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Abstract – In this work, we present a straightforward and
simple method of moments (MOM) solution procedure,
with minimum mathematical manipulations, to solve
the coupled integral equations for multiple, homoge-
neous and inhomogeneous, dielectric bodies of arbitrary
shape directly in the time domain. The standard surface
and volume integral equation formulations are used for
homogeneous and inhomogeneous bodies, respectively.
The numerical solution procedure does not involve a
time-marching process as is usually adopted for time
domain problems and seems to be one of the primary
reasons for the late-time instabilities as a result of error
accumulation. The present solution method is stable for
a very long time as evidenced by several representative
numerical examples presented for validation.

Index Terms – dielectric bodies, integral equations,
method of moments, time domain.

I. INTRODUCTION
Many applications developed in recent times, such

as short pulse radar and 5G cellular systems, require the
calculation of wide-band signature for efficient design
and to avoid multi-band interference. The traditional
frequency domain techniques for such calculations are
expensive and time consuming. As a result, direct time
domain techniques received considerable attention to
develop user-friendly, general purpose, stable algorithms
that can be easily adopted to a wide variety of problems.
It may be noted that the goal of the present work is devel-
oping an efficient algorithm in time domain to solve a
variety of problems and does not target a specific appli-
cation problem.

The general purpose numerical methods in the time
domain can be broadly classified into two categories
viz. a) Differential Equation (DE) solution techniques
and b) Integral Equation (IE) solution techniques. The
Finite Difference Time Domain (FDTD) is a popular DE
solution method that is applicable to a variety of prob-
lems [1–5]. Similarly, Method of Moments (MOM) is
the popular IE based solution for solving time domain
electromagnetic problems.

In this work, we deal with IE solution methods only.
One advantage of the IE method over the DE method
is that the solution space is confined to the space occu-
pied by the object. In contrast, for DE based methods
the surrounding space also needs to be included in the
solution.

Until recently, a time-stepping process based on
MOM, popularly known as the Marching-on-in-Time
(MOT) method, has been the preferred technique for
solving the numerical solution of Time Domain Integral
Equation (TDIE) for electromagnetic field problems [6–
11]. However, the MOT procedure is prone to late-time
instabilities. The primary source of instability seems to
be the accumulation of error at each time step even-
tually resulting into rapidly growing oscillations com-
monly known as late-time instabilities.

Recently, a new type of algorithm was developed
using MOM that did not employ time-stepping proce-
dure and remained stable for a very long time signature
[12, 13]. In the present work, we apply this new method
to multiple dielectric bodies of arbitrary shape using the
surface equivalence principle [14], resulting in a sur-
face integral equation (SIE) formulation or the volume
equivalence principle [15] resulting in a volume integral
equation (VIE) formulation. We note that SIE formula-
tion is applicable only to homogeneous dielectric bodies
whereas VIE formulation is applicable to both homoge-
neous and inhomogeneous volumes.

This work is organized as follows: In sections II
and III we develop the integral equations along with the
numerical solution scheme for the VIE and SIE formula-
tions, respectively. In sections IV and V, we present sev-
eral representative numerical results for validation pur-
poses. Finally, in section VI, we summarize the work and
present a few conclusions.

II. VIE FORMULATION
Although we are developing the solution procedure

for multiple dielectric bodies, for the sake of brevity,
let us consider only a single inhomogeneous body,
illuminated by a Gaussian Plane Wave (GPW). We note
that extending the present solution technique to multiple
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bodies is straightforward and does not require any spe-
cial treatment.

A. Integral equation formulation
Let V denote an arbitrarily-shaped, loss-less, inho-

mogeneous volume, surrounded by a homogeneous
material (ε0,µ0) as shown in Fig. 1. The material param-
eters inside the volume, V , are continuously changing
from point to point and denoted by permittivity, ε(r), and
permeability, µ(r).

V

(r) (r) (r)

0 0
,( )

, ,

Fig. 1. Inhomogeneous volume surrounded by a homo-
geneous material (free space).

An electric field, Einc(r, t), defined in the absence
of the scatterer, is incident on and induces polarization
volume currents, J(r, t), in the volume, V . These vol-
ume currents then generate the scattered field which is
a function of space and time. The total electric field is
the sum of incident and scattered fields generated by
the induced volume currents, and we have the following
basic equations:

J(r, t) =
∂P(r, t)

∂ t
=

∂ [D(r, t)− ε0E(r, t)]
∂ t

(1)

= [εr(r)−1]ε0
∂E(r, t)

∂ t
, (2)

E(r, t) = Es(r, t)+Einc(r, t), (3)

Es(r, t) = −∂A(r, t)
∂ t

−∇Φ(r, t), (4)

where P(r, t) and D(r, t) represent the polarization vec-
tor and electric flux density vector, respectively. The
magnetic vector potential, A(r, t), and the electric scalar
potential, Φ(r, t), are:

A(r, t) = µ0

∫
V

J(r′, t − R
c )

4πR
dV ′, (5)

Φ(r, t) =
1
ε0

∫
V

qv(r′, t − R
c )

4πR
dV ′, (6)

