation
using a small cantilever tip size, which was 90 nm in
our case.

Finally we discuss the role of the pattern size on
the simulated and measured field distribution. Of partic-
ular interest are light-matter interaction effects like field
enhancement, and surface plasmonic resonances.

With Al nanostructure, two different pattern sizes
with 1.1 um and 500 nm center aperture diameter, excited
at 532 nm were considered. When the diameter is larger
than the excitation wavelength (d=1.1 um, Fig. 5), light
is mainly transmitted through the center part and less
from the gap regions between adjacent triangles of the
butterfly antennas. However, light originating from areas
covered by metal is predicted. Those regions are local-
ized at the lower edges of the triangles closest to the cen-
ter aperture.

Reducing the diameter size to a regime comparable
to the excitation wavelength (d≈500 nm≈λexc) increases
the probability of observing phenomena like light pen-
etration in metal covered areas and plasmonic effects.
For the 500 nm Al Fischer pattern in Fig. 6, light com-
ing from the lower triangular sides is strongly inten-
sified, while the transmission through the center aper-
ture is more localized featuring a clear intensity gradi-
ent towards the edges of the center aperture. In addi-
tion, localized spots of highest intensity, which is com-
parable to the one observed in the aperture center, are
forming at the tips of the triangles. This behavior could
be related to a localized surface plasmon resonance
(LSPR).

The Fisher pattern size dependent SNOM measure-
ments in Fig. 10 show indications which support the sim-
ulation results. In the case d>λexc (Fig. 10 (c)), dominant
emission is observed from the aperture center and the gap
regions of the triangles. In contrast, for a smaller center



137 ACES JOURNAL, Vol. 39, No. 02, February 2024

aperture diameter (d≈λexc in Fig. 10 (b)), the transmitted
light seems to be more centered to the aperture origin and
weaker in the gap regions between adjacent triangles.
This observation is supported and even more pronounced
for the d≈400 nm≈λexc gold pattern depicted in Fig. 9
(a). Light from the gap regions is suppressed and mainly
transmitted in the center part of the aperture. Further-
more, indications of a higher intensity at the lower tri-
angle edges close to the central aperture can be assumed,
which is predicted by the simulation in Fig. 1 (a). How-
ever, an experimental verification of fine details of the
field intensity distribution as projected by the simulation
is challenging. Besides the cantilever tip size, its qual-
ity, and the excitation wavelength, mainly the distance
of the collecting objective lens from the sample reduces
the lateral resolution substantially. This phenomena was
discussed earlier and is in agreement with the simulation
data in Fig. 3.

VI. CONCLUSION

In summary, we investigated the near-field inten-
sity distribution generated through light interaction with
butterfly nanoantennas, both using FDTD simulations
with computer generated models, and SNOM measure-
ments at commercially available Fischer patterns. Essen-
tial agreement between the simulation and the key exper-
imental observations are found.

Of special interest was the light enhancement by
the nanoantennas. Light confinement, field enhancement,
and light intensity from metal covered areas are observed
in the d≤λ exc regime. For large patterns (d>λ exc), the
intensity distribution is seen to be dominated by fun-
damental transmission and reflection from the metal
pattern.

The best experimental conditions to achieve high-
est lateral resolution and investigate light-matter inter-
action signatures can be achieved by using the small-
est SNOM cantilever size available, high power excita-
tion (high signal-to-noise ratio), and beneficially a small
detector distance relative to the sample. A maximum
lateral resolution smaller than 100 nm and well below
the diffraction limit for optical microscopy was achieved
using a 90 nm SNOM cantilever opening and 532 nm
excitation.
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Abstract – This paper presents a wide-angle scan-
ning and high isolation base station antenna array.
The antenna element employs a compact dual-polarized
umbrella-shaped printed dipole with a small size of
0.23λ 0 × 0.23λ 0 × 0.26λ 0, which provides the pos-
sibility for a small element spacing array. The antenna
element possesses wide 3 dB beamwidth of 84.6◦ ben-
efiting from the pulling down of the dipole arms. Then,
a dual-layer metal superstrate structure and metal wall
is adopted to mitigate different kinds of mutual cou-
pling between the dual-polarized antenna elements in
the array. Owing to the wide beamwidth of the ele-
ment and the low mutual coupling between the elements,
the final 4×6 antenna array can achieve a good beam-
scanning capability with maximum scanning angle up
to ±55◦ and a small gain variation of less than 3 dB
over the operation band 3.3-3.8 GHz. The fabricated
array shows the measured isolation between all ports
of the antennas is increased to more than 20 dB. Scan-
ning characteristics also agree well with the simulated
results. With the merits of wideband, low-cost (simple
design and easy fabrication), wide-angle beam-scanning
capacity, and good radiation performance, the proposed
design has potential for application in 5G base station
systems.

Index Terms – 5G base station antenna, dual-polarized
antenna, high isolation, phased array antenna, wide-
angle scanning.

I. INTRODUCTION

Fifth-generation (5G) communication technology
has brought high data rate, large channel capacity, and
low latency transmission experience to users. One of
the 5G key technologies is beam-scanning arrays, which
can realize multi-target communication and tracking. For
5G base station applications, dual-polarized capability
should be required, which can extend system capac-
ity without increasing size, and implement polariza-
tion diversity technology to achieve multipath fading
resistance. Thus, designing a dual-polarized wide-angle

scanning base station antenna array is an urgent task for
researchers. To date, many efforts have been devoted
to the single polarized wide beam-scanning array [1–
5]. Few papers focus on both the dual-polarized and
wide beam-scanning at sub-6 GHz simultaneously [6–
8]. Actually, high isolation between the elements in the
array is essential for wide-angle beam-scanning, oth-
erwise serious mutual coupling would deteriorate the
impedance matching and the radiation patterns of the
array antennas. Single and dual-polarized array decou-
pling has been done recently [9–18]. Mutual coupling
between the elements in the array is mainly blamed for
the space wave coupling and surface wave coupling.
Different decoupling methods have been used, such as
DGS [9], EBG [10], and neutral line [11], which are
devoted to reducing surface wave coupling. The DGS
structure might introduce back radiation, and have nar-
row decoupling bandwidth. EBG requires more area to
get better decoupling performance, which is not suitable
to be used in closely packed antenna. The neutral line
network needs a complicated design. Moreover, these
methods are difficult to be applied in the dual-polarized
antenna array. For space wave decoupling, frequency
selective surface (FSS) [12], array-antenna decoupling
surface (ADS) [13], meta-surface superstrate [14], baf-
fle [15], dielectric stub [16] and hybrid decoupling array
[17–18] have been employed to get better isolation.

In this paper, a dual-layer superstrate structure with
periodic metal patches, referred to as a metal superstrate,
has been introduced on top of the antenna to achieve
distinct decoupling performance. Meanwhile, a separa-
tion metal wall is inserted between the columns of the
array to reduce the cross polarization between the ele-
ments. Finally, a 4×6 antenna array is designed and fab-
ricated. The measured results show that the mutual cou-
pling between elements in the array is reduced to below
-20 dB in the wideband range while maintaining stable
radiation patterns. The array can achieve a good beam-
scanning capability with maximum scanning angle up to
±55◦and a small gain variation of less than 3 dB over the
band 3.3-3.8 GHz.
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II. DESIGN AND WORK MECHANISM
A. Antenna element configuration

Figure 1 (a) depicts the configuration of the pro-
posed compact dual-polarized umbrella-shaped dipole.
The antenna is composed of two orthogonal substrates,
a microstrip balun, and two pairs of umbrella-shaped
dipoles printed on both sides of the substrate. The ground
plane is utilized to achieve directional radiation. The two
substrates with thickness of 0.5 mm are made of FR4
with a relative dielectric constant of 4.4. Figure 1 (c)
shows the detailed structure of the feeding balun. Com-
pared with the conventional T-shaped dipole as shown
in Fig. 1 (b), the proposed dipole has a more compact
size, as the length of the substrate denoted Ln1 has been
reduced from 33 mm to L1=28 mm, which would con-
tribute to the high isolation between the elements when
the elements are formed into a compact array. Moreover,
the beamwidth of the dipole has been widened from 78◦
to 84.6◦ as shown in Fig. 2 (c). Figure 2 (a) shows the
simulated reflection coefficient and the port isolation. We
can conclude the proposed element has a bandwidth of
14.1% (3.3-3.8 GHz) and high port isolation of more
than 40 dB. The radiation patterns are stable in the whole
band with the cross polarization more than 20 dB, as
shown in Fig. 2 (b).

B. Antenna array decoupling scheme

With the small element distance in the array,
strong coupling would deteriorate the impedance match-
ing characteristics and the radiation patterns of the

(a) (b)

(c)

Fig. 1. Configuration of the antenna unit: (a) proposed
antenna unit, (b) conventional dipole, and (c) side view
of the proposed antenna (L1=28 mm, R=14 mm, R1=7
mm, H=21 mm, Ln1=33 mm, R2=2.5 mm, L2=15.4 mm,
W1=1 mm, W2=3 mm, L3=18 mm).

(a)

(b) (c)

Fig. 2. Simulation results of the dipole: (a) S-parameters,
(b) radiation patterns at different frequencies, and (c)
comparison of the beamwidth between the conventional
and the proposed dipole.

array antennas. A feasible hybrid decoupling method is
employed in this paper. A separation metal wall is ver-
tically placed between antenna elements, and a dual-
layer metal superstrate structure is placed directly above
the antenna array. These methods work together to real-
ize a wideband decoupling within 3.3-3.8 GHz. The
decoupling steps and mechanism will be illustrated in
detail.

(1) Separation metal wall and lower metal superstrate for
decoupling

As shown in Fig. 3 (a), it is a 1×4 linear array
with the element distance of 33 mm (0.4λ 0, where λ 0
is the free space wavelength at 3.55 GHz). The port
number has been marked in Fig. 3 (a). The separation
metal wall is placed between two adjacent antennas,
which block the propagation of spatially coupled waves
and contribute to the suppression of cross-polarized
coupling. The decoupling mechanism of the separation
metal wall is based on the partition principle. More-
over, a lower metal superstrate is located directly on the
top array as shown in Fig. 3 (b), which is used to fur-
ther reduce the cross-polarized coupling between the ele-
ments. At the same time, the lower metal superstrate
can also broaden the bandwidth of the antenna array.
Figure 4 shows the simulated S-parameters of the 1×4
antenna array with/without the lower metal superstrate
and metal wall. It is obvious that the reflection coeffi-
cients have been improved with the decoupling struc-
ture since they were deteriorating owing to the coupling,
especially the higher frequency band. The co-polarized
coupling achieves lower than -15 dB, and cross-polarized
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(a)

(b)

Fig. 3. The 1×4 dual-polarized antenna array: (a) with
the separation metal wall and (b) with the separation
metal wall and lower metal superstrate (w s=2 mm,
l s=11 mm, h w=12 mm, W1 L=6.5 mm, W2 L=1.5 mm,
L1 L=23 mm, L2 L=5 mm, H1=23 mm).

