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Abstract – A multilevel fast multipole algorithm
(MLFMA) for analyzing electromagnetic radiation and
coupling characteristics of large-scale antenna arrays
mounted on the platforms is presented in this paper.
Compared with the method of moments (MoM), the
MLFMA can be used to calculate larger scale prob-
lems with limited resources. First, waveport model of the
MLFMA based on the equivalence principle and mode
matching theory is established to efficiently and accu-
rately simulate the antenna array. Then, a precondition-
ing approach for solving the radiation problems with the
waveports is designed to improve convergence of the
MLFMA. An initial guess construction method is pro-
posed to accelerate the MLFMA computation for the
multi-excitation problems, which can reduce the itera-
tion time by at least 50%. Numerical results demonstrate
accuracy and efficiency of the proposed method.

Index Terms – electromagnetic radiation and coupling,
multilevel fast multipole algorithm (MLFMA), multi-
excitation problems, preconditioner, waveport.

I. INTRODUCTION
Electromagnetic (EM) radiation and coupling anal-

ysis of large-scale antenna arrays mounted on the plat-
form is an important problem in real-life applications,
such as electromagnetic compatibility (EMC) analysis
of airborne antennas [1, 2] and optimization of antenna
arrays [3, 4]. For the EMC analysis of airborne antennas,
the conventional method is to calculate the antenna pat-
tern and S parameters by using the method of moments
(MoM) [5], the finite element method (FEM) [6], or the
hybrid MoM-physical optics (PO) method [7–9]. In the

antenna array optimization problems, the MoM and FEM
are used to extract the active element pattern (AEP) for
each antenna element [10]. Since the large-scale antenna
arrays and platforms lead to a large number of unknowns,
the MoM and FEM can hardly be implemented due to
the limitation of computational resources, and the hybrid
MoM-PO can reduce the consumption of computational
resources but cannot satisfy the accuracy requirements
for engineering applications. The time-domain EM field
calculation methods such as the stabilized DG algo-
rithms are widely used in the simulation of broadband
characteristics for ultrawideband (UBW) communica-
tion and EMC systems [11–13]. Although these meth-
ods can obtain accurate results, they consume huge time
resources when calculating electrically large models.
Besides, some accurate numerical methods such as the
spectral element method (SEM) [14–16] are developed,
and SEM is found to be more accurate [17, 18] and could
be used for analyzing waveguides and antennas [19, 20].
However, the volume mesh and domain truncation will
generate a large number of unknowns, which will lead
to excessive consumption of computational resources
when calculating the antenna arrays mounted on a large
platform. To meet the increasing demands for rapidly
designed high-performance antennas and accurate EMC
analysis of large-scale arrays, it is imperative to over-
come bottlenecks of the existing numerical methods. As
a low computational complexity algorithm, the multi-
level fast multipole algorithm (MLFMA) can effectively
reduce the computation memory and time consumptions
[21]. In recent years, thanks to the numerous research
works [22–24], capacity and efficiency of the MLFMA
have been further significantly improved. However, the
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MLFMA is still weak for solving radiation and coupling
characteristics of antenna arrays due to the bottleneck of
related techniques. Most of the research on the MLFMA
was focused on analyzing the scattering characteristics
of metal or dielectric models, and there are still few
researches on solving complex antenna radiation prob-
lems by using the MLFMA. Furthermore, although some
iterative solvers spend lower computational costs in solv-
ing the EM problems, the MLFMA still suffers from
convergence problems, and an effective and robust pre-
conditioning method for accurately analyzing complex
antenna arrays is urgently needed. Moreover, the iterative
solvers are inefficient for solving the multi-excitation
problems, which require restarting for each right-hand
side (RHS).

In this paper, a preconditioned MLFMA oriented
to the radiation and coupling analysis for a large-
scale antenna array mounted on the platform is pre-
sented. First, waveport model of the MLFMA based on
the equivalence principle and mode matching theory is
established, which can realize the accurate EM model-
ing for the antenna excitation source and matching load.
In this way, the MLFMA can be used for solving the
radiation problems with waveports. Then, a precondi-
tioning approach is designed for the MLFMA to analyze
the radiation problems with waveport excitations. More-
over, to improve efficiency of the MLFMA when solv-
ing multi-excitation problems, an initial guess construc-
tion method by extracting typical characteristic currents
is proposed. To demonstrate effectiveness and capabil-
ity of the proposed method, a slot antenna array with
a dielectric radome is analyzed, and the proposed ini-
tial guess construction method can reduce the iteration
time by at least 50%. Finally, a numerical example of an
antenna array consisting of 100 dipole antenna elements
mounted on a ship is analyzed, validating that the pro-
posed algorithm can simulate large-scale antenna arrays
mounted on the platforms under limited computational
resources.

