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Abstract – We extend the nonstandard (NS) finite dif-
ference time domain (FDTD) methodology, originally
developed to solve Maxwell’s equations in linear mate-
rials, to nonlinear ones. We validate it by comput-
ing harmonics generation in a nonlinear dielectric and
comparing with theory. The methodology also applies to
the quantum electrodynamics that describes the interac-
tion of charged particles with electromagnetic fields, and
also to the Ginzburg-Landau model of superconductivity.

Index Terms – Finite difference time domain (FDTD),
nonlinear optics, nonlinear susceptibility, nonstandard
FDTD, quantum electrodynamics, superconductivity.

I. INTRODUCTION
The conventional or standard (S) finite difference

time domain (FDTD) methodology [1] is widely used
for linear electromagnetic calculations, but its accuracy
is low relative to the computational cost. At wavelength
λ for space-step size h, its error scales as (h

/
λ )4 and

in three dimensions its computational also cost scales as
(λ

/
h)4. We [2] have introduced what is called a nonstan-

dard (NS) FDTD methodology [3] for which the error
scales as (h

/
λ )8, but computational cost still scales as

(λ
/

h)4.
Nonlinear problems are generally difficult to solve

analytically, but numerical methods also often fail to
yield good solutions unless the discretization steps are
small, and even then numerical instability can arise.
A classic example is the logistic equation, the dis-
crete form of which is a well-known example of deter-
ministic chaos. In this paper we extend the NS-FDTD
methodology to solve Maxwell’s equations for nonlinear
materials.

Although not the topic of this paper, the methodol-
ogy is also useful to solve certain problems in quantum
mechanics. For example, the Hamiltonian of a changed
particle (of mass m,charge q) in an electromagnetic field
[4] (vector potential A, scalar potential ϕ) is nonlinear in
the form:

H =
1

2m
(−ih̄∇−qA)2 +qϕ. (1)

II. NONLINEAR OPTICS
In a nonlinear dielectric the electric displacement is

D = ε0

(
E+χ(1)E+χ(2)E2 + · · ·

)
, where ε0 is the vac-

uum electric permeability, and E the electric field. We
use units in which ε0 = 1 and the vacuum magnetic per-
meability is µ0 = 1

/
c2 (c =vacuum velocity of light).

Retaining only second order nonlinearity, and defining
ε = 1+χ(1), then D = εE+χ(2)E2. Taking the magnetic
susceptibility to be µ0 everywhere, Maxwell’s equations
become:

µ0∂ tH=−∇×E,
∂tD=∇×H, (2)

and the index of refraction is n =
√

ε . In a linear material
∇ • D = 0 implies ∇ • E = 0, but this is not true in a
nonlinear one. If, however, χ(2) is small, ∇ •E = 0 is a
good approximation [5], and Maxwells equations reduce
to a nonlinear wave equation of the form:(

∂
2
t − c2

ε
∇

2
)

E(x, t) =−χ(2)

ε
∂

2
t E(x, t)2. (3)

For simplicity, we first develop the finite difference
model of (3) in one dimension, where it reduces to:(

∂
2
t − c2

n2 ∂
2
x

)
E(x, t) =−χ(2)

n2 ∂
2
t E(x, t)2. (4)

Before proceeding further, we first introduce the
nonstandard methodology for the linear wave equation.

III. FINITE DIFFERENCE MODELS FOR
THE LINEAR WAVE EQUATION

A. Notation and definitions
Define the partial difference operator (dt ) by

dt f (x, t) = f (x, t + ∆t/2)− f (x, t − ∆t/2). Then it is easy
to show that d2

t = dtdt is given by:
d2

t f (x, t) = f (x, t +∆t)+ f (x, t −∆t)−2 f (x, t). (5)
The second derivative is thus approximated by:

∆t2
∂

2
t f (x, t)∼= d2

t f (x, t). (6)
The operator d2

x is defined analogously to d2
t and:

