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Abstract — A novel Fabry-Perot cavity (FPC) antenna
with metasurface is presented, which can achieve broad
bandwidth and low profile. Traditional FPC antennas,
with rectangular microstrip antennas as feeds, have lim-
ited impedance bandwidth and struggle to make a com-
promise in the gain bandwidth and maximum gain value.
To obtain wide bandwidth, the FPC antenna proposed
in this paper utilizes a feed antenna loaded with para-
sitic patches. To widen impedance bandwidth and gain
bandwidth and reduce the profile, a positive phase gra-
dient partially reflective surface (PRS) and an artifi-
cial magnetic conductor (AMC) are located above and
below the feed antenna, respectively. The phase prop-
erty of the PRS and AMC also brings in a more
smooth gain value curve. To further increase gain values,
four metal reflector plates are located around the pro-
posed antenna. The overall dimension of the antenna is
2.5A0%2.5A0x0.25A¢ (Ag is the free space wavelength at
7.5 GHz). Simulated results show that the resonant cav-
ity antenna proposed in this letter exhibits an impedance
bandwidth of 13.3% (7-8 GHz) and a 3 dB gain band-
width of 14.3% (7.02-8.10 GHz). The maximum gain
in the whole operating band is 14.5 dBi. The measured
results are in good agreement with the simulated ones.

Index Terms — Fabry-Perot cavity, high gain, low-profile,
wideband.

L. INTRODUCTION

Developments of communication technology bring
in appearance of numerous high-gain antennas, in which
Fabry-Perot cavity (FPC) antennas have drawn plenty
of interest from academics [1H3]. According to opera-
tion mechanism of resonant cavity antennas, the height
of most Fabry-Perot antennas is at least a half wave-
length [4} 15]]. In traditional Fabry-Perot antennas, perfect
electric conductors (PEC) are utilized as ground, which
results in high profile [6]. To meet the requirement of
miniaturization of antennas, it is essential to research
how to reduce the profile while maintaining the band-
width.
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Because of in-phase properties, an artificial mag-
netic conductor (AMC), when utilized as ground of the
antenna, can effectively reduce the profile compared with
PEC. Consequently, a number of FPC antennas with
AMC ground have been presented [7, 8]]. In [7], a minia-
turized Fabry-Perot antenna is proposed which achieves
a high gain of 12.4 dBi by adopting an AMC ground.
The bandwidth is 6.4%. To achieve higher gain value,
a novel FPC antenna is designed in [8], which has a
profile of one-eighth wavelength and a maximum gain
of 16.27 dBi, while the bandwidth is required to be
widened. Similarly, antennas with AMC surfaces in [9-
12]] achieve low profiles. However, both the impedance
bandwidth and gain bandwidth are need to be broadened
due to the phase effect of AMC surface.

In order to achieve wider bandwidth and lower pro-
file, a novel FPC antenna is proposed in this paper. For
simplicity, a rectangular microstrip antenna is used as the
feed antenna. To obtain broad gain bandwidth, a partially
reflective surface is designed above the feed antenna.
Moreover, the profile of the antenna can be reduced to
a quarter wavelength by loading an AMC ground above
the feed antenna. To further increase the maximum gain
value, four metal reflector plates are placed around the
antenna, and the maximum gain reaches 14.5 dBi. Sim-
ulated results show that the impedance bandwidth is
13.3%, and the 3 dB gain bandwidth is 14.3%. In sum-
mary, the designed antenna in this paper can obtain a
wider gain bandwidth and a quarter wavelength profile
simultaneously. Moreover, by loading the reflective wall
without increasing the longitudinal size, the gain values
of the designed antenna is further increased.

II. ANTENNA DESIGN

A. Antenna configuration

Figure [I] illustrates the proposed configuration,
which is etched on 2-mm-thick substrates (e,=2.2,
tand=0.001). A microstrip patch antenna loaded with a
5-mm-thick parasitic patches is designed and utilized as
feed antenna. At a height of 10 millimeters above the
antenna is located a partially reflective surface, which
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consists of 10x 10 units. On the upper layer of the unit is
a circular patch and on the lower layer is a cross patch.
An AMC structure with rectangular unit is located at the
bottom of the feed antenna, which is surrounded by four
metal reflector plates. Dimensions (unit: mm): §1=20,
S>=10, P1=16, P,=13.2, P3=12.1, P4=5, Ps=12, X;=7.8,
X2=1, X3=2, X4=0.6, and X5=8.