(a) (b)

(c)

Fig. 4. S-parameters of the 1×4 antenna array
with/without the separation metal wall and the lower
metal superstrate: (a) reflection coefficients, (b) co-
polarized coupling, and (c) cross-polarized coupling.

couplings are improved to -20 dB, almost the entire fre-
quency band with the two decoupling structures.

(2) Upper metal superstrate for co-polarized decoupling
The addition of lower metal superstrate and sepa-

ration metal wall can reduce the cross-polarized cou-
pling to -20 dB and the co-polarized coupling to -15
dB, which cannot meet the requirements of high isola-
tion. Therefore, the upper superstrate is employed above
the array to further improve the co-polarized isolation.
The distance between the ground plane and upper metal
superstrate is H2=36.5 mm. Figure 5 shows the struc-
ture and the operating principle of the upper metal super-
strate. The electromagnetic wave emitted by Antenna 1
can be reflected by the upper metal superstrate and an
additional superstrate and an additional wave path is pro-
duced. When the reflected and coupling waves have the
same amplitude but opposite phases, they cancel each
other, reducing the mutual couplings. Figure 6 shows
the simulated S-parameters of the 1×4 antenna array
with/without the upper metal superstrate. It can be seen
that the co-polarized coupling has been suppressed to -
20 dB. Moreover, the reflection coefficients and cross-
polarized coupling get better results with the upper metal
superstrate. It can be observed from Fig. 7 that when an
element is excited, the electric field coupled to its neigh-
boring antenna is significantly weakened after loading
the decoupling structure.

(3) Decoupling parametric study
In order to illustrate how the lower and upper metal

superstrates affect the mutual coupling depression, a
simulated parametric study is performed. Figure 8 (a)
shows that when the parameter of the patch length

Fig. 5. The 1×4 antenna array with upper metal superst-
rate (L1 U=21 mm, L2 U=10 mm, a U=6 mm, b U=10
mm).
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(a) (b)

(c)

Fig. 6. S-parameters of the 1×4 antenna array
with/without the upper metal superstrate: (a) reflection
coefficients, (b) co-polarized coupling, and (c) cross-
polarized coupling.

Fig. 7. Electric field distribution of the two-element array
(a) without and (b) with loading decoupling structure at
3.5 GHz.

(a) (b)

Fig. 8. S-parameters of the 1×4 antenna array with and
without the upper metal superstrate: (a) patch size analy-
sis on the lower metal superstrate and (b) patch size anal-
ysis on the upper metal superstrate.

L1 L on the lower metal superstrate increases, the
cross-polarization decoupling frequency point shifts to
higher frequency. Figure 8 (b) shows how the parame-
ter of the patch length L1 U on the upper metal super-
strate influences the co-polarized decoupling. When
L1 U increases, the co-polarized decoupling frequency
point shifts to the lower frequencies. That is to say,
the decoupling frequency can be controlled simply

by changing the size of periodic patch cells on the
superstrate.

III. ARRAY DESIGN AND RESULTS

To obtain the wide-angle scanning performance
for the large-scale array, generally, the following three
aspects should be considered: (a) the coupling among
array elements which would lead to the scanning blind-
ness, (b) the wide beamwidth of the array element to
ensure the lower gain reduction at the large scanning
angle, and (c) the small spacing to minimize the grat-
ing lobes. In this paper, the coupling has been reduced to
-20 dB and the element is compact to guarantee the small
spacing.

To verify the above analysis, a 4×6 array is
designed. The array configuration can be seen in Fig. 9

(a)

(b) (c)

(d)

(e) (f)

Fig. 9. Proposed 4×6 antenna array: (a) three-
dimensional view of the model, (b) top view, (c) side
view, (d) feeding network of the 4×6 array, (e) feeding
network for broadside radiation, and (f) feeding network
for 55◦ radiation (La = 95.96 mm, Lb = 15.38 mm, Lc =
47.3mm, Ld = 15.48 mm, Le = 14.43 mm, Lf = 16.6 mm,
Lb1 = Lc1 = La2 = Le2 = 15.12 mm, La1 = 28.54 mm,
Ld1 = 8.54 mm, Lb2 = 68.64 mm, Lc2 = 16.44 mm, Lf2
= 33.94 mm, Ld2 = 8.44 mm, wa = 1.545 mm, wb = we
= 0.888 mm, wc = 0.61mm, wd = 1.13 mm, wa1 = 0.87
mm, wb1 = 1.56 mm, wa2 = 0.89 mm, wb2 = 1.56 mm).
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(a)

  
(b)

(b)

Fig. 10. Photograph of (a) fabricated 4×6 antenna array
and (b) fabricated power divider.

(a), the element distance in y-axis is 65 mm (0.77 λ 0,
where λ 0 is the free space wavelength at 3.55 GHz).
Note that power dividers used to feed the subarrays are
omitted in the figure for clearer illustration. Figure 9 (a-
c) illustrates the simulated model of the 4×6 antenna
array and the 1 to 6 power divider model are shown in
Fig. 9 (d). Figures 9 (e-f) are the 1 to 4 power dividers to
feed the four subarrays in order to realize the broadside
and wide-angle scanning. Figures 10 (a-b) illustrate the
fabricated 4×6 antenna array model and power divider
model.

The simulated and measured S-parameters are
shown in Fig. 11. It is seen that the measured reflection
coefficients correspond well to the simulated ones. Both
the co-polarized and cross-polarized mutual coupling are
reduced to below -20 dB. Figure 12 shows the simulated
active reflection coefficients of the subarrays in the array

(a) (b)

(c)

Fig. 11. Measured and simulated S-parameters of the
4×6 dual-polarized antenna array with the decoupling
method: (a) reflection coefficient, (b) S13 and S35, and
(c) S14 and S36.

(a) (b)

Fig. 12. Simulated active reflection coefficients of the
subarrays in the array and at different scanning angles:
(a) port 1 and (b) port 3.

(a) (b)

Fig. 13. Simulated and measured scanning performance
of the proposed array: (a) 3.3 GHz and (b) 3.8 GHz.

and at different scanning angles. It can be observed that
even at wide scanning angle, the active reflection coeffi-
cients are less than -10 dB, which would guarantee the
realization of wide-angle scanning. The radiation pat-
terns and the scanning performance of the antenna array
at 3.3 GHz / 3.55 GHz / 3.8 GHz are also presented in
Fig. 13. It can be concluded that the main beam is able
to scan up to -55◦ and the scan losses are lower than 2.5
dB at 3.3 GHz and 3.8 GHz. The measured and simu-
lated realized gain are also given in Fig. 14. The mea-
sured gain is up to 19.4 dBi, which is about around 1 dB
lower than the simulated gain. It may be mainly caused
by fabrication and measurement errors.

Fig. 14. Measured and simulated realized gain of the 4×6
dual-polarized antenna array.
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Table 1: Comparison of the related arrays
Ref. BW (GHz)

(%)

Polarization AS MSA GF ID

[6] 4.4-5
(10.5%)

±45◦ dual
linear

4×4 60◦ 3.0
dB

>20
dB

[7] 5.2-5.3
(2.1%)

dual
linear

6×6 66◦ 3.5
dB

>16
dB

[17] 1.7-2.22
(5.6%)

±45◦ dual
linear

4×4 - - >20
dB

[19] 3.3-3.8
(14.1%)

±45◦ dual
linear

1×4 55◦ >3.0
dB

>13
dB

This
work

3.3-3.8
(14.1%)

±45◦ dual
linear

4×6 55◦ 3.0
dB

>20
dB

BW = Bandwidth, AS = Array scale, MSA = Maximum
scanning angle, GF = Gain fluctuation, ID = Inter-port
decoupling

In Table 1, the comparison between our work and
other antenna arrays is presented. The proposed antenna
array has a broader operating bandwidth than the designs
in [6–7] and [17] owing to the wideband characteristic
of the proposed antenna and the decoupling structure.
Meanwhile, the proposed antenna in this paper exhibits
higher isolation than [19].

IV. CONCLUSION

A wide-angle beam-scanning with high isolation
base station antenna array has been proposed in this
paper, benefiting from the compact element and effective
hybrid decoupling methods. The measured 4×6 antenna
array achieved a good beam-scanning capability with
maximum scanning angle up to ±55◦ and a small gain
variation of less than 3 dB over the whole band. Plus,
the measured isolation between all ports of the array is
increased to more than 20 dB. With the merits of wideb-
and, low-cost (simple design and easy fabrication), wide-
angle beam-scanning capacity, and good radiation per-
formance, the proposed design has potential for applica-
tion in large-scale 5G base station systems.
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Abstract – The study of the interaction between moving
plasma-coated objects and electromagnetic (EM) waves
is the essential factor for the EM problems of high-speed
targets. In this paper, the physical model of a moving
dispersive medium is developed based on the principle
of special relativity to study the EM properties of high-
speed moving targets coated with plasma sheath. First,
the Lorentz transform is used to introduce the incident
plane wave into moving frame. Second, based on the pro-
posed EM model, the EM problems are solved in moving
frame by the shift-operator (SO) FDTD numerical algo-
rithm. Finally, the EM results are further converted back
into the laboratory frame to analyze the scattered prop-
erties of high-speed plasma coated objects. The valid-
ity of the proposed algorithm is verified by comparison
with the reference solution. On this basis, the influence of
relativistic effects produced by the motion of the object
and the EM properties of the plasma on the scattering
fields of high-speed targets are investigated. This work
expands the applicability of the FDTD method and pro-
vides a theoretical foundation for solving the scattering
properties of high-speed plasma-coated complex shape
objects through numerical methods.

Index Terms – Electromagnetic (EM) scattering, finite
difference time domain (FDTD), moving plasma, rela-
tivistic effects.