∆x2
∂

2
x f (x, t)∼= d2

x f (x, t). (7)
We now construct finite difference models of the

homogeneous wave equation:(
∂

2
t − v2

∂
2
x
)

ψ(x, t) = 0. (8)
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B. Standard finite difference model
Writing v̄= v∆t

/
∆x, and replacing the derivatives in

(8) with the FD expressions (6) and (7), gives the conven-
tional or standard (S) finite difference (FD) model of (8):(

d2
t − v̄2d2

x
)

ψ(x, t) = 0. (9)

General solutions of (8) are f (x∓vt)where f is arbi-
trary. Substituting f (x∓ vt) into the S-FD model above,
we find:[
d2

t − v̄2d2
x
]

f (x∓vt)=−
(

1− v̄4

12

)
∆x4 f (4)(x∓vt)+· · · .

(10)
The right side of (10) is the model error. Although

it vanishes for v̄ = 1, across multiple media in which v
varies, maintaining v̄ = 1 by adjusting ∆x or ∆t gives rise
to large errors on the media boundaries and is thus of
limited use in practice.

C. Nonstandard finite difference model
It is, however, possible to construct an exact

FD model with respect to harmonic waves, ϕ(x, t) =
ei(k x−ω t),where ω = vk. Writing ω̄ = ω∆t, k̄ = k∆x, and
substituting ϕ into (9) gives:[

d2
t − v̄2d2

x
]

ϕ = 4
[
−sin2 (

ω̄
/

2
)
+ v̄2 sin2 (k̄

/
2
)]

ϕ.
(11)

The right side of (11) can be made to vanish with the
substitution v̄ → ṽ, where:

ṽ = sin
(
ω̄
/

2
)/

sin
(
k̄
/

2
)
. (12)

Thus, an exact model of the wave equation with
respect to harmonic waves is:(

d2
t − ṽ2d2

x
)

ψ(x, t) = 0. (13)

This FD model is exact because ϕ is a solution of
both the wave equation (8) and its model (13). This is an
example of what is called an NS model [3]. Expanding
d2

t ψ(x, t) via (5) and solving for ψ(x, t +∆t), we obtain
an exact NS FDTD algorithm:

ψ(x, t +∆t) =−ψ(x, t −∆t)+
[
2+ ṽ2d2

x
]

ψ(x, t). (14)

D. Numerical stability and accuracy
The numerical stability condition [2, 6] for the S-

and NS-FDTD algorithms is:
v∆t
∆x

≤ 1. (15)

In the case v∆t
/

∆x = 1, the S- and NS-FD models
are equivalent and exact with respect to any waveform.
However, whatever the value of 0 < v∆t

/
∆x ≤ 1, for

a supposition different frequencies, the shortest period
(Tmin) corresponding to the highest frequency (νmax)
must satisfy the Nyquist sampling criterion [7]:

Tmin
/

∆t > 2, (16)

and the minimum wavelength (λmin) must satisfy:

λmin
/

∆x > 2. (17)

E. Wave equation with a source
To iterate the FDTD algorithm, two initial fields are

needed. They can be generated by turning on sources at
time = 0. The wave equation with a source s(x, t) is:(

∂
2
t − v2

∂
2
x
)

ψ(x, t) = s(x, t). (18)

Standard finite difference model
Substituting FD expressions of the derivatives in

(18) the S-FD model is:(
d2

t − v̄2d2
x
)

ψ(x, t) = ∆t2s(x, t). (19)
It is interesting to note that while the stability condi-

tions of (15), (16) and (17) still hold, the S-FDTD algo-
rithm for the wave equation with a source is not exact
even for v∆t

/
∆x = 1.