II. THEORETICAL ANALYSIS
A. Waveport modeling for MLFMA

To calculate the antenna pattern and S parameters
of antenna arrays, the accurate excitation sources model
is necessary for the MLFMA. The waveport can be
developed to realize the accurate modeling of excitation
sources and absorb power of the traveling wave at the
matched port. We assume that the semi-infinite waveg-
uides are connected to the original waveguides, and the
EM fields propagating to the semi-infinite waveguide
will never reflect. In the semi-infinite waveguides, we
assumed that the incident wave of a specific mode propa-
gates to the original waveguide, hence the waveports can
be used as the excitation sources.

We first establish the integral equations on the
boundary surfaces of composite structures, which can
be referred to as a multiple region problem. The metal-
dielectric models are formulated in terms of the elec-
tric field integral equation (EFIE) and the Poggio-Miller-
Chang-Harrington-Wu (PMCHW) formulation. As an
example, for different regions i and j, the electric fields
and magnetic fields can be written as:

n̂× (E( j)
inc −E(i)

inc) = n̂×{[ηiL(i)(Ji)−K(i)(Mi)]

− [η jL( j)(J j)−K( j)(M j)]}, (1)

n̂× (H( j)
inc −H(i)

inc) = n̂×{[K(i)(Ji)+
L(i)(Mi)

ηi
]

− [K( j)(J j)+
L( j)(M j)

η j
]}, (2)

where n̂ is the unit normal on the boundary surface from
region j to region i, ηi =

√
εi/µi is the wave impedance

of region i, and the integral operators L and K are defined
as:

L(X) =−
∫

S
(X +

1
k2 ∇ ·X∇)G(r,r′)ds′, (3)

K(X) =−
∫

S
X ×∇G(r,r′)ds′, (4)

where k is the wave number, and G(r,r′) is the Green
function. Equations (1) and (2) are the well-known
PMCHW formulation, and Equation (1) can degenerate
into the EFIE formulation for modeling metallic waveg-
uides and structures.

Then we formulate the integral equations on the
aperture surface S in the original waveguide port. As
shown in Fig. 1, the electric field E(p) and magnetic field
H(p) satisfy the boundary condition on the surface of S
on the origin waveguide side:

n̂×H(p) = Js, (5)

n̂×E(p) =−Ms. (6)

Then we formulate the integral equations on the
aperture surfaces in the semi-infinite waveguides. Uti-
lizing Schelkunoff’s equivalence principle to the semi-
infinite waveport region, the currents are related to
the tangential fields on outer side of the aperture
surface S:

−n̂×H(port) =−Js, (7)

−n̂×E(port) = Ms, (8)

since the tangential electric currents impressed on a PEC
surface, i.e. Js, will not radiate. The total fields in the
semi-infinite waveguide region consist of three parts,
i.e. the incident fields E inc and H inc, the reflected fields
produced by the reflection of incident fields, and the
fields radiated by Ms. Total fields in the semi-infinite
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Fig. 1. Composite metallic and dielectric structures with
multiport waveguide.

waveguide are expressed as:

E(port) = e je− jβ jz − e je jβ jz +
∞

∑
l=1

blele jβ jz, (9)

H(port) =
n̂× e j

η j
e− jβ jz +

n̂× e j

η j
e jβ jz

−
∞

∑
l=1

bl
n̂× el

η j
e jβ jz, (10)

where z is the z-direction distance from the aperture sur-
face, e j is the normalized eigenvector of the waveguide,
and el is the lth excitation mode. The fields on the aper-
ture surface with z = 0 can be expressed as:

E(port)|s− =
∞

∑
l=1

blel , (11)

H(port)|s− =
2n̂× e j

η j
−

∞

∑
l=1

bl
n̂× el

η j
. (12)

Based on Equations (11), (12) and the boundary
condition on the aperture surface in the waveguide n̂×
H|s+ = (−n̂)×H|s− = Js, the integral equation on the
aperture surface can be written as:

−n̂× Js −
∞

∑
l=1

n̂× el

η j
∫

s(n̂× el) ·Msds
=

2n̂× e j

η j
. (13)

The coupled (1) and (2) equations are applied to
the original waveguides and the composite structures,
Equation (13) is used to model the waveguide ports. The
electromagnetic current distributions can be obtained by
solving the integral equations using the MLFMA. The
scattering parameters can be derived by using the nor-
malized voltage and current:

Si j =

√
η j

ηi

∫
M · (−n̂× ei)ds−δ (i, j). (14)

B. Preconditioning approach
When solving complex antenna radiation problems

in practical engineering, there often are some complex

metal-dielectric structures. For the discretization, we
utilize the Rao-Wilton-Glisson basis functions [25] to
expand the surface currents, the system matrix of metal-
dielectric models under the waveport excitation can be
written symbolically as:

ZNF
JJ ZNF

JD ZNF
JM ZJP

ZNF
DJ ZNF

DD ZNF
DM ZDP

ZNF
MJ ZNF

MD ZNF
MM ZMP

ZPJ ZPD ZPM ZPP

 , (15)

where the subscript J corresponds to the equivalent elec-
tric currents on the metal surfaces, the subscripts D and
M correspond to the equivalent electric and magnetic
currents on the dielectric surfaces, and the subscript P
corresponds to the equivalent magnetic currents on the
waveport surfaces. Since the system matrix (15) usu-
ally is not well-conditioned, a preconditioning approach
is designed to improve convergence of the large-scale
antenna array models under the waveport excitations.
During implementation of the MLFMA, the matrix is
decomposed into two parts, i.e. Znear and Z f ar, and the
matrix equation is expressed as:

(Znear +Z f ar) · I =V , (16)
where Znear is the submatrix corresponding to the inter-
action between the near-field clusters in the lowest level
of the MLFMA octree structure, and Z f ar is the sub-
matrix corresponding to the interaction among the far-
field clusters computed approximately with the matrix-
vector-product (MVP). The preconditioning matrix is
constructed as:

A =

[
Znear Z12

Z21 ZPP

]
, (17)

where Z12 = [ZT
JP,Z

T
DP,Z

T
MP]

T and Z21 = [ZPJ ,ZPD,ZPP]
are two coupling matrices between the waveguide cavity
domain and the waveport domain. We compute the pre-
conditioned residual vector r̃ = A−1r in each iteration,
and this is accomplished by solving the equation Ar̃ = r
by using the direct sparse matrix solver MUMPS [26]. It
is important to note that the matrix (17) is fixed and does
not change when solving the multi-excitation problems,
and factorizations of this matrix are only performed once
before the iteration starts. Moreover, this method obtains
the full inverse matrix of A instead of its approximate
inverse matrix, which leads to a better convergence rate
than the commonly used ILU and SAI methods [27].

C. Initial guess construction method
As a low computational complexity algorithm, the

MLFMA can efficiently reduce the consumption of
computational resources when analyzing the electrically
large EM models. However, when solving the EM radia-
tion problems with multiple excitations, each excitation
corresponds to a V vector, and the iterative solver needs
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to restart for each excitation. For the iterative solvers,
the vector I in Equation (16) refers to the unknown coef-
ficients of system matrix equation, which is commonly
equal to zero before the iteration starts. The conventional
method is to use the solution of previous excitation as the
initial guess for the next excitation. This method is effec-
tively used in the monostatic radar cross section (RCS)
calculations but is ineffective for solving the radiation
problems.

In this section, we propose an initial guess con-
struction method for the antenna arrays mounted on a
platform to improve convergence of the multi-excitation
problems. This method is based on the assumption that
electric current distribution of the antenna array is simi-
lar when different ports are excited separately. Here, two
examples are taken to demonstrate this conclusion intu-
itively. The first example is an antenna array consisting
of 5 slot antennas with the rectangular waveport feed-
ing, as shown in Fig. 2. The second example is a 3× 4
dipole antenna array with the coaxial waveport feeding,
as depicted in Fig. 4. Both Fig. 3 and Fig. 5 perfectly
validate that the electric current distributions have simi-
lar characteristics when different ports are excited sepa-
rately. Based on the above analysis, the initial guess can
be constructed by extracting typical characteristic cur-
rents from the solution of a given excitation.

For the radiation problems of antenna arrays with
N antenna elements mounted on the platform, unknown
coefficient vector I of the system matrix equation (16)
can be written as:

I = [(Is)T ,(Isp
k )T ,(Iwp

k )T ]T ,k = 1,2, ...,N, (18)
where Is denotes unknown coefficient vector of the plat-
form, Isp

k denotes unknown coefficient vector of the k-
th antenna waveguide, and Iwp

k denotes unknown coef-
ficient vector of the k-th waveport. First, we calculate
the solution of one antenna, when that antenna is active
and other antennas are passive with an initial value set to
zero. To get the most reasonable current distribution pos-
sible, usually we first calculate the center element in the
array. Then, we extract the typical characteristic currents
from the given solution and construct the initial value for
the next excitation. The typical characteristic current is

Fig. 2. Slot antenna array simulation model.