R = |r− r′|. (7)
In Equations (5) and (6), r and r′ are the locations

of the observation and source points on the scatterer,
respectively. The volume charge density, qv, is related to

the polarization current, J, by:
∂qv

∂ t
= −∇ ·J (8)

Next, we can re-write Equations (2), using Equa-
tions (3) and (4), as:

J(r, t)
εr(r)−1

= ε0
∂Einc(r, t)

∂ t

− ε0

[
∂ 2A(r, t)

∂ t2 −∇
∂Φ(r, t)

∂ t

]
. (9)

Now, we can write the time derivative of the scalar
potential, using Equation (8), as:

∂Φ(r, t)
∂ t

= − 1
ε0

∫
V

∇ ·J(r′, t − R
c )

4πR
dV ′. (10)

Next, we define the following relationships:

κ(r) =
εr −1

εr
, (11)

D(r, t) = εrε0E(r, t), (12)

J(r) = κ(r)
∂D(r, t)

∂ t
, (13)

where κ(r) is the contrast ratio.
Note that the normal component of D is continu-

ous at media interfaces and, hence, provides a convenient
way to solve for the unknown quantity, J(r, t).

Now using Equations (11) - (13), and carrying out
a few simple mathematical steps, we can write Equa-
tion (1) as:

D(r, t)
εr

+µ0
∂ 2

∂ t2

∫
V

κ(r′) D(r′, t − R
c )

4πR
dV ′

− 1
ε0

∇

[∫
V

∇′ ·κ(r′) D(r′, t − R
c )

4πR
dV ′

]
= Einc(r, t).(14)

Equation (14) is the required integro-differential
equation that needs to be solved by numerical methods
to obtain the unknown quantity, D(r, t).

B. MOM solution
As a first step, we define an upper limit on the time

variable t = T , where T represents the time when the
incident pulse becomes negligible. Then, we divide the
time axis 0 → T into Nt uniform time intervals given by
∆t and denote tn = n∆t for n = 1,2, ....Nt . We note that,
initially, the MOM scheme is applied to a finite interval
0 → T . We also note that extending the time interval to
later times is trivial and simply repeats the same steps
from 0 → T .

Next, we define the triangle functions to approxi-
mate the time variable in the interval 0 → T as:

gn(t)≡
{

1− |t−tn|
∆t t ∈ (tn−1, tn+1)

0 otherwise.
, (15)

for n = 1,2, · · · ,Nt .
Now, we define the Schaubert-Wilton-Glisson

(SWG) basis functions to represent the spatial variation
of the electric flux density vector D [18].
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Assuming a suitable tetrahedral model for the scat-
tering structure, the basis functions are described as
follows:

Sn

Tn
P

Fig. 2. Description of the basis function.

Figure 2 shows two tetrahedrons T p
n and T q

n , associ-
ated with the nth triangular surface denoted by Sn. Points
in T p

n may be designated either by the position vector r,
or by ρ

p
n defined with respect to the free vertex of T p

n
. Similar remarks apply to the position vector r in T q

n
except that it is directed toward the free vertex of T q

n . It
is assumed that the reference direction for D associated
with the nth triangle is from T p

n to T q
n .

Referring to Fig. 2, the vector basis functions asso-
ciated with the nth triangular surface is:

fn(r) =


an

3V p
n
(r− rp

n) r ∈ T p
n

an
3V q

n
(r− rq

n) r ∈ T q
n

0.0 otherwise,
(16)

where an is the area of the triangular surface, V p
n and

V q
n are the volumes of the p and q tetrahedrons attached

to the triangular surface Sn, and rp
n and rq

n represent the
position vectors to the free vertex of tetrahedrons p and
q, respectively.

Now, we approximate the induced electric flux den-
sity, D(r, t), as:

D(r, t)≈
NS

∑
m=1

Nt

∑
n=1

Im,n fm(r) gn(t), (17)

where NS and Nt represent the number of basis (expan-
sion) functions in space and time, respectively.

The next step in applying the method of moments is
to select the testing procedure. As testing functions, we
choose the same functions described in [18]. Defining:

< fm(r)gn(t),F(r, t)>=∫
V

∫
T

fm(r)gn(t)•F(r, t) dV dt, (18)

we write Equation (14) as:

< fm(r)gn(t),
D(r,t)

εr
>

+< fm(r)gn(t), µ0
∂ 2

∂ t2

∫
V

κ(r′) D(r′,t− R
c )

4πR dV ′ >

−< fm(r)gn(t), 1
ε0

∇

[∫
V

∇′·κ(r′) D(r′,t− R
c )

4πR dV ′
]
>

=< fm(r)gn(t),Einc >, (19)

for m = 1,2, · · ·NS and n = 1,2, · · ·Nt .
The first term, < fm(r)gn(t),

D(r,t)
εr

>, in Equa-
tion (19) may be written as:〈

fm(r)gn(t),
D(r, t)

εr

〉
= ∆t

[
am

3V i
m

∫
T i

m

(r− ri
m) ·

D(r, tn)
εr

dV

+
am

3V j
m

∫
T j

m

(r− r j
m) ·

D(r, tn)
εr

dV
]
, (20)

where T i
m and T j

m represent the tetrahedrons attached
to the triangular surface, Sm. The integrals in Equa-
tion (20) may be analytically evaluated after substituting
the expansion functions, (17), for D(r, t).