Nonstandard finite difference model
To derive the NS-FD model, we examine the ana-

lytic solution of (18). Imposing the initial conditions
that ψ and its first time derivative vanish for t ≤ 0,
ψ(x, t)|t≤0 = ∂tψ(x, t)|t≤0 = 0, the Green’s function that
solves (18) is:

G(x− x′, t − t ′) =
1
2v

Θ
(
v[t − t ′]−

∣∣x− x′
∣∣) , (20)

where the step function is defined by Θ(t) = 0 for t < 0
and Θ(t) = 1 for t ≥ 0. Using (20) it can be shown that
the harmonic point source:

s0(x, t) = 2vω δ (x)Θ(t)cos(ωt), (21)
generates an outgoing unit sine wave:

ψ0(x, t) = Θ(ω t − k |x|)sin
(
t −|x|

/
v
)
. (22)

Modeling δ (x) as δx,0
/

∆x, where δx,0 = 1 for x = 0
and δx,0 = 0 for x ̸= 0, and putting s → s0 in (19), the
S-FD model becomes:(

d2
t − v̄2d2

x
)

ψ(x, t) = 2vω
∆t2

∆x
δx,0 Θ(t)cos(ω t). (23)

We now postulate the NS-FD model to be:(
d2

t − ṽ2
∂

2
x
)

ψ(x, t) = 2vω Ã δx,0 Θ(t)cos(ω t), (24)

where ∆t2
/

∆x→ Ã, which is to be determined. Requiring
that ψ0 be a solution of both (18), with s = s0, and of
(24), we find [3]:

Ã =
2

ω v
sin2(ω̄

/
2)

tan(k̄
/

2)
. (25)

When a source is abruptly switched on in FDTD cal-
culations it produces extraneous frequency components
which give rise to large errors [3]. This is remedied by
replacing the step function with a slow switch-on func-
tion. A commonly used one is:

Θg(t) = Θ(t)
[
1− e−β 2t2

]
. (26)

Taking 1
/

β to be several wave periods suffices to
suppress the errors. The NS source model which gener-
ates ψ0 in a NS-FDTD calculation is thus:

s̃0(x, t) = 4
sin2(ω̄

/
2)

tan(k̄
/

2)
δx,0 Θg(t)cos(ω t). (27)
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With Ã given by (25) the NS-FD model (24) is exact.
As expected, in the limits ∆x→ 0 and ∆t → 0, the NS-FD
model reduces to the S-FD one.

The NS-FDTD model of the wave equation with a
harmonic point source is thus:

ψ(x, t +∆t) = −ψ(x, t −∆t)
+
[
2+ ṽ2d2

x
]

ψ(x, t)+ s̃(x, t).
(28)

When s̃ = s̃0 the iteration of (28) generates the out-
going unit sine wave given by (22), where k and ω are
related by:

sin
(
ω ∆t

/
2
)
= ṽsin

(
k ∆x

/
2
)
. (29)

Initialization and iteration
The FDTD calculation is initialized by taking

ψ(x,−∆t) = ψ(x,0) = 0, (30)
and switching on the source at t = 0 generates the inci-
dent field.

The boundary conditions at material interfaces are
determined by the wave equation itself, viz. continuity of
both the field and its first partial derivative with respect to
position. Since null fields obviously satisfy these condi-
tions, and because FDTD derives directly from the wave
equation, the generated fields automatically satisfy the
boundary conditions as they impinge upon material inter-
faces when the algorithm is iterated.

F. Multi-frequency NS-FDTD
It might seem that NS-FDTD is applicable only to

monochromatic waves, but it is also valid for multiple
frequencies. For a fixed value of ṽ, models (13) and (24)
are exact for any angular frequency-wavenumber pair
(ωi,ki) related by:

sin
(
ωi ∆t

/
2
)
= ṽsin

(
ki ∆t

/
2
)
. (31)

Thus, the NS-FD model is exact with respect to a
multi-frequency wave of the form:

ϕΣ(x, t) = ∑
i

aiei(kix±ωit), (32)

which is produced by multi-frequency source superposi-
tion. For example:

s̃Σ(x, t) = 4δx,0 Θg(t)∑
i

sin2(ω̄i
/

2)
tan(k̄i

/
2)

cos(ωi t) (33)

generates a frequency superposition of unit sine waves.
Such a superposition is useful for high accuracy compu-
tations of reflection or transmission spectra. The maxi-
mum frequency is limited by the time step according to
the Nyquist sampling criterion given by (16).