(a) (b)

Fig. 3. (a) Electric currents on the surface of slot antenna
array with the 2-feed rectangular waveport. (b) Electric
currents on the surface of slot antenna array with the 3-
feed rectangular waveport.

Fig. 4. A 3×4 dipole antenna array model.

(a) (b)

Fig. 5. (a) Electric currents on the surface of dipole
antenna array with the 5-feed antenna element. (b) Elec-
tric currents on the surface of dipole antenna array with
the 8-feed antenna element.

the set of currents of the array center element on the feed
port, and the selection criterion can be referred to the S
parameter obtained from the first calculation. The typi-
cal characteristic current vector Ityp extracted from the
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solution of the first excitation can be expressed as:
Ityp = [(Is)T ,(Isp

m )T ,(Iwp
m )T ]T ,{m|S1,m > Ts}, (19)

where Ts denotes the threshold for extracting typical
characteristic currents, and Ts taken between −20 dB
and −30 dB would be appropriate according to the
engineering experience. The initial value for the next
excitation can be constructed by using Ityp and the
antenna element in the relative position. For instance,
we first obtain the solution when the 3rd antenna is
active and other elements are passive, as shown in
Fig. 2, and then extract the typical characteristic cur-
rents Ityp = [(Is)T ,(Isp

typ)
T ,(Iwp

typ)
T ]T from the solution.

We take Ts to be −30 dB in this case, and sur-
face electric currents of the 2nd element, the 3rd ele-
ment, and the 4th element are chosen to construct
Ityp according to the S parameters calculated from
the first calculation. Hence, the Isp

typ and Iwp
typ can be

further expressed as Isp
typ = [0,(Isp

2 )T ,(Isp
3 )T ,(Isp

4 )T ,0]T

and Iwp
typ = [0,(Iwp

2 )T ,(Iwp
3 )T ,(Iwp

4 )T ,0]T . We con-
struct the initial value for improving the algorithm
convergence when the 2nd element is active, as
shown in Fig. 6, by translating Ityp according to the
antenna element in the relative position, the initial
value can be written as Icon = [(Is)T ,(Isp

con)
T ,(Iwp

con)
T ],

where Isp
con = [(Isp

2 )T ,(Isp
3 )T ,(Isp

4 )T ,0,0]T and Iwp
con =

[(Iwp
2 )T ,(Iwp

3 )T ,(Iwp
4 )T ,0,0]T . Following this process,

we construct a new initial value when the 4th element is
active and so on, until we reach the last antenna element.

Fig. 6. Initial guess current obtained by reconstructing
typical characteristic currents to improve the algorithm
convergence when the 2nd antenna element is active.

III. NUMERICAL EXAMPLES
In this section, two examples are performed on a

workstation, with 96 CPU cores (Intel Xeon Gold 6248R
CPU @ 3.00 GHz) and 1 TB memory. Mean-square-
error (MSE) of the directivity is used to compare the

numerical accuracy, which is defined as (∑N
n=1 |xn −

xre f
n |2)/N, where xn denotes the nth actual result, and xre f

n
denotes the nth reference result.

A. Slot antenna array with dielectric radome
We demonstrate applicability and correctness of the

proposed method through the analysis of slot antenna
array with the dielectric radome as depicted in Fig. 7.
The slot antenna array consists of 5 waveguides shown
in Fig. 2. Operating frequency of the antenna is 3 GHz.
Figure 8 (a) presents the calculated magnitude of S11
parameters for single slot antenna, showing a very good
agreement with the commercial software FEKO. The
dielectric radome has an inner radius of 540 mm, an outer
radius of 600 mm, and a height of 2000 mm. Relative
permittivity of the radome material is 1.5 with a loss tan-
gent of 0.001. The number of unknowns is 1 332 741, and
the iterative tolerance is set to 1×10−3. The computing
resources with 48 CPU cores are used to perform this
simulation, and the proposed method requires 586.44 GB
memory and 20542.29 s computing time. Results of this
simulation have been compared with the commercial
software FEKO. Comparisons of the xoz-plane and yoz-
plane radiation patterns obtained by superimposing mag-
nitude and phase of the feed excitation of each antenna
element using the superposition principle at 3 GHz are
given in Fig. 9. Taking the FEKO solution as a reference,

Fig. 7. Simulation model consisting of a waveguide slot
antenna array and a dielectric radome.
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Fig. 8. (a) Comparison of S11 for the single waveguide
slot antenna. (b) Comparison of S parameters for the
waveguide slot antenna array with dielectric radome.
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Fig. 9. Radiation patterns of the waveguide slot antenna
array with dielectric radome in the (a) xoz plane and (b)
yoz plane.