I. INTRODUCTION

When a high-speed vehicle performs a highly
maneuverable cruise mission in the near space, it will
generate violent friction with the surrounding atmo-
sphere, which will promote the ionization of the air
around the vehicle, resulting in the formation of plasma
sheath wrapping around the vehicle [1, 2]. On the one
hand, the plasma sheath will seriously interfere with
the wireless communication between the target and the

detection radar, and will bring irreversible effects on
the electromagnetic (EM) transmission, scattering, and
imaging characteristics of high-speed moving targets [3–
5]. On the other hand, the relativistic effect due to the
high-speed motion of the radar target will modulate the
EM wave as well. Therefore, the influence of relativistic
effects must be considered in the study of EM scatter-
ing properties of high-speed moving targets coated with
plasma sheaths.

In real application environments, the acquisition of
the realistic flow field environment excited around a
high-speed target would be time-consuming and expen-
sive [6], which aggravates the difficulty of the research
and analysis of the EM problems about high-speed
moving targets coated with plasma sheaths. Numer-
ous EM numerical simulation approaches play a crucial
role in real-world applications as computer technology
advances. The finite-difference time-domain (FDTD)
approach can be used to solve EM problems in a wide
range of complicated situations with high accuracy and
efficiency, and it can also be effectively integrated with
other methods [7–9]. Zheng et al. proposed to intro-
duce the Lorentz transformation into the FDTD method
for calculating the EM scattering characteristics of a
high-speed moving conductor plate [10]. The EM trans-
mission characteristics of a high-speed moving multi-
layer dielectric plate are further investigated by using
the Lorentz-FDTD method [11]. To analyze the trans-
mission characteristics of EM waves obliquely inci-
dent into a high-speed moving left-handed metamate-
rial, the authors establish a connection between the
Lorentz transformation with the ADE-FDTD method
[12]. The total energy scattering, extinction, and absorp-
tion cross section of incident EM waves by a high-
speed moving target are analyzed based on the rela-
tivistic principles [13–14]. By transforming LFM waves
into the moving frame, the 1D range profile of a high-
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speed moving target is researched in [15] based on the
Lorentz-FDTD method. The interaction between EM
waves and spatiotemporally non-uniform moving plasma
plates is revealed in [16]. In [17], absorption character-
istics of EM waves by a non-uniform plasma moving at
high velocities were investigated by using the Wentzel-
Kramers-Brillouin method.

In summary, various numerical methods have been
developed and applied to study the EM scattering charac-
teristics of high-speed targets [7–12, 15] and the effect of
moving plasma plates on the EM transmission character-
istics [16–19]. However, there remains a dearth of studies
on the EM properties of high-speed moving complex-
shaped targets coated with plasma sheath based on the
relativity effect. In this paper, we investigate the influ-
ence of relativistic effects and EM parameters of plasma
sheath on the scattering characteristics of high-speed tar-
gets by using the Lorentz-FDTD method.

In Section II, the EM scattering model of the mov-
ing dispersive medium is established, and the procedure
for the calculation of the moving dispersive medium by
the Lorentz-FDTD method is derived. In Section III, the
validity and accuracy of the proposed algorithm is ver-
ified. In Section IV, the EM scattering problem from
a uniformly moving conical-spherical metal object and
that object coated with a plasma has been investigated
and analyzed. The conclusion of this research is pre-
sented in Section V.

II. RESEARCH METHOD

The fundamental principle of the calculation of a
high-speed moving dispersive medium target by the
Lorentz-FDTD method can be divided into two steps.
First, the dynamic EM scattering problem in the radar
frame (denote by K frame) is converted to the motion
frame (denote by K′ frame), which remains relatively
stationary with the moving target according to the prin-
ciple of relativity. Second, the EM problem is solved by
the conventional FDTD method in the K′frame, and then
the EM solution is further transformed into the K frame
according to the inverse Lorentz transformation. The
relationship between the two frames is shown in Fig. 1.
Before the solution of the dynamic EM problem for high-
speed targets by the conventional FDTD method, the
incident plane EM waves and the spatial-temporal sep-
aration intervals in both frames need to be converted
according to the relativistic principle. The algorithm flow
of the Lorentz-FDTD method for calculating the motion
dispersion medium is shown in Fig. 2.

A. Physical model of moving plasma

When EM waves propagate in a moving isotropic
medium, their frequency will be shifted due to the
Doppler effect. Assuming that the angle between the EM
wave propagation vector�k and the object velocity�v is θ ,

Fig. 1. Sketch of the two coordinate systems.

Initialize Variables

TimeStep+1

Incident EM Waves Ei'

Updating EM Field in 
FDTD  E' H'

dx', dy', dz', dt' Lorentz 
Transformation

Extrapolated far-field 
scattering field  Es' Hs'

TimeStop?

End

Yes

No

Far-field scattering 
field Es Hs

Inverse Lorentz 
Transformation

Begian

Physical Model of 
Moving Plasma

 Ei

RCS

K' frame

K frame

 

Fig. 2. Flowchart of Lorentz-FDTD algorithm for the cal-
culation of motion dispersion media.

the EM wave frequency ω ′ after the Doppler shift can be
calculated as [16]

ω ′ = γω(1−β cosθ), (1)

where γ = 1/
√

1−β 2,β = v/c. c is the velocity of light
in free space.

The dielectric coefficient εr of a magnetized cold
plasma is generally described using Appleton’s formula.

εr(ω) = 1− ω2
p

ω2 +ω2
c
− j

ωc

ω
ω2

p

ω2 +ω2
c
, (2)

where ωp is the plasma cut-off frequency and ωc is the
plasma collision frequency. ω is the operating frequency
of EM waves.

The EM wave frequency ω ′ in the K′ frame will be
red-shifted when the object moves away from the detec-
tion radar radiation. Conversely, the ω ′ will be blue-
shifted when the object is moves toward the direction of
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EM wave propagation. Therefore, the dielectric coeffi-
cient εr of plasma in the K′ frame can be further written
as

ε ′r
(
ω ′)= 1− ω2

p

ω ′2 +ω2
c
− j

ωc

ω ′
ω2

p

ω ′2 +ω2
c
. (3)

The EM field update equation for a moving plasma
based on the shift-operator (SO-FDTD) method [20–22]
is derived as follows. First, as the dielectric coefficient of
the plasma will change with the EM wave frequency, the
electric field frequency domain intrinsic relationship of
the moving plasma can be expressed as

D
′
(ω

′
) = ε0ε

′
r(ω

′
)E

′
(ω

′
), (4)

where the rational fraction of εr in the SO-FDTD method
is expressed in the form

ε
′
r(ω

′
) =

∑N
n=0 pn( jω ′

)n

∑M
m=0 qm( jω ′

)m
, (5)

where pn and qn denote the numerator and denom-
inator coefficients of the relative permittivity,
respectively.

To simplify the equation, we define the velocity fac-
tor C=γ(1–βcos θ ), then establish the equation jω ′=C
jω . The time domain forms of the electric field and
relative dielectric coefficients of plasma can be transi-
tioned by the conversion operator jω = ∂/∂ t between
the time and frequency domains. Therefore, the time-
domain form of (5) can be deduced further as

ε
′
r

(
∂

∂ t ′

)
=

∑N
n=0 pnCn( ∂

∂ t )
n

∑M
m=0 qmCm( ∂

∂ t )
m
. (6)

The time-domain intrinsic form of the electric field
can be acquired by bringing (6) into the electric field
intrinsic structure relation (4).[

M

∑
m=0

qmCm
(

∂
∂ t

)m
]
D

′
(t

′
)= ε0

[
N

∑
n=0

pnCn
(

∂
∂ t

)n
]
E

′
(t

′
).

(7)
By discretizing the time derivative in (7) with

the central difference
(

∂
∂ t

)l →
(

2
Δt · zt−1

zt+1

)l
, where zt

denotes the discrete time-domain shift operator and l rep-
resents the order of time derivative [21]. The electric field
update equation in the SO-FDTD method is given by{[

q′0 +q′1
2
Δt

+q′2

(
2
Δt

)2
]

z2
t +

[
2q′0 −2q′2

(
2
Δt

)2
]

zt+

[
q′0 −q′1

2
Δt

+q′2 ·
(

2
Δt

)2
]}

D′n
x =

{[
p′0 + p′1

2
Δt

+ p′2

(
2
Δt

)2
]

z2
t +

[
2p′0 −2p′2

(
2
Δt

)2
]

zt+

[
p′0 − p′1

2
Δt

+ p′2

(
2
Δt

)2
]}

ε0E′n
x .

(8)

The differential form of the electric field update equation
for a moving dispersive medium is as follows:

E′n+1 =
1
b0

{
1
ε0

(
a0D′n+1 +a1D′n +a2D′n−1) (9)

−b1E ′n −b2E ′n−1} ,
where the coefficients a0,a1,a2,b0,b1,b2 are as
follows:⎧⎪⎨
⎪⎩

a0 = q′0 +q′1
( 2

Δt

)
+q′2

( 2
Δt

)2
, b0 = p′0 + p′1

( 2
Δt

)
+ p′2

( 2
Δt

)2

a1 = 2q′0 −2q′2
( 2

Δt

)2
, b1 = 2p′0 −2p′2

( 2
Δt

)2

a2 = q′0 −q′1
( 2

Δt

)
+q′2

( 2
Δt

)2
, b2 = p′0 − p′1

( 2
Δt

)
+ p′2

( 2
Δt

)2
,

(10)
where q

′
n =Cnqn, p

′
n =Cn pn (n = 0,1,2), and the coef-

ficients qn and pn are determined by the EM parameters
of plasma.

B. Lorentz transformation of space-time increments

When the Lorentz transformation is introduced into
the FDTD method according to the principle of spe-
cial relativity, the relationship between the space-time
increments of two inertial systems satisfy the Lorentz
transformation equation. Suppose that the K′ frame
is moving with constant velocity �v relative to the K
frame, and the origin of the two frames coincide at
the instantaneous moment t = t ′= 0. The space-time
increment between the two inertial frames is given
by (11).

⎛
⎜⎝ Δx

Δy
Δz

⎞
⎟⎠=

⎛
⎜⎜⎝

1+(γ −1) v2
x

v2 (γ −1) vxvy
v2 (γ −1) vxvz

v2

(γ −1) vxvy
v2 1+(γ −1)

v2
y

v2 (γ −1) vyvz
v2

(γ −1) vxvz
v2 (γ −1) vyvz

v2 1+(γ −1) v2
z

v2

⎞
⎟⎟⎠

·

⎛
⎜⎝ Δx′

Δy′

Δz′

⎞
⎟⎠ , (11-a)

Δt =
1√

1−β 2
(1−β âs · âv)Δt

′
, (11-b)

where vx = |�v|sinθv cosϕv,vy = |�v|sinθv sinϕv, vz =
|�v|cosθv. θv is the elevation angle of �v with +z
axis, ϕv is the angle between the projection of �v
on xOy and +x axis. The symbol âs and âv denotes
the unit vectors of the scattered field and velocity,
respectively.