G. Nonstandard model of refractive index
Let k0 be the vacuum wave number and ω0 = c k0

be the angular frequency of a light wave. In a medium
of refractive index n the wavenumber is k = nk0. From
(12) the algorithmic vacuum velocity of light in the NS-
model is:

c̃ = sin
(
ω̄0

/
2
)/

sin
(
k̄0
/

2
)
. (34)

In a medium of refractive index n the algorithmic
velocity of light is:

ṽ = sin
(
ω̄0

/
2
)/

sin
(
nk̄0

/
2
)
. (35)

Define the nonstandard index of refraction to be
ñ = c̃

/
ṽ:

ñ =
sin(nk̄0

/
2)

sin(k̄0
/

2)
. (36)

The nonstandard FDTD algorithm (28) is thus:
ψ(x, t +∆t) = −ψ(x, t −∆t)

+
[
2+ c̃2

ñ2 d2
x

]
ψ(x, t)+ s̃(x, t).

(37)

Before proceeding to the nonlinear NS-model we
introduce a simplified and abbreviated notation. Dis-
cretizing space time as x = χ ∆x, t = τ ∆t and defining
ψ(x, t) = ψτ

χ ,
(τ , χ integers), (37) is compactly rewritten as:

ψ
τ+1
χ =−ψ

τ−1
χ +

[
2+

c̃2

ñ2 d2
x

]
ψ

τ
χ + s̃τ

χ , (38)

with the definitions d2
x ψτ

χ = ψτ
χ+1 + ψτ

χ−1 − 2ψτ
χ ,

d2
t ψτ

χ = ψτ+1
χ +ψτ−1

χ −2ψτ
χ (compare with equation 5).

IV. FINITE DIFFERENCE MODELS OF THE
NONLINEAR WAVE EQUATION

A. Standard finite difference model
First construct the S-FD model of (4). For notational

clarity suppress the spatial dependence and denote time
as a subscript, thus Eτ = E(x,τ ∆t). Writing c̄ = c∆t

/
∆x,

the S-FD model of nonlinear wave equation (4) is:(
d2

t −
c̄2

n2 d2
x

)
Eτ =−χ(2)

n2

[
E2

τ+1 +E2
τ−1 −2E2

τ

]
. (39)

The intractability of this model is immediately evi-
dent. Since (39) is quadratic in Eτ+1, there are two solu-
tions and it is unclear a priori which one to use.

B. Nonstandard finite difference model
In nonstandard models a term of power m (a positive

integer), such as E(x, t)m is modeled as [3, 8]:
Em

τ = Em
τ Em

τ−1 · · ·Em
τ−m+1. (40)

The NS-model of E(x, t)2is thus E2
τ =Eτ Eτ−1. Modeling

d2
t E(x, t)2 as:

d2
t E2

τ = Eτ+1Eτ +Eτ−1Eτ−2 −2Eτ Eτ−1, (41)
postulate the NS-FD model of (4) to be:(

d2
t −

c̃2

ñ2 d2
x

)
Eτ =−χ(2)

ñ2

[Eτ+1Eτ +Eτ−1Eτ−2 −2Eτ Eτ−1]+ s̃τ , (42)
where s̃τ is a nonstandard source term that generates the
fields. Solving for Eτ+1 we find:

Eτ+1 =

2Eτ

[
ñ2 +χ(2)Eτ−1

]
−Eτ−1

[
ñ2 +χ(2)Eτ−2

]
+ c̃2d2

x Eτ

ñ2 +χ(2)Eτ

+ s̃τ .