Next, let us consider the second term in Equa-
tion (19):〈

fm(r)gn(t), µ0
∂ 2

∂ t2

∫
V

κ(r′) D(r′, t − R
c )

4πR
dV ′

〉
,

which is approximated as:[
g(tn)−2g(tn−1)+g(tn−2)

∆t

]
×
[

κ(ri
m)D(rci

m, t −
Rci

m

c
) ·

∫
T i

m

fm dV ′

+ κ(r j
m)D(rc j

m , t − Rc j
m

c
) ·

∫
T j

m

fm dV ′

]
. (21)

Note that in Equation (21), D(r, t) is evaluated at
rci

m and rc j
m , which represent the position vectors to cen-

troids of the tetrahedrons T i
m and T j

m, respectively. The
integrals in Equation (21) are trivial and may be carried
out analytically.

Using similar mathematical steps, the right hand
side of the Equation (19) is written as:

∆t
[

Einc(rci
m, t −

Rci
m

c
) · (rci

m − ri
m)

+ Einc(rc j
m , t − Rc j

m

c
) · (rc j

m − r j
m)

]
(22)

Lastly, we consider the third term in Equation (19):〈
fm(r)gn(t), ∇

[
1
ε0

∫
V

∇′ ·κ(r′) D(r′, t − R
c )

4πR
dV ′

]〉
.

(23)
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Here, we first perform testing on the time variable
and the result is:

∆t

〈
fm(r), ∇

[
1
ε0

∫
V

∇′ ·κ(r′) D(r′, t − R
c )

4πR
dV ′

]〉
.(24)

Denoting the term in the square bracket as ϒ, we
can write the previous expression, after using the identity
∇ · (Aϒ) = ∇ϒ ·A+ϒ∇ ·A, as:

⟨fm,∇ϒ⟩ =
∫

V
∇ · (fmϒ) dV −

∫
V

ϒ∇ · fm dV. (25)

We note that the first integral in Equation (25) van-
ishes because of the properties of the basis functions and
we are left with the following:

−∆t
∫

V
∇ · fm

[∫
V

∇ ·κ(r′)D(r′) G(r,r′) dV ′
]

dV.(26)

Next, we consider the expansion procedure. Sub-
stitution of the expansion function, Equation (17), into
Equations (20), (21), and (26) yields a P×P system of
linear equations, where P = NS × Nt . These equations
may be written in a matrix form as:

ZI = V, (27)

where Z = [Zmn] is an P × P matrix and I = [In] and
V = [Vm] are column vectors of length, P. Obviously, it is
possible to obtain the unknown vector I = [In] by invert-
ing the Z-matrix and multiplying by V. However, there is
a better and efficient way as described in the following:

Here, we note that the Z-matrix is not a full matrix,
unlike in the frequency domain MOM procedure. In
fact, it is a lower triangular, block-wise, Toeplitz matrix
given by:

Z =


Z1,1 Ø · · · Ø
Z2,1 Z2,2 · · · Ø

...
...

...
...

ZNS,1 ZNS,2 · · · ZNS,NS

 , (28)

where each Zp,q, p = 1,2, · · ·NS and q = 1,2, · · · ,NS, is a
matrix of dimension, NS, representing the mutual interac-
tion between the spatial basis functions for a given pair
of testing time function, gn, and source time function,
gk. Further, because of the Toeplitz property, we have
Zp,q = Z|p−q|+1,1. Hence, we only need to compute the
first column of Equation (28) and distribute the elements
accordingly. In other words, we only have to compute the
matrix elements for the first source time function and the
testing time functions 1,2, · · · ,NT . The solution of such a
matrix equation is very efficient, involves inverting only
once, a matrix of size NS ×NS, and solving the matrix
equation.

Lastly, the elements of the right hand side of Equa-
tion (14) are give by:

Vm = ε0
[
Einc(rci

m, tk) · (rci
m − ri

m)

+ Einc(rc j
m , tk) · (rc j

m − r j
m)
]
. (29)

For a plane wave incidence, we set:

Einc(r, t) = Eθ (r, t −
r · k̂

c
)θ̂ +Eφ (r, t −

r · k̂
c

)φ̂ , (30)

where the propagation vector, k̂, is given by:

k̂ = sinθ0 cosφ0 x̂+ sinθ0 sinφ0 ŷ+ cosθ0 ẑ, (31)

and (θ0, φ0) defines the angles of arrival of the plane
wave in the usual spherical coordinate system.

On the right hand side of the matrix equation, V
is obtained by using Equation (29) and consists of Nt
blocks of vectors of dimension NS. At this stage, we note
that multiple incident pulses with varying frequency con-
tent can be easily accommodated by adding more column
blocks to the V-matrix. Also, we note that obtaining cur-
rents for T to 2T and later instants is similar to solving
the equation for 0 to T as presented in [12] and [13].

Lastly, note that the numerical procedure presented
so far allows us to obtain the current distribution on
the scattering structure as a function of time. Once an
accurate current distribution is obtained, it is a simple
process to obtain near-fields, far-fields, and any other
required parameters. The mathematical details to obtain
such parameters are well-known and available in [16]
and hence not repeated here.