C. Incident EM field transformation

In order to solve the dynamic EM problem for high-
speed targets by the FDTD method, the incident plane
EM wave in the K frame need to be converted to the K′
frame. Assume that the unit vector of incident EM wave
propagating along arbitrary direction in the K frame is
defined as

−→
k i. According to the phase-invariant princi-

ple of EM waves [23], the wave vector
−→
k ′

i, angular fre-
quency ω ′

i and amplitude
−→
E ′

itransformation equations of
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the incident plane EM wave in the K′ frame are given by
(12)-(14).

�k
′
i = γ�ki

(
1−β

�ki ·�v
|�v|

)
, (12)

ω
′
i = γωi

(
1−β

�ki ·�v
|�v|

)
, (13)

|�E ′
i |=

√
(�E0 cosθ)2 + γ2(�E0 sinθ + |�v×�B|)2, (14)

where the ω i, �E0are the angle frequency and amplitude
of the incident EM waves in the K frame.

D. Near- to far-field extrapolation

In the frame K′, the near-field scattered field of the
moving target can be obtained by using the time domain
EM field iteration of conventional FDTD. The far-field
scattered EM field can be obtained by extrapolation from
the near-field data. First, a closed virtual boundary is
set as the extrapolation boundary in the FDTD scatter-
ing field region according to the equivalence principle.
Second, the tangential current and tangential magnetic
current on the virtual boundary are calculated, and the
equivalent EM current on this surface is extrapolated
according to the Huygens’s principle. In addition, the
10-level uniaxial anisotropy perfectly matched (UPML)
layer as absorbing boundary is used to terminate the out-
ward propagating EM field in space. The 3D far-field
equation in the frame K′ can be expressed as

es′
θ
(
t ′
)
= u′x sinϕ ′

s −u′y cosϕ ′
s −η

(
w′

x cosθ ′
s cosϕ ′

s

+w′
y cosθ ′

s sinϕ ′
s −w′

z sinθ ′
s
) ,

(15-a)

es′
ϕ
(
t ′
)
= u′x cosθ ′

s cosϕ ′
s +u′y cosθ ′

s cosϕ ′
s −u′z sinθ ′

s

+η
(
w′

x sinϕ ′
s −w′

y cosϕ ′
s
) ,

(15-b)
where η is the wave impedance in free space. w′(t) and
u′(t) can be obtained by performing the inverse Fourier
transform on (16).

−→
W′ = jk−→A′

= jk
exp(− jk′r′)

4πr′

∫
A

(
n̂×−→H′

s
)

exp
(

jk′r′ · ê′r′
)

ds′
,

(16-a)−→
U ′ = jk

−→
F ′

= jk
exp(− jk′r′)

4πr′

∫
A
−
(

n̂×−→
E ′

s

)
exp

(
jk′r′ · ê′r′

)
ds′

,

(16-b)

E. Inverse Lorentz transformation of EM field

As the Maxwell system of equations satisfies the
covariance principle, its rotational equations remain
in the same form in all inertial systems. Therefore,

Maxwell’s rotational equations in K′ can be expressed
as

∂�D
′

∂ t ′
= ∇×�H

′
, (17)

∂�H
′

∂ t ′
=− 1

μ0
∇×�E

′
. (18)

In the previous section, the far-field scattered fields−→
E ′

sθ and
−→
E ′

sϕ of the high-speed target were obtained by
near to far-field extrapolation. The electric and magnetic
field components will change in the two inertial systems
due to the relative motion between the K frame and the
K′ frame. The relationship between the EM fields in the
two frames follows the Lorentz transformation equation.
The inverse Lorentz transformation equation for the far-
field scattered EM field between two frames is given by
(20)-(21).

�E = γ(�E
′
−�v×�B

′
)+(1− γ)

�E
′
·�v

v2 �v, (19)

�B = γ(�B
′
− 1

c2�v×�E
′
)+(1− γ)

�B
′
·�v

v2 �v, (20)

where spatial electric field
−→
E ′ and magnetic field−→

B ′ are represented in FDTD with Cartesian coordinates.
Therefore, the far-field

−→
E ′

sx,
−→
E ′

sy,
−→
E ′

sz can be obtained

by performing a coordinate transformation on
−→
E ′

sθ and−→
E ′

sϕ . In the SO-FDTD method, the far-field scattered
field in the K frame is derived as follows. The Lorentz
transformation equation of the spatial electric field in
FDTD is given below.⎛
⎜⎝

−→
E x−→
E y−→
E z

⎞
⎟⎠= γ

⎛
⎜⎝

−→
E ′

x−→
E ′

y−→
E ′

z

⎞
⎟⎠− γ

⎛
⎝ x̂ ŷ ẑ

vx vy vz−→
B ′

x
−→
B ′

y
−→
B ′

z

⎞
⎠

+(1− γ)
−→
E ′

xvx +
−→
E ′

yvy +
−→
E ′

zvz

v2
−→v .

(21)

The frequency domain field value
−→
E i( f ) of the

incident EM wave can be obtained by Fourier trans-
forming the time domain incident field

−→
E i(t). The 3D

radar scattering cross section (RCS) can be calculated
by (25).

RCS( f ) = lim
r→∞

⎧⎨
⎩10log

⎛
⎝4πr2

∣∣∣∣∣
�Es( f )
�Ei( f )

∣∣∣∣∣
2
⎞
⎠
⎫⎬
⎭ . (22)

F. Stability and dispersion

It is necessary to ensure the stability and dispersion
stability of Lorentz–FDTD method in the analysis the
moving target coated with plasma sheath. Assume the
time and space grids of the Lorentz–FDTD in the frame
K′ are set to dx′= dy′ = dz′ = δ and dt ′ = δ /2c. The
Courant stability criterion for the FDTD in the K′ frame
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is given by equation (23), according to the principle of
invariance of the speed of light [22]:

Δt
′ ≤ δ√

3c
. (23)

Given that the EM wave will be modulated by the
velocity of the target and the effect of strong dispersion
of the plasma, to guarantee the dispersion stability of the
FDTD is necessary, and it can be achieved by selecting a
suitable spatial increment δ . The spatial grid parameters
to satisfy the FDTD dispersion stability in the frame K′
are given in (24) [23]:

δ ≤ λ ′

12
, (24)

where λ ′ is the minimum wavelength in plasma sheath
corresponding to the maximum frequency after the blue-
shift of the EM wave, which can be calculated accord-
ing to the frequency-resolved formula for the scattered
field of a moving target [16]. Equation (24) reveals that
the velocity of the object affects the EM wave frequency
and thus imposes certain restrictions on the spatial grid
of the FDTD. In turn, the maximum frequency fmax that
can be calculated with the FDTD is determined once the
space-time increments are set. Therefore, the dispersion
stability of the FDTD can be guaranteed when the veloc-
ity is less than the critical velocity (herein, the critical
velocity is defined as the maximum frequency equal to
the fmax after the blue-shift of the EM wave frequency
caused by the target moving at that velocity). Simulating
higher velocities of the moving object can be achieved
by reasonably reducing the space-time increments of the
FDTD.

Fig. 3. Shape of cone-sphere target is in the xOy plane.

III. VALIDITY AND ACCURACY
A. Validation of Lorentz-FDTD method

As a validation example, the monostatic RCS of a
high-speed moving metal sphere with radius of 1 m is
calculated using the proposed algorithm. The space-time

increment of Lorentz-FDTD is set to dx′= dy′= dz′=
0.05 m and dt ′= dx′/ 2c. In frame K′, the incident plane
EM wave is a Gaussian pulse source is defined with the
parameters of τ = 40dt ′ and t0 = τ . The EM propagation
angles are set to θ i = 90

◦
and ϕ i = 90

◦
, and the incident

electric field is polarization along the +z-direction. This
target is moving with the velocity v of 0.1c along the
direction of θ v=90

◦
and ϕv=90

◦
.

Figure 4 presents the comparison of the RCS results
calculated in this article with the RCS results in [23].
It can be seen in Fig. 4 that the RCS of the moving
metal sphere complies perfectly with the results in [23]
in terms of the variation pattern with the EM wave fre-
quency when the target moves at velocity v of 0 and 0.1c.
The maximum error between the two results of RCS is
less than 2.0 dB, which can be a good verification of the
proposed algorithm in the analysis scattered fields from
moving targets.

Fig. 4. The monostatic RCS from moving metal sphere
target compared with the RCS results in literature.

B. Accuracy in analysis of moving dispersive medium

Here, we adopt a plasma sphere with a diameter of
7.5 mm as a validation example for dispersive media,
where the plasma frequency ω p is 1.8 × 1011 rad/s and
the collision frequency ωc is 20 GHz. The Lorentz–
FDTD method is used to calculate the monostatic RCS
of the plasma sphere, and the results would be compared
with that calculated with Mie theory to verify the valid-
ity and accuracy of the proposed algorithm in analyzing
EM scattering from dispersive-medium objects. The spa-
tial and time increments of the Lorentz–FDTD are set as
dx′= dy′= dz′= 0.05 mm and dt ′= dx′/ 2c. A Gaussian
pulsed plane wave with a pulse width τ of 60dt ′ is inci-
dent along the directions θ i = π / 2 and ϕ i=π / 2.

Figure 5 presents the results of monostatic RCS
calculated with the Lorentz–FDTD and Mie theory
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Fig. 5. The monostatic RCS from moving plasma sphere
target compared with the Mie’s resolution.

respectively for the plasma sphere. From Fig. 5, we can
see that when the plasma target is stationary, the RCS
results calculated with two methods are nearly consis-
tent. When the plasma target moves away from the inci-
dent EM wave source with a velocity of 0.1c, the mono-
static RCS is significantly modulated toward lower fre-
quencies by the motion property of the plasma target,
which can be conformed to the expected Doppler effect.