(43)
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Whereas the FDTD algorithms for the linear wave
equation require two initial fields, the NS-FDTD for non-
linear wave equation requires three. To iterate (43) Take
E−2 = E−1 = E0 = 0, and switch on the source at t = 0.

C. Computational model
We take the computational domain to be 0 ≤ x ≤

N∆x. In Fig. 1 the nonlinear dielectric (magenta) is
immersed in vacuum (white) and illuminated by a point
harmonic source (S) of angular frequency ω0. S is
located at x = p > ∆x, away from the computational
boundary, thus:

s̃0(x, t) = 4
sin2(ω̄0

/
2)

tan(k̄0
/

2)
δx,p Θg(t)cos(ω0 t), (44)

where c = ω0
/

k0. We choose ∆t and ∆x such that c̄ =
c∆t

/
∆x = 1, and thus c̃ = c̄ = 1. Thus (only) in vacuum,

as noted in Section II D, the S-FDTD and NS-FDTD
algorithms are equivalent and exact. With the choices
above in the vacuum:

Eτ+1 =−Eτ−1 +
[
2+d2

x
]

Eτ + s̃τ , (45)
where sτ = s0(x, t). Because the boundaries of the com-
putational domain are vacuum and c̄ = 1, the Mur
absorbing boundary [9, 10] is exact, and is given by:

E(0, t +∆t) = E(∆x, t), (46)
E(N∆x, t +∆t) = E(N∆x−∆x, t). (47)

Taking the vacuum wavelength of the incident field
be λ0 = 1200 nm, let ∆x = λ0

/
64 = 18.75nm, which

implies the wave period T0 = λ0
/

c. Setting

∆t = T0
/

64 = 6.25×10−17 sec (48)
gives c̄ = c̃ = 1. For this choice, the source simplifies to:

s̃0(x, t) = 2 sin(ω̄0)δx,0 Θg(t)cos(ω0 t). (49)

Fig. 1. Computational set-up to simulate propagation and
harmonic generation in a non-linear dielectric illumi-
nated by a point harmonic source S located in vacuum.
The time dependence of the transmitted field is recorded
at point O outside the dielectric.

V. RESULTS AND COMPARISON WITH
SEMI-ANALYTIC CALCULATION

Take n= 1.6, χ(2) = 0.05, the source amplitude to be
1.1, ω0

/
2π = 1

/
64∆t, and the source rise time 1

/
β =

4T0, where T0 = 2π
/

ω0.
Figure 2 is a snapshot of the position dependence

of E. A time series of the electric field amplitude was
collected at an observation point outside the dielectric

Fig. 2. Light from a source (yellow dot) enters the
dielctric material (orange line). As the electric field
(black curve) traverses the material, harmonics are gen-
erated.

after the source switched on and the field had completely
traversed the dielectric. The data were analyzed with a
discrete Fourier transform (DFT). The DFT amplitudes
of the harmonic frequencies are shown in Fig. 3.

Fig. 3. Harmonics generation in a nonlinear dielectric.
Time steps from 1300≤ t

/
∆t ≤ 1940 were analyzed. The

frequency unit is ∆t−1 =16•1015Hz.

In Fig. 4 we compare our simulation with a semi-
analytic calculation based on the low depletion approxi-
mation [1]. The low depletion model assumes that energy
is slowly transferred from the fundamental mode to the
higher harmonics. This is the usual case when χ(2) is
small.

VI. EXTENSION TO TWO AND THREE
DIMENSIONS

The linear homogeneous wave equation in three
dimensions is: (

∂
2
t − v2

∇
2)

ψ(x, t) = 0, (50)

where x = (x,y,z). Defining d2
y and d2

z by analogy with
d2

x , define the Laplacian difference operator:
d2 = d2

x +d2
y +d2

z . (51)
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Fig. 4. Amplitudes first harmonic (black) and second har-
monic (blue) with position and in the nonlinear material
(orange). Comparison with theory (red) in the low deple-
tion approximation.