Fig. 1. 3D geometry of proposed antenna.

B. Working mechanism

The feed antenna, as shown in Fig. |z| (b), is a rect-
angular microstrip antenna loaded with parasitic patches.
Compared with the antenna in Fig.[2|(a), the feed antenna
generates a new resonance in high frequency band when
loaded with parasitic patches, which exhibit a wider
impedance bandwidth. Figure [ presents S; of the feed
antenna with and without parasitic patches. It can be seen
that the impedance bandwidth of the microstrip antenna
broadens from 6.6% (6.75-7.21 GHz) to 12.8% (6.85-
7.79 GHz) when loaded with parasitic patches. Figure ]
shows the electric field distribution at 7 and 7.7 GHz of
the feed antenna with parasitic patches. It can be found
that the microstrip antenna mainly generates resonances
at 7 GHz, and the parasitic patches are primary resonant
at 7.7 GHz. When loaded with parasitic patches, multiple
resonances can be generated, which broadens the band-
width of the feed antenna.

Rectangular microstrip antenna

antenna with parasitic patches

(a) (b)

Fig. 2. Schematic diagram of feed source antenna
structure.

According to FPCA theory, the response of the
resonant cavity antenna satisfies equations (1) and (2)
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Fig. 3. S1; of the feed antenna with and without parasitic
patches.
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Fig. 4. Electric field distribution of the feed antenna.

7.7 GHz

(12} [13]], where |Tpgs| is the reflection magnitude of the
partially reflective surface (PRS):

c
= — —2N7n),N=0,1,2.... 1
fo 47THC(¢PRS+¢GND ﬂ:), s 1y ) ( )
1+ |Tpgs|
D =10log ——, ()
g1_|FPRS|

where Hc is the profile height of the antenna in a high-
gain resonant state. When the operation frequency is
given, the parameter Hc has an effect on the phase
response of the upper and lower layers of metasurfaces.
D is the directivity of antennas. Generally, the larger
the reflection coefficient of reflective surfaces, the higher
the directivity, which will also increase dimension of
antennas simultaneously. Therefore, there should be a
compromise between the dimension and the directiv-
ity in the design of antennas. The proposed antenna is
designed aiming to form a resonant cavity and obtain
high gain by adopting a partially reflecting surface and an
AMC.

By designing a partially reflective surface with a
positive phase response, the resonant state expressed
in equation (I) can be maintained with wider band-
width. Additionally, the AMC surface is designed to



achieve low profile because of in-phase reflective phase.
A square patch is used as the AMC unit, which is because
the square unit exhibits an excellent in-phase reflection
bandwidth and is easily adjusted to generate a resonant
in the band expressed in equation (T).

III. SIMULATED RESULTS

The performances are simulated by using ANSYS
HFSS Floquet-port model. FiguresE] (a) and (b) show the
phase response plot of AMC and the phase and magni-
tude response plot of partially reflective surface, respec-
tively. From Fig. [J (a), the phase values of AMC are
greater than the theoretical ones, which is designed to
ensure a wide phase margin when it is summed with that
of the partially reflective surface to satisfy the resonant
state in equation (T)).
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Fig. 5. (a) Phase response of AMC and (b) phase and
magnitude response of PRS.

A square patch is chosen as AMC unit because that
is a simple structure, making it convenient to adjust the
phase values. Figure[]shows the phase value curves with
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Fig. 6. Phase response of AMC varies with Xs.