IV. NUMERICAL RESULTS

A. High-speed moving metal cone-sphere target

In this section, the EM scattered properties of a 3D
metal cone-sphere target without plasma sheath coating
are investigated. The cone-sphere target has a height of
15 cm and base radius of 5 cm. The model of this tar-
get in the xOy plane is shown in Fig. 3. The time and
space increment of Lorentz–FDTD are set to dx′= dy′=
dz′= λ /20 and dt ′= dx′/2c, where λ = c / f 0 is the wave-
length of the EM wave at the modulation frequency. The
simulation space is defined as Tx ×Ty ×Tz= (180 × 180
× 180)δ . The incident plane wave source is a modulated
Gaussian pulse with the parameters of center frequency
of f 0 = 4 GHz, bandwidth of B = 4 GHz, pulse width of τ
= 1.7/B, and time delay of t0 = 0.8τ . The plane EM wave
was introduced in the SO-FDTD method by using the 3D
TF-SF boundary based on the equivalence principle. The
mathematical expression of the incident signal is given
in

E ′
i
(
t ′
)
= E ′

0 cos
(
2π f ′0t ′

)
exp

(
−4πγ2

t (t
′ − t0)

2

τ2

)
, (25)

where the E ′
0 is the amplitude of incident wave in the

K′frame, and γ t = γ (1 - βcos θ ). The direction of inci-
dence is θ i = 90◦ and ϕ i = 90◦, the polarization angle α
is set to 90◦, the receiving angle θ s = 90◦ and ϕs = 270◦.

The corresponding calculation time to update EM field
components 3 × 103 times is 0.5 h by using a microcom-
puter.

Figure 6 shows the backscattering properties of the
target with different velocities. The results in Fig. 6 (a)
illustrate that when the target moves along the incident
direction, the scattered waves in the time domain are
delayed and the amplitude decreases slightly, whereas
the opposite phenomenon is observed when moving
close to the incident wave. In Fig. 6 (a), as the target
moves away from the incident wave at v = 0.02c, the
scattered waveform received in the time domain delays
about 0.075 ns compared with that received when the
target is stationary. And the time delay will be 0.15
ns for the receding velocity v of 0.04c. Conversely, the

(a)

(b)

Fig. 6. Scattering fields radiated from a metallic cone-
sphere target with motion direction as θ v = 90◦ and ϕv =
90◦: (a) Scattering field in the time domain and (b) mono-
static RCS.
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scattered waveform in the time domain will advance by
about 0.075 ns for v of 0.02c when the target is moving
close to the incident source. Further simulations reveal
that the time delay of the scattered waveform caused
by the motion will differ if the shape of the target is
changed. As shown in Fig. 6 (b), the monostatic RCS has
a frequency shift toward the low-frequency band if the
object moves along the incident direction (v > 0). Con-
versely, RCS has a frequency shift to the high-frequency
band while the target moves toward the incident
waves (v < 0).

For a high-speed moving rotating target, the EM
scattering strongly depends on its state of motion, ori-
entation, and shape [14]. To further investigate the rela-
tionship between the backward echo characteristics and
the velocity of a moving target, the EM echoes of a high-
speed moving-cone-sphere target are simulated for dif-
ferent ratios, where the ratio is defined as ratio = height
/ base radius. The details of the target dimensions at dif-
ferent ratios are given in Table 1. The incident wave is
incident along the tip of the moving target, and the dis-
tance of the plane wave to each cone tip is ensured to be
constant.

Table 1: Dimension parameters of cone-sphere target
Ratios Height

(cm)

Base Radius

(cm)

0.1 1.5 15
0.5 5.5 11
1.0 17 17
5.0 25 5
10 34 3.4

Figure 7 (a) shows the time-domain waveform of the
incident signal. Figures 7 (b)-(f) present the time tracks
of backscattered pulse fields of the cone-sphere targets
with different ratios and at different velocities. The result
in Fig. 7 shows that the backscattered waveform from
the target contains abundant information about the tar-
get. First, the variation of the scattered wave in terms of
delay and amplitude reflects the motion velocity of the
object. Second, the waveform variation of the scattered
field in the time domain is strongly correlated with the
ratio of the target. The maximum amplitude of the scat-
tered field decreases with the target ratio raising, and the
scattered field lags significantly in the time domain. For
the different ratios and same motion velocity of target,
the time delay of the scattered field from the targets has
a big difference, and the degree of time delay slightly
increases with ratio enlarging. However, as the velocity
is 0.04c, the time delay (compared with the stationary
target) is twice as long as that when the velocity is 0.02c
for all cone ratios.

 

Fig. 7. The incident signal and backscattered waveform
of moving cone-sphere targets with different ratios.

B. Moving cone-sphere target coated with plasma
sheath

In this section, the influence of the typical EM char-
acteristic parameters of the plasma sheath on the scat-
tered field of the moving cone-sphere target is studied by
referring to the measured data of the flow field around a
high-speed vehicle [26–27]. A modulated Gaussian pulse
source with parameters of f 0 = 4 GHz, B = 4 GHz, τ =
1.7 / B, and t0 = 0.8τ is applied to irradiate the mov-
ing target. The space-time increment of Lorentz–FDTD
are set to dx′= dy′= dz′= λ / 54 and dt ′= dx′/ 2c. The
cone-sphere target with a height of 0.045 m and a base
radius of 0.015 m moves at 0.01c along the +y axis. The
direction of incident wave is θ i = 90◦ and ϕ i = 90◦ in
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Table 2: EM parameters of the plasma sheath
Case Electron

Density ne

(× 1016 m−3)

Collision

Frequency

ωc (GHz)

Incident

Angle

φi (◦)

a 1, 5, 10, 20, 100 20 0
b 10 1,5, 10, 20 0
c 20 5 0, 30, 45, 60

simulations of case (a) and (b). In simulation of case
(c), the angle of incidence θ i = 90◦, and ϕ i is given in
Table 2. The EM parameters of the plasma sheath and
incident angle are given in Table 2. In additional, the cal-
culation time for the computer to update EM field 4.2 ×
103 times is 0.8 h.

Figure 8 displays the variation in monostatic RCS
under different plasma electron densities when the tar-
get moves at 0.01c along the +y axis. It can be seen that
the monostatic RCS varies substantially at different elec-
tron densities because the cut-off frequency of plasma
increases as electron density increases. When the oper-
ating frequency of the EM wave is less than the cut-
off frequency of plasma (f < 2 GHz), the backscatter-
ing ability of the plasma sheath for EM waves increases
with increased electron density. Therefore, monostatic
RCS increases with increased electron density in the
low-frequency band. However, when the operation fre-
quency is greater than the cutoff frequency of plasma (f
belongs to 2-12 GHz), the reflection caused by plasma
decreases, and the absorption of EM waves increases.
Eventually, RCS decreases rapidly as electron density
increases. Moreover, the maximum absorption position
of the RCS for EM waves gradually shifts toward high
frequencies with the increase in electron density. When
the electron density of plasma is set to 1 × 1018 m−3, the

y

 

Fig. 8. Monostatic RCS of cone-sphere target coated by
plasma sheath with different electron densities ne.

cut-off frequency of plasma is greater than other values,
but monostatic RCS decreases very rapidly. This find-
ing is due to most of the EM waves being scattered in
the forward-scattering direction, thereby causing a rapid
decrease in backscattering direction.

Figure 9 shows the change in monostatic RCS under
different plasma collision frequencies ωc. When the EM
wave operating frequency f ranges within 0-2 GHz,
monostatic RCS increases with decreased collision fre-
quency. RCS has a more dramatic change with colli-
sion frequency when the plasma frequency is close to the
cut-off frequency of EM waves. When the operating fre-
quency f is 2-4 GHz, monostatic RCS decreases first and
then increases with increased collision frequency, and
decay is maximum at collision frequency ωc = 5 GHz.
This finding is due to that the absorption of EM waves is
more remarkable by the plasma sheath when collision
frequency wave is close to the cut-off frequency. The
monostatic RCS decreases rapidly with increased colli-
sion frequency when the operating frequency is greater
than the cut-off frequency.

Fig. 9. Monostatic RCS of cone-sphere target coated by
plasma sheath with different collision frequencies ωc.

Figure 10 shows monostatic RCS variation with the
angle of the incident wave. The angle of the incidence
plane wave has a remarkable effect on monostatic RCS
when the operating frequency f ranges within 2-5 GHz.
In this frequency range, RCS increases significantly as
the incident angle increases. This is mainly because the
frequency of EM waves is close to the cut-off frequency,
and in this condition the direction of incidence of EM
waves has a greater influence on the monostatic RCS.
However, the monostatic RCS does not increase with the
increase of the incident angle when the operating fre-
quency of EM waves is higher than the cut-off frequency
(f > 6 GHz).
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Fig. 10. Monostatic RCS of cone-sphere target coated by
plasma sheath with different angles φ i of incident wave.

To illustrate the effect of the electron density of a
plasma sheath at different operating frequencies on the
EM-scattering ability of the moving cone-sphere target,
the bistatic RCS of the cone-sphere target varies with dif-
ferent electrons at different operating frequencies f of
1, 4, and 9 GHz. The operating frequency f = 1 GHz
is less than the plasma frequency, f = 4 GHz is within
the range of plasma frequency, and f = 9 GHz is greater
than the plasma frequency. The collision frequency ωc
of the plasma sheath is 20 GHz, and the thickness of the
plasma sheath is 1 cm. The target moves along the +y
axis with velocity 0.01c. The plane wave is incident in
the direction of θ i = 90◦ and ϕ i = 90◦, and the electric
field is polarized along the +z direction. When the scat-
tering angle θ s = 90◦, the bistatic RCS in the xOy scat-
tering plane is observed. The bistatic RCS of moving the
cone-sphere target at different operation frequencies of
EM waves is shown in Fig. 9.

Figure 11 (a) shows that bistatic RCS increases
with the increase electron densities of plasma sheath in
both the forward-scattering direction ϕs = 90◦ and the
backscattering direction ϕs = 270◦. The increased reflec-
tion of the EM wave is caused by the increased elec-
tron densities of the plasma sheath when the operating
frequency f is less than the plasma cutoff frequency. In
Fig. 11 (b), the bistatic RCS increases as the electron
densities increases in the forward-scattering direction at
ϕs = 90◦. In the backscattering direction at ϕs =270◦,
the RCS reaches its minimum when the electron den-
sities ne = 2×1017 m−3. This occurs because the cut-
off frequency of plasma at electron densities ne = 2
× 1017 m−3 matches the operating frequency of EM
waves, leading to the most pronounced absorption of
EM waves by the plasma. Figure 11 (c) shows that the
bistatic RCS in the forward-scattering direction ϕs = 90◦

(a)

(b)

 
(c)

Fig. 11. (a) HIS structure and (b) Equivalent circuit.

decreases with increased electron densities when ne ≤
2× 1017 m−3, but increases at ne = 1 × 1018 m−3 and
decreases rapidly with increasing electron density in the
backscattering direction ϕs = 270◦. The RCS changes
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more considerably in the backscattering direction than in
the forward-scattering one. Figure 8 (a) can be verified
again. When the electron density ne = 1 × 1018 m−3,
the reason for the rapid decreases of monostatic RCS at
high frequencies is that the EM wave is scattered to the
forward-scattering direction.