III. SIE FORMULATION
Once again, we consider a single, homogeneous

dielectric body for developing the integral equations for
the sake of brevity.

A. Integral equation formulation
Let Sd denote the surface of the dielectric body, sur-

rounded by free space and illuminated by an incident
plane wave pulse. The regions exterior and interior to the
dielectric body, denoted by “e” and “i”, are characterized
by medium parameters (µ0, ε0) and (µd , εd), respectively.
Using the standard equivalence principle [14], and defin-
ing the equivalent currents, Jd and Md , we derive the fol-
lowing equations:

∂

∂ t

[
Es

e(Jd)+Es
e(Md)+Einc]

tan = 0, (32)

∂

∂ t
[Es

i (Jd)+Es
i (Md)]tan = 0. (33)

Next, the time derivative of the scattered electric
fields radiated by the equivalent electric and magnetic
currents are written, in terms of potential functions, as:

∂

∂ t
[Es

ν(Jd ,Md)] =−∂ 2Aν

∂ t2 − ∂∇Φν

∂ t
− ∂

∂ t

[
1
εν

∇×Fν

]
,

(34)
where Aν and Fν are the magnetic and electric vec-
tor potentials, respectively, and Φν is the electric scalar
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potential, given by:

Aν(r, t) = µν

∫
S

Jd(r′, t − R
cν
)

4πR
ds′ , (35)

Fν(r, t) = εν

∫
S

Md(r′, t − R
cν
)

4πR
ds′ , (36)

Φν(r, t) =
1
εν

∫
S

qe(r′, t − R
cν
)

4πR
ds′, (37)

for ν = e or ν = i. In Equations (35) - (37), R = |r− r′|
is the distance from the field point, r, to the source point,
r′. The electric surface charge densities, qe is related to
Jd , by the continuity equation:

∇ ·Jd =−∂qe

∂ t
⇒ qe =−

∫ t

τ=0
∇ ·Jd dτ. (38)

Using Equation (38), Equation (37) is re-written as:

Ψν =
∂Φν(r, t)

∂ t
=− 1

εν

∫
S
∫ t

τ=0
∇·Jd(r′,τ− R

cν
)

4πR ds′ dτ.(39)

Finally, we have:[
∂ 2Ae

∂ t2 +∇Ψe +
∂

∂ t

{
1
εe

∇×Fe

}]
tan
=

[
∂Einc

∂ t

]
tan

,(40)[
∂ 2Ai

∂ t2 +∇Ψi +
∂

∂ t

{
1
εi

∇×Fi

}]
tan
=0. (41)

The integral equations (40) and (41) are solved as
described in the next subsection.

B. MOM solution
Assuming a suitable triangulation for the scattering

structure, Jd and Md are approximated as:

Jd(r, t) =
Nd

∑
m=1

Nt

∑
n=1

αm,n fm(r) gn(t), (42)

Md(r, t) =
Nd

∑
m=1

Nt

∑
n=1

βm,n an × fm(r) gn(t), (43)

where Nd and Nt represent the number of basis functions
in space and time, respectively, an is the normal vector,

gn(t)≡
{

1− |t−tn|
∆t t ∈ (tn−1, tn+1)

0 otherwise,,
(44)

for n = 1,2, · · · ,Nt , and, fm(r) are the standard Rao-
Wilton-Glisson (RWG) functions [17].

Using the symmetric product defined in Equa-
tion (18), we can write Equations (40) and (41) as:

< fm(r)gn(t),
[

∂ 2Ae
∂ t2 +∇Ψe +

∂

∂ t

{
1
εe

∇×Fe

}]
>

=< fm(r)gn(t),
[

∂Einc

∂ t

]
>, (45)

< fm(r)gn(t),
[

∂ 2Ai
∂ t2 +∇Ψi +

∂

∂ t

{
1
εi

∇×Fi

}]
>,

= 0, (46)

for m = 1,2, · · ·Nd and n = 1,2, · · ·Nt .
The first term, < fm(r)gn(t), ∂ 2Ae

∂ t2 >, in Equa-
tion (45) may be written as:

〈
fm(r)gn(t),

∂ 2Ae

∂ t2

〉
=

∂ 2

∂ t2

[
µ

∫
S

Jd(r′, t − R
ce
)

4πR

]

= µ

[
∂ 2gn

∂ t2

]∫
S

fm(r′, t − R
ce
)

4πR
ds′.(47)

Next, the second term in Equation (45) is written as,

⟨fm(r)gn(t), ∇Ψ⟩= ∇

[∫
S

∇ · fm(r′, t − R
ce
)

4πR

]
ds′. (48)

The third term in Equation (45) is:〈
fm(r)gn(t),

∂

∂ t

{
1
εi

∇×Fi

}〉
=

∂gn

∂ t

∫
S

∇×an × fm(r′, t − R
ce
)

4πR
ds′. (49)

It is easy to see that similar expressions are valid
for Equation (46) with ce replaced by ci. The integrals
present in Equations (46) - (49) may be carried out ana-
lytically using the procedures developed for the triangu-
lar domains [17].

Using the standard expansion procedure for MOM
problems, it is possible to generate a matrix equation
ZX = Y of dimension P = Nt × 2Nd . The matrix equa-
tion can be efficiently solved using the special procedure
developed in [12, 13].