Taking Δx = Δy = Δz = h:

∇2 f (x)∼= d2

h2 f (x). (52)

The S-FD model for the three-dimensional wave
equation is thus:(

d2
t − v̄2d2)ψ(x, t) = 0, (53)

where v̄ = vΔt
/

h.
To construct the NS-model, define:

d̃2 = d2 +

(
1
6
+

(k0h)2

180

)[
d2

x d2
y +d2

x d2
z +d2

y d2
z
]

(54)

+
1
30

d2
x d2

y d2
z .

The motivation and derivation of this definition is
found in [3]. The NS-FD model of wave equation (50)
becomes

(
d2

t − ṽ2d̃2)ψ(x, t) = 0, (55)
where ṽ is given by (12) and k̄ = kh. The NS-source
model remains the same but with Δx → h.

Table 1 lists the stability conditions for the S- and
NS- algorithms.

Table 1: Stability conditions for the S- and NS- algo-
rithms

Maximum Stable Value
Theoretical / Practical

S-FDTD
v̄

NS-FDTD
ṽ

1-D 1/1 1/1

2-D

√
2

2
∼= 0.70/0.67 0.86/0.80

3-D

√
3

3
∼= 0.57/0.45 0.80/0.70

For S-FDTD, the maximum value of v̄ is given,
while for the NS-FDTD algorithm the maximum value
of ṽ is given. The practical stability limits are somewhat
lower due to the termination of the computational bound-
ary. Details of the derivation are found in [2]. The greater

Fig. 5. Mie scattering of an infinite dielectric cylinder
(white). Scattered intensity (shades of red) in the exterior
was computed using the NS-FDTD and S-FDTD algo-
rithms and compared with Mie theory. Index of refrac-
tion = 1.7, vacuum wavelength = 800 nm, cylinder radius
= 600 nm, grid spacing = 100 nm.

stability of NS-FDTD allows the solution of problems
using fewer time steps. The advantage over S-FDTD is
greatest in three dimensions.

The NS-FD model has been validated against ana-
lytic solutions of Mie scattering [11, 12], as depicted
in Fig. 5. An infinite plane wave (not shown) is inci-
dent from the left and the scattered field intensity
computed.

In the vacuum (black) the wavelength is λ0 =800
nm and in the dielectric (white) it is λd = λ0

/
1.7, thus

in the vacuum h
/

λ0 = 1
/

8 = 0.125, but in the dielectric
h
/

λd = 1.7
/

8 = 0.2125, which is just slightly greater
that the minimum allowed by the Nyquist criterion for
a 2-dimensional (uniform) grid where h

/
λ must sat-

isfy h
/

λ < 1
/
(2
√

2) ∼= 0.3536. Nonetheless the NS-
FDTD error remains low. The theoretical error of the NS-
FDTD calculation is εNS ∼=(kh)8

/
438840, while that of

S-FDTD is εS ∼= (kh)4
/

48.
The three-dimensional NS-FDTD algorithm for the

nonlinear dielectric derives from the one-dimensional
form (42) with the substitution d2

x → d̃2:(
d2

t −
c̃2

ñ2 d̃2
)

Eτ = (56)

− χ(2)

ñ2 [Eτ+1Eτ +Eτ−1Eτ−2 −2Eτ Eτ−1]+ s̃τ ,

where Eτ stands for the x−, y−, or z−component of
E(x,τΔt).

VII. SUMMARY AND CONCLUSIONS
We introduced a high precision finite difference time

domain algorithm derived from a nonstandard finite dif-
ference model to simulate electromagnetic propagation
in nonlinear dielectrics. We validated the results of our
simulation against an analytic calculation based on the
low depletion approximation [5].
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This NS-methodology can also be applied to other
nonlinear problems, such as quantum electrodynamics in
magnetic fields, and to higher order nonlinearities.

We introduced our methodology in one-dimension
and extended it to two and three dimensions and have
verified its high accuracy and numerical stability [2].
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