C. Doppler effect on scattered field

In this section, we examine the impact of the veloc-
ity on the Doppler effect of the scattered field of a high-
speed target. The parameters of the FDTD grid and the
dimensions of the target are the same as in Section B.
The EM parameters of the plasma sheath are set as the
electron density ne of 3 × 1016 m−3 and 3 × 1017 m−3,
ωc of 10 GHz, and a plasma thickness of 1 cm. The inci-
dent direction is set to θ i = π/2 and ϕ i = π/2. This object
is moving at velocities v of 0.02c, 0.04 c, -0.02c, and -
0.04c along the incident direction.

It is evident from Fig. 12 that the RCS experiences
a red-shift when the target moves away the incident
wave (v > 0) and a blue-shift when the target moves
toward the source. This phenomenon bears resemblance
to the frequency modulation law observed in moving
metal targets. However, the complexity of the amplitude
modulation law increases. Due to the variation in elec-
tron density, the RCS exhibits different levels of reduc-
tion across various frequency bands of EM waves. As
depicted in Fig. 12 (a), when the electron density ne = 3
× 1016 m−3, the operation frequency f of EM waves sig-
nificantly exceeds the cut-off frequency of the plasma.
Therefore, there is a lower absorbing and higher scatter-
ing of plasma on the EM waves. Figure 12 (b) presents
the variation of RCS with velocity when the electron
density ne = 3 × 1017 m−3. It can be seen that when
the operation frequency f is in the range of 3.5-5.0 GHz,
the RCS when the velocity v of 0.04 c is significantly
stronger than at the velocity v of −0.04 c. This finding is
due to the variations of the target velocity changes the
relative dielectric coefficient of plasma, which in turn
influences the absorbing and scattering of plasma on EM
waves. With the target moving away from the source,
the red-shift will decrease the frequency of EM waves,
which increases the scatter of plasma on EM waves. By
contrast, the blue-shift due to the target moving toward
the source will increase the EM wave frequency, which
increases the absorbing of plasma on EM waves. The
scattering EM echo from this plasma coated target at dif-
ferent velocities is presented in Fig. 13.

Finally, to investigate the impact of velocity on the
Doppler shift of the scattered field from the target, a
time-harmonic signal with a carrier frequency of 4 GHz
was used to irradiate the target. The backscattered field
in the time domain was then recorded. Further, the anal-
ysis of the variation of Doppler shift with object velocity

(a)

(b)

Fig. 12. Monostatic RCS in different velocities when the
target coated with a plasma sheath with electron densities
(a) ne=3×1016 m−3 and (b) ne=3×1017 m−3.

 

Fig. 13. EM echo in different velocities when the plasma
coated target with electron densities ne of 3 × 1016 and
3 × 1017 m−3.
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Table 3: Doppler shift and relative error of scattered field
in different velocities

Velocity Numerical

Results

(GHz)

Theoretical

Results

(GHz)

Error

0.02c 3.8435 3.8431 0.013%
0.04c 3.6929 3.6923 0.016%
-0.02c 4.1637 4.1633 0.010%
-0.04c 4.3338 4.3333 0.012%

can be conducted through the examination of the echo
spectrum. Table 3 presents the numerical and theoretical
results (26) of the frequency of the scattered field for a
high-speed target. The results indicate that the relative
error between the two outcomes falls within an accept-
able range. This finding further supports the accuracy
and validity of the proposed method:

ωs = γω ′
(

1−β
cosθ +β

1+β cosθ

)
. (26)

V. CONCLUSION

In this paper, the EM model of a moving dispersive
medium is established by utilizing the relativistic prin-
ciple. In this study, we aim to investigate the scattering
properties of high-speed moving plasma coated targets
and their interaction with EM waves. To achieve this,
we present and analyze two cases in order to reveal the
nature of this work.

The first research example reveals that scattering
and echo characteristics of the object exhibit a signifi-
cant dependence on the velocity of the target, the direc-
tion of its motion, and the shape of the object. The sec-
ond example examines the impact of plasma parameters,
incidence direction, frequency of electromagnetic waves,
and object velocity on the scattered field. The research
findings indicate that the relative dielectric coefficient
of the plasma sheath undergoes changes as a result of
the object’s velocity, thereby influencing the scattering
and absorption of electromagnetic waves by the plasma.
Additionally, the RCS exhibits distinct variations in pat-
tern with target velocities when subjected to EM waves
at different operating frequencies.

In future research, the Lorentz-FDTD algorithm will
be applied to investigate and analyze more-complex EM
scattering scenarios, such as considering the flow field
properties of plasma sheaths and investigating the effect
of spatial-temporal non-uniformity of plasma on EM
imaging of high-speed moving object.
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Abstract – A locally corrected Nyström (LCN) dis-
cretization of a magnetostatic volume integral equation
is presented. Anomalous magnetization spikes can oc-
cur when the underlying mesh uses tetrahedral cells re-
gardless of discretization order. The mechanism for the
anomalous magnetization spikes is discussed, and miti-
gation of the spikes through use of an LCN-to-Moment
Method conversion is investigated. Results are presented
validating that the LCN-to-Moment Method suppresses
the anomalous spikes.

Index Terms – integral equation methods, locally cor-
rected Nyström method, moment method.

I. INTRODUCTION

The locally corrected Nyström (LCN) method [1–
3] is one of the primary methods for discretizing inte-
gral equations. Advantages of the LCN method over the
Moment Method (MoM) include not having to explic-
itly enforce continuity of physical quantities across mesh
cell boundaries, less strict mesh conformality require-
ments, more efficient system matrix fill, and ease of im-
plementing higher-order codes. Divergence-conforming
formulations require that normal components of quan-
tities such as fields and currents be continuous (unless
physically discontinuous) across mesh cell boundaries.
Although the Nyström method does not explicitly en-
force this normal continuity, the underlying Nyström
degrees-of-freedom should permit the proper space and
continuity properties required by the formulation to be
achieved.

In this paper, a magnetostatic volume integral equa-
tion is presented that is discretized by the locally cor-
rected Nyström method [4]. Results are provided in
which anomalous (non-physical) magnetization [5] are
observed for complex geometries when tetrahedral mesh
elements are used in the discretization. The mechanism
for the anomalous magnetization spikes is discussed by
noting that the typical Nyström representation does not

span the same mixed-order divergence-conforming space
that commonly used Moment Method bases span. Fur-
ther, use of an LCN-to-MoM conversion [7, 8] of the dis-
cretized LCN system is observed to suppress the anoma-
lous magnetization spikes since the LCN-to-MoM con-
version provides a representation with the appropriate
degrees-of-freedom to model a mixed-order divergence-
conforming space as well as the appropriate normal
continuity.

II. LCN FORMULATION FOR
TETRAHEDRA

Consider the magnetostatic volume integral equa-
tion (VIE)

χχχ−1 ·M(r) = Hexcitation (r)+Hm (r) , r ∈V, (1)
defined over a material volume V where M is the magne-
tization, χχχ is the magnetic susceptibility tensor, and Hm

is the demagnetizing field

Hm (r) =
∫∫∫

V
∇∇ ·

[
1

4π |r− r′|M
(
r′
)]

dv′. (2)

The VIE in (1) is discretized using the locally cor-
rected Nyström (LCN) method. For simple geometries,
good results and convergence have been obtained for
both hexahedral and tetrahedral cells. For sphere and
spherical shell geometries with isotropic, homogeneous
magnetic susceptibility, high-order convergence is ob-
tained for higher basis orders when higher-order mesh
representations are used. For some complex geome-
tries, however, the magnetization is observed to exhibit
anomalous spikes for tetrahedral meshes. Similar spikes
in the magnetization are not observed for hexahedral
meshes of the same geometry when using a mixed-order
LCN formulation [10].

For basis order p = 0, the phenomenon seems to be
at least partially due to the inability of the underlying
function space of the Nyström representation of the mag-
netization to sufficiently model the continuity of the nor-
mal component of magnetization across tetrahedral cell
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boundaries. More generally, for order p ≥ 0 the standard
Nyström representation on tetrahedral cells (and simi-
larly on triangular cells) does not span the same space
as typical divergence-conforming MoM representations
(e.g,, [9]). The ability to maintain continuity across all
cell boundaries is discussed for the basis order p = 0
and p = 1 representations. For orders p > 1, analogous
results hold. Further, the number of degrees-of-freedom
of the standard Nyström representation and mixed-order
divergence-conforming MoM representations are not the
same, indicating different spaces are being spanned.

Consider the set of tetrahedral cells depicted in
Fig. 1. A primary cell Tc is adjacent to four secondary
cells Tk for k = 0,1,2,3. The boundary face Sk is shared by
cells Tc and Tk. Local coordinates are defined such that
uix is the coordinate along the ith unitary axis for i=1,2,3.
A dependent local coordinate u0x = 1−u1x −u2x −u3x is
also defined. The local coordinates are such that ukx = 0
on face Sk in cell Tx. For i=1,2,3, uix

(
u1x,u2x,u3x

)
is

the ith unitary vector and uix
(
u1x,u2x,u3x

)
is the ith re-

ciprocal unitary vector in cell x. Furthermore, u0x =
−(u1x +u2x +u3x

)
. The cell vertices are ordered such

that the outward normal to boundary Sk is −ukc in cell
Tc and is −ukk in cell Tk, and, so, ukc =−ukk on Sk.

Let the Nyström degrees-of-freedom be cast onto
a set of bases within tetrahedron x with degrees-of-

Fig. 1. Primary tetrahedral cell Tc adjacent to four sec-
ondary tetrahedral cells Tk. Shared face Sk is shared by
Tc and Tk.

freedom αix, j for the jth degree-of-freedom associated
with the ith unitary direction. The pth-order polynomial-
complete basis representation on tetrahedron x is

Mp
x
(
u1x,u2x,u3x)= 1√

gx

3

∑
i=1

f p
ix

(
u1x,u2x,u3x)uix, (3)

where
√

gx (u1x,u2x,u3x) is the cell Jacobian and f p
ix is a

polynomial of degree p. Note that on the boundary face
Sk,

√
gc =

√
gk at each point on the face. Hence, in the

following development, the cell Jacobians will cancel for
constraints on Sk. For both the p = 0 and p = 1 discussion,
the degrees-of-freedom in cell Tk are considered fixed,
and the degrees-of-freedom in cell Tc will be constrained
(if possible) to achieve continuity of normal magnetiza-
tion across all faces.