IV. NUMERICAL RESULTS - VIE
FORMULATION

In this section, we present numerical results for sev-
eral inhomogeneous objects modeled by tetrahedral ele-
ments in the TD.

For all the examples presented in this section, and
also for the next section, the following statements apply:

1. The object is placed at the center of the right-handed
coordinate system, with the origin approximately
coinciding with the geometrical center of the object.
For all examples, θ and φ represent the angles mea-
sured with respect to z and x axes, respectively.

2. The incident field is a GPW, given by:

Einc(r), t = Eo
4

TP
√

π
e−γ2

, (50)

where:
γ =

4
TP

(ct − cto − r · k̂). (51)

In Equations (50) and (51), k̂ is the unit vector in the
direction of propagation of the incident wave, TP is
the pulse width of the Gaussian impulse, Eo · k̂ = 0,
r is a position vector relative to the origin, c is the
velocity of propagation in the external medium, and
to is a time delay which represents the time at which
the pulse peaks at the origin. It may be noted that
the GPW represents a smoothed impulse and as a
result the response obtained may be considered as
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the impulse response. It is well-known that once
the impulse response is available, the response to
any other incident time domain wave form can be
obtained by performing straight-forward convolu-
tion.

3. The incident plane wave is traveling along the z-
direction, and the electric field vector is linearly
polarized along the x-axis.

In the next subsection, we consider only homoge-
neous dielectric bodies and compare the results with the
frequency domain (FD) solution. We note that to gen-
erate the TD data, the FD solution must be performed
at several frequencies and then take the inverse Fourier
transform into the time domain.

A. Homogeneous dielectric objects
As a first example, consider a dielectric sphere,

radius= 0.1m, εr = 3.0, located with the origin coin-
ciding with the center of the Cartesian coordinate sys-
tem. The dielectric sphere is illuminated by the GPW
described in Equation (50) with Tp = 4.0 LM and
t0 = 6.0 LM, where the unit “LM” implies Light-Meter
(1 LM = 3.333 × 1.0−9 s). The sphere is modeled by
119 tetrahedrons resulting in 268 triangle faces imply-
ing that we have 268 space basis functions. We mod-
eled the time variable with 36 triangle functions with
∆t = 2t0/36 = 0.33 LM. We note that the number of tri-
angle functions for time are dictated by the pulse width
of GPW and is not very critical. The numerical results are
presented in Fig. 3. Here, we compare the RCS obtained
as a function of θ with φ = 0 by the present method
with the frequency domain SIE solution at 100 MHz, 200
MHz and 300 MHz. We note that for the sphere problem,
it is possible to generate exact solution using Mie series.
However, the SIE formulation was well tested for canon-
ical shapes [7] and for the sake of uniformness we com-
pared our results with numerical MOM solution only. We
note that both solutions compare very well at the selected
frequencies.

Next, we consider a rectangular homogeneous
dielectric slab, with dimensions 1.0m×1.0m×0.2m and
εr = 2.0, located in the Cartesian coordinate system as
shown in the Fig. 4. The dielectric slab is illuminated by
the GPW described in Equation (50) with Tp = 8.0 LM
and t0 = 12.0 LM. The slab is modeled by 626 tetrahe-
drons resulting in 1386 triangles. Thus, we have 1386
basis functions for space, and we modeled the time vari-
able with 36 triangle functions. The numerical results are
presented in Fig. 4. Here, we compare the RCS obtained
by the present method with the SIE solution at 100 MHz,
and 200 MHz. We note that both solutions compare very
well for this case also.

Next, we consider a thick dielectric cylinder, with
radius and height equal to 0.2m, and εr = 3.0, located

X

Y

Z

R
C

S
 (

d
B

)

f=100MHz

Theta (Degrees)

-40

-60

-80

-100

R
C

S
 (

d
B

)

f=200MHz

Theta (Degrees)

-30

-50

-70

-90

R
C

S
 (

d
B

)

f=300MHz

Theta (Degrees)

-30

-50

-70

-90

Dielectric Sphere

r
=3.0(a=0.1m, )

SIE
VIE_TD

SIE
VIE_TD

SIE
VIE_TD

0              90            180

0              90            180

0              90            180

Fig. 3. RCS vs θ at φ = 0 of a dielectric sphere
(radius=0.1m and εr = 3.0) illuminated by a GPW.

X

Y

Z

Dielectric Slab

(
r

=2.0, 1.0m X1.0m X 0.1m)

Theta (Degrees)

Theta (Degrees)

-10

-30

-50

0

-20

-40

R
C

S
 (

d
B

) SIE
VIE_TD

0 90 180

0 90 180

SIE
VIE_TDR

C
S

 (
d

B
)

Fig. 4. RCS vs θ at φ = 0 of a dielectric slab (1.0m×
1.0m×0.1m, and εr = 2.0) illuminated by a GPW.