different values of parameter Xs. As X5 increases, the
phase curves of AMC move towards the low frequency
band. X5 is the unit dimension of the AMC, and the res-
onance frequency decreases as X5 increases. To obtain a
required phase, the value of X5 needs to be adjusted.
The simulated S;; and gain of the proposed antenna
in different situations are shown in Fig. [7} The simu-
lated impedance bandwidth is from 7 to 8 GHz, and the
3 dB gain bandwidth ranges from 7.02 to 8.10 GHz.
It can be seen that the gain bandwidth of the antenna
basically coincides with the impedance bandwidth. The
FP antenna without reflection has 4 dB higher gain val-
ues than that of the feed antenna. Moreover, after added
reflection, the gain values of the proposed antenna are
increased by 2 dB. Ultimately, the final designed antenna
achieves an axial maximum gain value of 14.5 dBi,
which is 6.4 dB higher than that of the feed antenna.
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Fig. 7. Simulated realized gain and Sy;.
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IV. EXPERIMENTAL RESULTS 0

To validate the simulations, the designed antenna is
fabricated and measured as shown in Fig. [8] The reflec-
tion coefficients are measured by a Keysight ES063A
network analyzer. Figure [9| depicts the simulated and
measured S;;. The measured S;; is from 6.91 to
7.81 GHz, which agrees with the simulated ones (7 to
8 GHz) except for a small offset. The small difference
between the measured and the simulated results is mainly
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caused by fabrication and measured error. The radia- -50 )—+— Simulated Cross-pol

tion pattern is measured in the microwave laboratory. -55 '—v—Measured Cross—pol
Figure[T0]illustrates the 2D radiation pattern at 7.5 GHz 00 100 S0 0 30 100 150
in xoz and yoz planes, from which it can be demon- Frequency (GHz)

strated that the measured radiation patterns agree well (a)

with the simulated ones. The presented antenna exhibits
good radiation directivity, and the cross polarization is
less than —30 dB in the main radiation direction.

The performances of the proposed antenna com-
pared with the references are illustrated in Table [I] The
bandwidth is the intersection of impedance bandwidth
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" — Fig. 10. Simulated and measured radiation patterns of
= the proposed antenna at 7.5 GHz in (a) xoz and (b) yoz
plane.
Fig. 8. The proposed antenna prototype. Table 1: Comparison with other FPC antennas
References| Bandwidth | Gain | Overall size (A()
0 (%) (dBi)
[71 6.4 124 | 2.26%x2.26x0.25
- 8] 15 1627 | 4x4x0.125
10 ] 2.1 11.5 [1.43x1.43x0.167
4.1and 2.7 {10.1 and| 1.49 x 1.49x
z " 152 | 0.28 and 2.67 x
T, 00 2.67 x 0.49
= [0 3.1 17 unknown X
@25 unknown x 0.25
30t [12] 4 4.1 1.1x1.1x0.075
—=— Simulated S, [14] 2.8 13.4 2.6%2.6x0.36
gl | Measured S [13] 324 13.67 | 4.49x4.49x0.57
. ! This work | 13.04 145 | 25x25x0.25

4250 6.75 700 725 75() 775 800 825 8.50
Frequency (GHz)

and 3 dB gain bandwidth, and A is the wavelength at

Fig. 9. Measured and simulated Sy;. center frequency. Compared with antennas in [8] and



[L1], the gain values of the proposed antenna is a little
lower, while, the gain bandwidth in this paper is wider
and the dimension is smaller. In addition, compared to all
references except [[15], the proposed antenna has a wider
bandwidth. In [15], the height of the Fabry-Perot antenna
is more than a half wavelength, which brings in wider
bandwidth. Compared with [15]], the proposed antenna
in this paper has a smaller dimension and higher gain
values.

V. CONCLUSIONS

The design and fabrication of a low profile broad-
band Fabry-Perot resonant cavity antenna is presented
in this paper. The impedance bandwidth and gain band-
width are wide by designing a partially reflective surface
and loading a parasitic patch above the feed antenna. As
a result, the final antenna provides an impedance band-
width from 7 to 8 GHz (13.3%) and a 3 dB gain band-
width from 7.02 to 8.10 GHz (14.3%). Afterwards, the
addition of a metal reflector plate around the antenna fur-
ther increases the maximum gain value to 14.5 dBi with-
out affecting the bandwidth. Both the simulated and mea-
sured results verified this improvement. The presented
antenna offers the advantages of large bandwidth, high
gain and low profile, making it suitable for high-capacity
microwave communications in the C-band, such as satel-
lite communications and healthcare services.
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