For p = 0, there are three Nyström degrees-of-
freedom and three bases, and

f 0
ix
(
u1x,u2x,u3x)= α0

ix,0. (4)

Enforcing continuity at each face Sk for k=0,1,2,3
gives the constraints[

ukc · 1√
gc

3

∑
i=1

α0
ic,0uic

]
ukc=0

=

[
ukc · 1√

gk

3

∑
i=1

α0
ik,0uik

]
ukk=0

. (5)

Since the set of unitary and reciprocal unitary vec-
tors are orthonormal, the constraints in (5) reduce to

α0
kc,0 =−α0

kk,0, k = 1,2,3, (6)

and
3

∑
k=1

α0
kc,0 =−

3

∑
k=1

α0
k0,0, k = 0. (7)

Note there are only three degrees-of-freedom in cell
Tc but four constraints that must be satisfied. The three
degrees of freedom within the cell permit the normal
component of the magnetization to be matched contin-
uously at three of the tetrahedral cell faces. However,
there are insufficient degrees-of-freedom within the cell
to match the normal component of magnetization at all
four of the faces of the cell as required in a divergence-
conforming formulation.

For p = 1, there are twelve Nyström degrees-of-
freedom and twelve bases, and [3]

f 1
ix
(
u1x,u2x,u3x)= α1

ix,0 +α1
ix,1u1x +α1

ix,2u2x +α1
ix,3u3x.

(8)
Enforcing continuity at each face Sk for k=0,1,2,3

gives the constraints

[
ukc√

gc
·∑3

i=1

(
α1

ic,0 +α1
ic,1u1c +α1

ic,2u2c +α1
ic,3u3c

)
uic

]
ukc=0

=
[

ukc√
gk
·∑3

i=1

(
α1

ik,0 +α1
ik,1u1k +α1

ik,2u2k +α1
ik,3u3k

)
uik

]
ukk=0

.

(9)
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The constraints in (9) then reduce to(
α1

ic,0 +α1
ic,1u1c +α1

ic,2u2c +α1
ic,3u3c

)∣∣∣
ukc=0

= −
(

α1
ik,0 +α1

ik,1u1k +α1
ik,2u2k +α1

ik,3u3k
)∣∣∣

ukk=0

,

(10)
for k = 1,2,3. For each k=1,2,3, three degrees-of-
freedom on Tc are specified leaving 3 remaining degrees-
of-freedom to match continuity across S0. For S0, the
constraint reduces to
∑3

i=1

(
α1

ic,0 +α1
ic,1u1c +α1

ic,2u2c +α1
ic,3u3c

)
u0c ·uic

= ∑3
i=1

(
α1

i0,0 +α1
i0,1u10 +α1

i0,2u20 +α1
i0,3u30

)
u0c ·ui0

.

(11)
Given the normal

u0c =−(u1c +u2c +u3c)=−u00, (12)
at S0 and u1x+u2x+u3x = 1 on the shared face, there are
three constraints and maintaining normal continuity is
possible. Note that [5] mistakenly indicates normal con-
tinuity is not possible for p ≥ 1 using the polynomial-
complete representation.

In the p = 0 case, the Nyström degrees-of-freedom
are insufficient by one DoF to be able to enforce nor-
mal continuity at all four faces simultaneously. The p = 1
case allows a linear tangential, linear normal representa-
tion instead of the typical linear tangential, constant nor-
mal representation. However, the linear tangential, lin-
ear normal representation includes degrees-of-freedom
associated with the null space of the divergence opera-
tor, which is undesirable.

In general, the order p divergence-conforming inter-
polatory vector basis set for tetrahedral cells in [9] give
the number of boundary face bases and internal cell bases
as

2(p+1)(p+2) , (13)
and

p(p+1)(p+2)/2, (14)
respectively. Table 1 lists the number of degrees-
of-freedom for the Nyström representation and a
divergence-conforming interpolatory [9] representation
on a tetrahedral cell for basis orders p = 0 through p =
2. It is noted that there are fewer Nyström bases than
divergence-conforming bases. What is missing from the
Nyström function space are mixed-order p+1 terms that
ensure that the divergence of the basis function space is
complete to order p. Without these terms, the divergence
of the Nyström basis space is only of order p-1. In addi-
tion, for the p = 0 basis, the divergence is zero.

For p > 0, while the Nyström basis is sufficient
to represent the magnetization to order p and provide
normal continuity, it has insufficient DoF to represent
the charge to order p. Therefore, the Nyström basis has
an insufficient number of DoF to represent the mixed-
order divergence-conforming space to order p. Further-
more, it over specifies the p-1 function space. Hence, the

Table 1: Total degrees-of-freedom (DoF) in Nystrom and
an interpolatory divergence-conforming representations
versus basis order p. (Number of boundary face and in-
ternal cell DoF in parenthesis)

Basis

Order ppp
Nyström DoF Interpolatory Divergence

Conforming DoF

0 3 4 (4,0)
1 12 15 (12, 3)
2 30 36 (24, 12)

standard Nyström representation on tetrahedra (and tri-
angles) cannot be truly divergence-conforming although
the method seems to provide very good solutions across
a wide range of problems.

For higher-order LCN representations, a variety of
quadrature rules with differing numbers of points and
properties exist thus complicating the discussion. For
Nyström discretizations with p > 0, it is desirable to
choose a quadrature rule of degree q = 2p, but, for
p > 1, rules of degree q = 2p usually lead to non-
square local correction matrices. Non-square local cor-
rection matrices may compromise the stability of the
solution, so choosing quadrature rules of degree q ≥
(p+1) such that the number of points equals the number
∑p+1

k=1 p(p+1)(p+2)/6 of Nyström bases for each vec-
tor component at order p is recommended. The quadra-
ture rules need not be symmetric even though symmetric
rules are preferred when available.

The magnetization spike phenomenon is not ob-
served for hexahedral meshes. For example, for the p =
0 Nyström representation on hexahedral cells, a mixed-
order representation [10] has six degrees-of-freedom
which are sufficient to match continuity of the normal
magnetization at each of the six faces of the cell. If the
Nyström degrees-of-freedom are cast onto a set of bases
within the cell, the basis representation is

M0
x =

1√
gx

3

∑
i=1

(
α0

ix,0 +α0
ix,1uix)uix, (15)

Along each unitary direction there are two degrees-
of-freedom allowing for a constant plus linear represen-
tation of the magnetization so that the magnetization at
one face can vary sufficiently to its opposite face (un-
like the p = 0 tetrahedral representation). Furthermore,
the hexahedral Nyström degrees-of-freedom span the
same space that a typical divergence-conforming Mo-
ment Method basis set spans. A polynomial-complete
representation on hexahedral cells, however, does not
span the proper divergence-conforming space and may
suffer from other spurious effects [10].

III. LCN-TO-MOM FORMULATION

Nyström methods are desirable since the system ma-
trix fill avoids the costly double integrations that arise in
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Method of Moment (MoM) discretizations. An LCN-to-
MoM conversion [7, 8] allows an LCN system to be eas-
ily converted to a MoM system without sacrificing too
many of the LCN method’s advantages. Further, for the
magnetostatic VIE formulation presented, it is not nec-
essary to strictly enforce the continuity of MoM bases
across tetrahedral cell faces. Hence, independent half-
MoM bases can be assigned to each face in each tetra-
hedral cell, which further simplifies the LCN-to-MoM
conversion. For the magnetostatic formulation, indepen-
dent half-MoM bases must be assigned to shared faces
between two cells that have different susceptibilities.

In the LCN-to-MoM conversion on tetrahedral cells,
an order p MoM representation requires the LCN system
to be filled at order (p+1) to accommodate the polyno-
mial space requirements of divergence-conforming bases
[9]. In view of Table 1, the (p+1) Nyström representa-
tion has too many degrees-of-freedom for the analogous
divergence-conforming representation. Hence, the LCN-
to-MoM conversion matrices can be viewed as the ap-
propriate constraints to remove the extraneous degrees-
of-freedom in a Nyström representation and achieve a
divergence-conforming representation.

IV. DISCUSSION

First, a convergence analysis was performed for a
locally-corrected Nyström (LCN) discretization of (1)
for a magnetic spherical shell. The inner radius is 0.9 m,
the outer radius 1.0 m, and the relative permeability is
50. The shell was meshed with a sequence of three tetra-
hedral meshes with 1514, 3320, and 6426 cells, respec-
tively for mesh orders o = 1 (linear) and o = 2 (quadratic).
The convergence analysis was performed for LCN basis
orders p = 0, 1, and 2. The magnetic field was computed
at various points outside the shell, and the average rela-
tive error was calculated using the analytic solution [4]
as a reference. The results of the convergence analy-
sis are plotted in Fig. 2. Also plotted are the relative

Fig. 2. Average relative field error in Nyström solution
of (1) for a magnetic spherical shell vs. maximum mesh
edge length for various basis orders p and mesh orders
o. The relative mesh discretization error for the spherical
shell surface area is also plotted.

Fig. 3. Subsection of circular-cylindrical shell with ex-
tending circular frustrum shell overlaid with tetrahedral
mesh.

mesh discretization error of the total surface area of the
shell. The average relative error is observed to be limited
by the mesh discretization error. However, the conver-
gence rate increases with basis order until limited by the
mesh discretization error. Hence, when the geometry is
fairly smooth and uncomplicated, the LCN method usu-
ally produces good results.

As a second example, a subsection of a circular-
cylindrical shell with a hollow circular-cylindrical frus-
trum extending outward, depicted in Fig. 3, was ana-
lyzed. The cylinder has a height of 6 m, an outer radius of
5 m, a wall thickness of 2 cm and is aligned on the z axis
and centered at the origin. The frustrum has a height of
3 m, a wall thickness of 2 cm, and extends out from the
cylinder to a final outer radius of 5.5 m. Only the subsec-
tion of the structure for x > 3 m is retained. The circular-
cylindrical shell has a relative permeability of 150, and
the frustrum extension has a relative permeability of
100. The excitation Hexcitation = −ẑ A/m, and the ge-
ometry was meshed with a 28728 cell, linear tetrahedral
mesh.