207 ACES JOURNAL, Vol. 39, No. 03, March 2024

with the origin coinciding with the center of the Carte-
sian coordinate system. The dielectric cylinder is illu-
minated by the GPW described in Equation (50) with
Tp = 8.0 LM and t0 = 12.0 LM. The cylinder is mod-
eled by 136 tetrahedrons resulting in 314 basis func-
tions for space. We modeled the time variable with 36
triangle functions. The numerical results are presented
in Fig. 5. Here, we plot the normal component of the
electric flux density as a function of time and compare
that with the solution obtained by the frequency domain
MOM solution and Inverse Discrete Fourier Transform
(VIE FD IDFT) method. The normal component is sam-
pled at the center of the top face. We note that both solu-
tions compare very well and also notice the absence of
any late-time instabilities in the direct time domain solu-
tion. Although not shown here, the direct time domain
solution was obtained up to 300 LM and remained
stable.
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Fig. 5. Dielectric cylinder (radius=0.2m, height =0.1m,
and εr = 3.0) illuminated by a GPW.

Next, we consider a few examples of composite bod-
ies where two or more homogeneous bodies are joined to
form the inhomogeneous, composite body.

B. Objects with multiple dielectric materials
As a first example, consider a composite dielec-

tric sphere, formed by combining two homogeneous
dielectric hemispheres, each with radius=0.2m and with
distinct dielectric materials εr = 3.0 and εr = 5.0, as
shown in the inset of Figs. 6 and 7. The composite dielec-
tric sphere is illuminated by the GPW described in Equa-
tion (50) with Tp = 8.0 LM and t0 = 12.0 LM. Each
hemisphere is modeled by 124 tetrahedrons resulting in
286 triangles. Therefore, the total number of basis func-
tions for this case is 572, and we modeled the time vari-
able with 36 triangle functions. In Fig. 6, we present
the normal component of the electric flux density as a
function of time. The normal component is sampled at
θ = 450 and φ = 900. The present solution is compared

with the solution obtained in the FD, performing the cal-
culations for 128 frequency points between 2- 256 MHz
at 2 MHz interval, and performing IDFT. We note a good
comparison between the two solutions and the absence of
any late-time oscillations. In Fig. 7, we plot the backscat-
tered field (θ = 1800 and φ = 00) as a function of fre-
quency for both solutions. We note that both solutions
compare very well for this case in the frequency range
set by the pulse-width of the incident field.
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Next, we consider the case of a composite dielec-
tric slab, formed by placing two slabs, one on top of
the other slab, each with a distinct dielectric material as
shown in the inset of Fig. 8. The dimensions of each slab
are 1.0m× 1.0m× 0.2m and the dielectric constants are
εr = 2.0 and εr = 3.0, respectively. The dielectric slab is
illuminated by the GPW described in Equation (50) with
Tp = 8.0 LM and t0 = 12.0 LM. Each slab is modeled by
626 tetrahedrons resulting in 1386 triangle faces. There-
fore, the total number of basis functions for this problem
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is 2772, and we modeled the time variable with 36 tri-
angle functions. The comparison solution is obtained by
developing the frequency domain solution using VIE at
128 frequency points and then performing the IDFT to
obtain the TD solution. The numerical results are pre-
sented in Fig. 8. Here, we plot the electric flux density
as a function of time. The normal component is sampled
at the center of the top face. We note that both solutions
compare reasonably well for this case also, and the direct
time domain solution remains stable even at a very late
time. The apparent difference in the peak value is due to
the small number of frequency samples available for the
IDFT solution.
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Fig. 8. Composite dielectric slab illuminated by a GPW.

Next, we consider a composite dielectric cylinder,
formed by joining two homogeneous cylinders. The
height and radius of each cylinder is, 0.5m and 0.2m,
respectively. The dielectric constant for each cylinder
is εr = 2.0 and εr = 3.0. The composite cylinder is
located with the origin coinciding with the center of
the Cartesian coordinate system and the axis coinciding
with the z-axis. The whole body is illuminated by the
GPW described in Equation (50) with Tp = 8.0 LM and
t0 = 12.0 LM. Each cylinder is modeled by 410 tetrahe-
drons resulting in 902 triangle faces, and the total num-
ber of unknowns for this problem is 1804. We modeled
the time variable with 36 triangle functions. The numer-
ical results are presented in Fig. 9. Here, we plot the nor-
mal component of the electric flux density as a function
of time and compare with the solution obtained using
the frequency domain MOM solution and IDFT method.
The normal component is sampled at the center of the
top face. We note that both solutions compare very well
and also notice the absence of any late-time instabili-
ties. We also note that the IDFT solution behaved in a
strange fashion (not tending to zero at late time) that
can be attributed to a low sampling rate employed in the
solution.
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Fig. 9. Composite dielectric cylinder illuminated by a
GPW.

As a last example in this subsection, we consider
the case of three homogeneous dielectric discs, joined
together as shown in the inset of Fig. 10. The radius and
thickness of each disk is equal to 0.2m. The dielectric
constants are 3.0, 4.0, and 5.0 as shown in the figure.
The whole body is illuminated by the GPW described
in Equation (50) with Tp = 4.0 LM and t0 = 6.0 LM.
Each cylinder is modeled by 136 tetrahedrons resulting
in 314 triangle faces. The total number of basis functions
for this problem is 942. We modeled the time variable
with 24 triangle functions. The numerical results are pre-
sented in Fig. 10. Here, we plot the backscattered field as
a function of time for both the frequency domain solu-
tion and the present algorithm. The back-scattered field
data for the present time domain solution is obtained by
performing a straightforward Fourier transform. We note
that both solutions compare very well for this case in the
frequency range set by the pulse-width of the incident
field.
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Fig. 10. Composite dielectric disk illuminated by a GPW.
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V. NUMERICAL RESULTS - SIE
FORMULATION

In this section, we present numerical results for a
few representative single/multiple homogeneous objects
using direct time domain SIE formulation. We only con-
sider canonical shapes in this work. For all the examples
presented in this section, the incident field is a GPW,
given by Equations (50) and (51). We present compar-
isons for the equivalent electric and magnetic currents, J
and M, respectively, with other methods. Also, note that
for all results presented in this section, M is normalized
with respect to the free space impedance, η .