MSEs of the directivities in the xoz-plane and yoz-plane
patterns are 0.226 and 0.604, respectively, which show
good agreements. Figure 8 (b) shows the calculated mag-
nitude of S parameters as a function of frequency, and the
iteration steps required by different methods at 3 GHz
for this example are given in Table 1. We can see that the
conventional method is ineffective for solving the radia-
tion problems, and the proposed method can reduce the
computing time for the slot antenna array with radome
by at least 50%, showing its effectiveness.

Table 1: Comparison of the iteration steps required by
different methods at 3 GHz, when different elements are
active. Here, * denotes the antenna element chosen in the
first calculation

Active Initial Conventional Proposed
Antenna Value = 0 Method Method
Element

Antenna 1 74 74* 33
Antenna 2 76 74 32
Antenna 3 74 76 74*
Antenna 4 77 76 32
Antenna 5 73 74 31

B. Dipole antenna array mounted on a ship
In the second example, an antenna array mounted on

a conducting ship model is analyzed. The antenna array
consists of 10×10 dipole antenna elements. This bench-
mark demonstrates that the proposed method can solve
some challenging EM problems as well. The antenna
element structure is shown in Fig. 10, and its operat-
ing frequency is 3 GHz. Relative permittivity of the
dielectric substrate is 4.4 with a loss tangent of 0.02.
The conducting ship, as shown in Fig. 11 (a), has a
length of 22550 mm, a width of 3024 mm, and a height
of 3734 mm. The model is discretized into 3 178 265
unknowns, which require huge hardware resources for

(a) (b)

Fig. 10. Simulation model of the dipole antenna element.
(a) Structure of the dipole antenna element. (b) Structure
of the PEC patch.

(a) (b)

Fig. 11. Simulation model of the antenna array mounted
on a conducting ship. (a) Simulation model of the con-
ducting ship. (b) Simulation model of a 10×10-element
antenna array.

the conventional MoM and FEM, and the iterative tol-
erance is set to 1 × 10−3. The computing resources
with 48 CPU cores are used to perform this simulation.
Table 2 presents the hardware resource consumptions
and computation times for the array with different cases
where all the elements are fed with equal magnitude
and same phase. Here, different cases lead to different
number of unknowns. In Case 1, the proposed method
requires only 319.8 GB memory and 5124.71 s com-
puting time. Figure 12 shows 3-D radiation pattern of
the antenna array at 3 GHz obtained by the proposed
method, and Fig. 13 shows the near field distribution on
the deck of ship. Figure 14 plots the transmission coef-
ficients S45,45, S45,46, and S45,1 in the frequency range of
2.5 GHz to 3.5 GHz (51 sampling points).

Table 2: Comparison of the hardware resource consump-
tions and computational times for the antenna array
mounted on a conducting ship with different cases

Frequency Number Memory Total
(GHz) of Usage Time

Unknowns (GB) (s)
Case 1 3 3 178 265 319.8 5124.71
Case 2 4 5 399 778 512.9 6899.89
Case 3 5 8 256 990 558.6 9884.58
Case 4 6 11 749 772 836.2 14180.66
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Fig. 12. 3-D radiation pattern of the 10 × 10-element
dipole antenna array mounted on a ship at 3 GHz.

Fig. 13. Near field magnitude distributions on the deck
of the ship at 3 GHz.
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Fig. 14. S parameters of the 10 × 10-element dipole
antenna array mounted on a ship.

IV. CONCLUSION
In this paper, an efficient preconditioned MLFMA

is presented for analyzing radiation and coupling charac-
teristics of large-scale antenna arrays mounted on elec-
trically large platforms. The waveport model is estab-

lished for the MLFMA, and a preconditioner is designed
for the radiation problems with waveports excitations,
which improve the efficiency and convergence for ana-
lyzing large-scale antenna arrays. In addition, an ini-
tial guess construction method is proposed to effectively
analyze coupling problems of the antenna arrays with
multiple excitations. Numerical results revealed that the
presented method can provide accuracy solutions, and
reduce the iteration steps by at least 50% for the multi-
excitation problems. Simulation of a 10 × 10-element
antenna array mounted on a conducting ship validates
computing power of the method. The proposed method
can also be used for calculating the sum and difference
beams patterns of antenna arrays with radomes, which
also provides an effective method for accurately analyz-
ing radiation and coupling characteristics of the airborne
and shipborne antenna arrays.
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