The LCN simulation was performed at p = 0, and the
LCN-to-MoM conversion used the Schaubert-Wilton-
Glisson (SWG) bases [6] with four degrees-of-freedom
per tetrahedral cell. Independent half-MoM bases were
applied to each shared face. Plots of the magnetization
for the LCN solution and LCN-to-MoM solution are
provided in Fig. 4 (a) and Fig. 4 (b), respectively. In
Fig. 4 (c) is shown the magnetization for a p = 0 LCN
solution using a hexahedral mesh. The LCN-to-MoM
solution and hexahedral LCN solutions are observed to
be regular while the tetrahedral LCN solution exhibits
anomalous spikes in magnetization across the mesh. The
maximum magnetization magnitude for the tetrahedral
LCN-MoM solution is approximately 156 A/m while the
tetrahedral LCN solution spikes to almost 1275 A/m.
Furthermore, some of the spikes in LCN magnetization
occur at smooth parts of the mesh and not near edges or
other complex features.
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(a)

(b)

(c)

Fig. 4. Magnitude of magnetization in circular-
cylindrical shell section with circular-cylindrical frus-
trum shell extension for (a) tetrahedral LCN simulation
(b) tetrahedral LCN-to-MoM simulation, and (c) hexa-
hedral LCN simulation.

Fig. 5. Scattered magnetic field Hz along a line centered
at x = 4.9 m, y = 0 m for the cylindrical shell section
with frustrum extension example. Included are the fields
due to the tetrahedral LCN solution, the tetrahedral LCN-
MoM solution, and the hexahedral LCN solution.

In Fig. 5 is plotted the z-component of the scat-
tered magnetic field vs z along a line centered at (x,y) =
(4.9,0) m for the tetrahedral LCN, tetrahedral LCN-to-
MoM, and hexahedral LCN solutions. The line passes
close to some of the magnetization spikes observed
in Fig. 4 (a) for the tetrahedral LCN solution. While
the scattered field of the LCN-to-MoM and hexahedral
LCN are visually identical, the field of the tetrahedral
LCN solution is seen to be corrupted by the spurious
magnetization.

V. CONCLUSION

The locally-corrected Nyström (LCN) method was
observed to potentially produce anomalous spikes in
magnetization when used to solve magnetostatic vol-
ume integral equations with tetrahedral mesh cells to
model geometry. The failure of the LCN method for
tetrahedra was discussed in terms of the inability of the
Nyström representation to appropriately model a typical
divergence-conforming space. Further, it was also ob-
served that the p = 0 LCN discretization for tetrahedra
does not allow continuity of normal magnetization be-
tween mesh cells to be appropriately modeled. For p >
0, the LCN basis does allow continuity, but fails to rep-
resent the charge to order p, and does not fully represent
the divergence-conforming basis to order p.

An LCN-to-MoM discretization, however, does ap-
propriately model a mixed-order divergence-conforming
space since the MoM bases are constructed to be
divergence-conforming. Further, proper continuity of the
normal magnetization across cell boundaries is mod-
eled at all orders even though it is not required to
explicitly enforce the MoM bases to be continuous
across cell boundaries. Hence, many of the advantages
of an LCN method are maintained in an LCN-to-MoM
discretization.
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Convergence results for a spherical magnetic shell
were presented that showed the LCN method usually per-
forms well for simple structures. Higher-order conver-
gence was achieved until stagnated by mesh discretiza-
tion error. However, for a more complicated model,
the LCN method produced anomalous spikes while the
LCN-to-MoM did not.

In conclusion, it is remarkable that the typical LCN
representations used with tetrahedral meshes perform as
well as they do as the representation do not span the ap-
propriate space. Still, over a wide range of problems, no
issues are observed, and good convergence characteris-
tics are achieved. It is extremely difficult to predict a
priori for a specific geometry whether the LCN method
will produce spurious results. For large complex geome-
tries with millions of cells, the probability of anomalous
spikes occurring greatly increases. Although mesh qual-
ity can affect both the LCN and LCN-to-MoM solution,
mesh quality seems to be more important to obtain ro-
bust LCN results when using tetrahedral cells. Refining
the mesh may help suppress the spikes in some cases,
but the increase in system size, as well as not knowing a
priori whether the refinement is sufficient, is prohibitive
for very large problems. Further, while the spikes seem
to be local in nature and do not seem to corrupt the whole
solution, fields in the vicinity of the spikes may have sig-
nificant errors. Hence, the use of the LCN-to-MoM is
advisable when working with tetrahedral meshes.

ACKNOWLEDGMENT

This work was supported in part by Office of Naval
Research Grants N00014-16-1-3066 and N00014-23-1-
2138.

REFERENCES

[1] L. F. Canino, J. J. Ottusch, M. A. Stalzer, J. L.
Visher, and S. M. Wandzura, “Numerical solution
of the Helmholtz equation in 2D and 3D using a
high-order Nyström discretization,” (in English),
Journal of Computational Physics, vol. 146, no. 2,
pp. 627-663, Nov. 1, 1998.

[2] S. D. Gedney and J. C. Young, “The locally
corrected Nyström method for electromagnetics,”
in Computational Electromagnetics: Recent Ad-
vances and Engineering Applications, R. Mittra,
Ed. New York: Springer, 2014, pp. 149-198.

[3] M. S. Tong, Z.-G. Qian, and W. C. Chew, “Nyström
method solution of volume integral equations for
electromagnetic scattering by 3D penetrable ob-
jects,” IEEE Transactions on Antennas and Prop-
agation, vol. 58, no. 5, pp. 1645-1652, May 2010.

[4] J. C. Young and S. D. Gedney, “A Locally Cor-
rected Nyström formulation for the magnetostatic
volume integral equation,” IEEE Transactions on

Magnetics, vol. 47, no. 9, pp. 2163-2170, Sep.
2011.

[5] J. C. Young, R. J. Adams, and S. D. Gedney,
“Anomalous current spikes in the kocally corrected
Nyström discretization of volume integral equa-
tions,” 2023 International Applied Computational
Electromagnetics Society Symposium, Denver, CO,
March 26-March 30, 2023.

[6] D. Schaubert, D. Wilton, and A. Glisson, “A tetra-
hedral modeling method for electromagnetic scat-
tering by arbitrarily shaped inhomogeneous dielec-
tric bodies,” IEEE Transactions on Antennas and
Propagation, vol. 32, no. 1, pp. 77-85, 1984.

[7] R. A. Pfeiffer, J. C. Young, R. J. Adams, and S.
D. Gedney, “Locally corrected Nyström to moment
method conversion for volume integral equations,”
IEEE Transactions on Magnetics, vol. 55, no. 4, pp.
1-7, 2019.

[8] M. Shafieipour, I. Jeffrey, J. Aronsson, and V.
I. Okhmatovski, “On the equivalence of RWG
method of moments and the locally corrected
Nyström method for solving the electric field inte-
gral equation,” IEEE Transactions on Antennas and
Propagation, vol. 62, no. 2, pp. 772-782, Feb. 2014.

[9] R. D. Graglia and A. F. Peterson, Higher-Order
Techniques in Computational Electromagnetics,
Sci-Tech Publishing, 2016.

[10] S. D. Gedney, A. Zhu, and C.-C. Lu, “Study of
mixed-order basis functions for the locally cor-
rected Nyström method,” IEEE Transactions on
Antennas and Propagation, vol. 52, no. 11, pp.
2996-3004, Nov. 2004.

John C. Young received the B.E.E.
degree in electrical engineering from
Auburn University in 1997, the M.S.
degree in electrical engineering from
Clemson University in 2000, and the
Ph.D. degree in electrical engineer-
ing also from Clemson University in
2002.

From January 2003 to April 2003, he served as a post-
doctoral researcher at Clemson University, and from
2003 to 2005, he served as a post-doctoral researcher at
Tokyo Institute of Technology, Tokyo, Japan. From 2005
to 2008, he worked at Japan Radio Co. Since 2008, he
has been with the Department of Electrical and Com-
puter Engineering at the University of Kentucky, Lex-
ington, KY where he is currently an associate professor.

Dr. Young’s research interests include integral equa-
tion methods, finite element methods, electromagnetic
theory, waveguides, array antennas, and magnetic signa-
ture modeling of hysteretic materials. He is a member



175 ACES JOURNAL, Vol. 39, No. 02, February 2024

of IEEE, the Applied Electromagnetics Society (ACES),
and URSI Commission B. He currently serves as an As-
sociate Editor for the IEEE Transactions on Antennas
and Propagation and on the Education Committee of
the Antennas and Propagation Society. He also served
(2020-2023) on the Board of Directors of ACES where
he is currently Secretary.

Robert J. Adams received the
B.S. degree from Michigan Tech-
nological University, Houghton, MI,
USA, in 1993, and the M.S. and
Ph.D. degrees in electrical engineer-
ing from Virginia Polytechnic In-
stitute and State University (Vir-
ginia Tech), Blacksburg, VA, USA,

in 1995 and 1998, respectively.
From 1999 to 2000, he was a Research Assistant Pro-

fessor with Virginia Tech. Dr. Adams joined the Univer-
sity of Kentucky in 2001, where he is currently a Pro-
fessor with the Department of Electrical and Computer
Engineering.

He has made novel contributions to mesh and fre-
quency stable integral equation formulations of electro-
magnetic problems, constraint-based methods for high-
order MOM discretizations, spectral splitting methods
for implementing shadowing effects in integral equations
at high frequencies, and sparse direct solution methods
for low-to-moderate frequency electromagnetics applica-
tions. Dr. Adams is a senior member of the IEEE.

Stephen D. Gedney received
the B.Eng.-Honors degree from
McGill University, Montreal, P.Q.,
in 1985, and the M.S. and Ph.D.
degrees in Electrical Engineering
from the University of Illinois,
Urbana-Champaign, IL, in 1987 and
1991, respectively.

He is currently the Don and Karen White Professor
of the Department of Electrical Engineering at the Uni-
versity of Colorado Denver (CUD). Previously he was
a Professor of Electrical Engineering at the University
of Kentucky from 1991 – 2014. He worked for the U.S.
Army Corps of Engineers, Champaign, IL (’85-’87). He
was a visiting Professor at the Jet Propulsion Laboratory,
(92’, 93’), HRL laboratories (’96-’97) and Alpha Omega
Electromagnetics (’04-’05). He received the Tau Beta
Pi Outstanding Teacher Award in 1995 and 2013. From
2002 – 2014, he was the Reese Terry Professor of
Electrical and Computer Engineering at the University
of Kentucky. He was titled as a Distinguished Professor
of the University of Colorado in 2022. He is a past
Associate Editor of the IEEE Transactions on Antennas
and Propagation (1997 – 2004), a member of the IEEE
Antennas and Propagation Society ADCOM (2000 –
2003), and served as the chair of the IEEE Antennas and
Propagation Society Membership Committee (1995 –
2002). He is a Fellow of the IEEE and member of Tau
Beta Pi.