A. Homogeneous dielectric objects
As a first example, consider a dielectric sphere,

radius=1.0m, εr = 10.0, located with the origin coin-
ciding with the center of the Cartesian coordinate sys-
tem. The dielectric sphere is illuminated by the GPW
described in Equation (50) with Tp = 20.0 LM and t0 =
30.0 LM. The sphere is modeled by 288 triangles result-
ing in 432 edges implying that we have 864 unknowns
(432 unknowns each for J and M, respectively) for the
solution scheme. We modeled the time variable with 45
triangle functions. The numerical results are presented
in Fig. 11. In the figure, we present the induced equiva-
lent current components, Jx and My, at a selected point,
(θ = 90◦ and φ = 0◦), as a function of time. Note that
we are presenting the results only for a single point on
the body although the data is available for any point
on the sphere. The time domain results are compared
with the results obtained by IDFT solution. We further
note that the IDFT solution is presented for a relatively
shorter duration compared to direct TD solution (120 LM
vs 600 LM). It is because the IDFT solution is peri-
odic by nature since the inverse Fourier transform is
performed and hence dictated by the frequency interval
between two successive samples (∆ f ). For a longer time
signature, one must sample the frequency scale more
closely which dramatically increases the computational
time.

Next, we consider a dielectric cube of side length
2.0m, and εr = 10.0, located with the origin coinciding
with the center of the Cartesian coordinate system. The
dielectric cube is illuminated by the GPW described in
Equation (50) with Tp = 20.0 LM and t0 = 30.0 LM. The
cube is modeled by 432 triangles resulting in 648 edges
implying that we have 1296 unknowns. We modeled the
time variable with 45 triangle functions. The numerical
results are presented in Fig. 12. In the figure, we present
the induced equivalent currents, Jx and My, at a selected
point (at the center of the top face) as a function of time.
The comparison between the two results is reasonably
well. We note that the currents induced are very weak and
the small differences we notice are due to the numerical
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Fig. 11. Dielectric sphere (radius=1.0m and εr = 10.0)
illuminated by a GPW.

errors. Further, we notice small oscillations for the IDFT
scheme and absence of them in the TD scheme. This is
due to the large time step in the TD scheme to cover the
time scale 0-600 LM.

Next, we consider a circular dielectric disk with
1.0m radius, 0.2m thickness, and εr = 3.0, located with
the origin coinciding with the center of the Cartesian
coordinate system. The disk is illuminated by the GPW
described in Equation (50) with Tp = 20.0 LM and t0 =
30.0 LM. The body is modeled by 48 triangles resulting
in 72 edges implying that we have 144 unknowns. We
modeled the time variable with 45 triangle functions. The
numerical results are presented in Fig. 13. In the figure,
we present the induced equivalent currents, Jx and My, at
a selected point (at x = 0.0, y = 0.5 on the top face) as
a function of time. We note that the results remain stable
for a very long time whereas the IDFT solution is termi-
nated much earlier. This is because, to obtain a long time
signature using the IDFT solution, the frequency range
needs to be densely sampled making the solution very
expensive.
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Next, we consider a dielectric cylinder of length
1.0m, 0.2m radius, and εr = 2.0, located with the cen-
ter of the body coinciding with the center of the Carte-
sian coordinate system. The dielectric cylinder is illu-
minated by the GPW described in Equation (50) with
Tp = 20.0 LM and t0 = 30.0 LM. The body is mod-
eled by 176 triangles resulting in 264 edges implying
that we have 528 unknowns. We modeled the time vari-
able with 20 triangle functions. The numerical results
are presented in Fig. 14. In the figure, we present the
induced equivalent currents, Jx and My, at a selected
point (at x = 0.0, y = 0.1 on the top face) as a func-
tion of time. The time domain results are compared with
the results obtained by the IDFT solution. Although the
results compare well, there is some difference, particu-
larly related to the electric current. We feel that the IDFT
solution is showing oscillations because of the loss-less,
perfect dielectric material used in the simulation. A small
amount of loss would dampen the oscillations but may
also contribute to some loss in the peak values.
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Fig. 14. Dielectric cylinder (radius 0.2m, length 1m, and
εr = 2.0) illuminated by a GPW.
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B. Objects with multiple dielectric materials
Now, we consider the case of two dielectric cylin-

ders placed along the z-axis and placed one cylinder on
the top of the other cylinder as shown in the Figure 15.
Each dielectric cylinder is of length 1.0m and 1.0m
radius. The dielectric constant of the top cylinder is
εr = 5.0, where as the bottom cylinder’s dielectric con-
stant is εr = 1.0 implying that it is an air-dielectric body.
Because of the air-dielectric nature, the result for a single
cylinder and the combination of a dielectric cylinder with
air-dielectric cylinder should be identical. The dielec-
tric cylinder combination is illuminated by the GPW
described in Equation (50) with Tp = 12.0 LM and t0 =
18.0 LM. Each body is modeled by 48 triangles result-
ing in 72 edges implying that we have 288 unknowns
for the whole system (144 unknowns per cylinder). We
modeled the time variable with 24 triangle functions. The
numerical results are presented in Fig. 15. In the figure,
we present the induced equivalent currents, Jx and My, at
a selected point (at x = 0.0, y = 0.5 on the top face of
the top cylinder) as a function of time. As expected, the
air-dielectric cylinder did not contribute to the scattering
phenomenon.
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Next, we consider the case of two dielectric cylin-
ders placed along the z-axis and touching each other as

shown in the Fig. 16. Each dielectric cylinder is of length
1.0m and radius =1.0m. The dielectric constants of the
top and bottom cylinders are εr = 3.0, and εr = 5.0,
respectively. The dielectric cylinders are illuminated by
the GPW described in Euation. (50) with Tp = 12.0 LM
and t0 = 18.0 LM. Each body is modeled by 48 trian-
gles resulting in 72 edges implying that we have 288
unknowns for the whole system (144 unknowns per
cylinder). We modeled the time variable with 24 triangle
functions. The numerical results are presented in Fig. 16.
In the figure, we present the induced equivalent currents,
Jx and My, at a selected point (at x = 0.0, y = 0.5 on
the top face of the top cylinder) as a function of time.
The time domain results are compared with the results
obtained by the IDFT solution and the comparison is rea-
sonable.

M
_

y
 (

V
o

lt
s/

m
)

J
_

x
 (

A
m

p
s/

m
)

Time (Light-meters)

X

Y

ε
r

=5.0

ε
r

=3.0

X

Y

ε
r

=5.0

ε
r

=3.0

SIE_FD

SIE_TD

SIE_FD

SIE_TD

0                           60                         120                        180

0                           60                         120                        180
Time (Light-meters)

-0.16

-0.12

-0.08

-0.04

0

Fig. 16. Dielectric cylinders illuminated by a GPW.

Next, we consider the case of two dielectric cubes
touching each other as shown in the Fig. 17. Each dielec-
tric cube is of side length 1.0m. The dielectric constants
of the top and bottom cubes are εr = 3.0, and εr = 5.0,
respectively. The two-body system is illuminated by the
GPW described in Equation (50) with Tp = 12.0 LM
and t0 = 18.0 LM. Each cube is modeled by 108 tri-
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angles resulting in 162 edges implying that we have
648 unknowns for the whole system (324 unknowns per
cube). We modeled the time variable with 24 triangle
functions. The numerical results are presented in Fig. 17.
In the figure, we present the induced equivalent currents,
Jx and My, at the center of the top face as a function
of time. The time domain results are compared with the
results obtained by the IDFT solution and the compari-
son is reasonable.

Fig. 17. Dielectric cubes illuminated by a GPW.

As a last example, we consider the case of five
dielectric cylinders, each with 0.2 m radius and 10 m
length, joined together to form a 50 m long cylinder.
The dielectric constant of each cylinder is 16, 14, 12,
8, and 4. The whole structure is placed along the z-axis
and illuminated by a Gaussian pulse with 20 LM pulse
width. The time domain result is transformed into fre-
quency domain and the RCS is compared with the direct
frequency domain results at 10, 20 and 25 MHz as shown
in the Fig. 18. Each cylinder is modeled by 132 trian-
gles resulting in 198 edges implying that we have 990
unknowns for the whole system. We note that the com-

parison is excellent for 10 and 20 MHz cases whereas we
note a different result for the 25 MHz case. We attribute
this difference to the bandwidth of the incident pulse
which drops off steeply after 20 MHz. This example also
highlights the limitation of the time domain solution. It
is often said that one TD simulation is sufficient to obtain
the frequency response from DC to daylight via Fourier
transform. It is only true if one uses a true impulse for
the incident field, which is not possible in our method.
Hence, one should note that the frequency response that
can be obtained is limited by the bandwidth of the inci-
dent pulse.

FD Solution TD Solution

10 MHz 20 MHz

25 MHz

Fig. 18. RCS of a 5-section, 50 m inhomogeneous
cylinder.

VI. CONCLUSIONS
In this work, we presented direct time domain for-

mulations for dielectric bodies of arbitrary shape using
surface and volume integral equation formulations. The
main objective of this work is to demonstrate that the
solution remains stable by eliminating time marching as
was done in the previous works. Further, the formula-
tion and the solution methodology is simple, not requir-
ing any complex mathematical manipulations. Lastly, the
present method can easily handle multiple right hand
sides efficiently as required for monostatic radar cross
section (RCS) studies, thus preserving the advantages of
MOM solution scheme. Unfortunately, the conventional
MOT scheme and all the DE methods including FDTD
is not capable of performing this task efficiently and for
each right hand side the solution must be started from the
beginning.
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