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Abstract – This paper proposes a differential evolution
modified with adaptive ε-constraint handling and whale
optimization algorithm (ε-WOA-DE) for the synthesis of
unequally spaced linear arrays under array layout con-
straints and array pattern characteristics constraints. In
particular, the success history based adaptive differential
evolution with linear population reduction (LSHADE)
serves as the basic search engine in this study. To ensure
the searching ability of LSHADE under multiple con-
straints, an adaptive ε-constraint handling technique is
implemented in LSHADE, in which the epsilon level is
adjusted dynamically to make the solution scalable to the
feasible region when it is in the infeasible region. In addi-
tion, the WOA mutation is implemented in the LSHADE
to enhance the local search capability. Two array syn-
thesis examples with multiple constraints are chosen to
demonstrate the effectiveness of the proposed algorithm.
The simulation results comparison and the convergence
analysis of the ε-WOA-DE illustrate the superior capa-
bility of the proposed method.

Index Terms – adaptive ε-constraint handling, array
synthesis, differential evolution, unequally spaced linear
arrays, whale optimization algorithm.

I. INTRODUCTION
Synthesis of unequally spaced arrays has been

widely explored in the last decades [1]. Compared with
uniform spaced arrays, the element positions of the
unequally spaced arrays can be exploited to achieve bet-
ter pattern radiation characteristics. In particular, when
array design is further combined with array amplitude
and phase optimization, arrays with unequal spacing can
achieve better array pattern performance [2].

Generally, the layouts of the unequally spaced arrays
involve several constraints, such as element number, the
total array length and the spacing between two adjacent
elements [3–6]. Despite the array layout constraints, sev-
eral array pattern characteristics, such as the maximum
sidelobe level (SLL), the required mainlobe beamwidth

(BW) and the maximum null depth (ND) in some speci-
fied directions, are required in the array synthesis. These
multiple constraints and requirements in the antenna
array design lead the synthesis of unequally spaced
arrays to complicated nonlinear constrained optimization
problems, which increase the difficulty of the antenna
synthesis.

Various evolution algorithms, such as the genetic
algorithm, differential evolution (DE), seagull optimiza-
tion algorithm, comprehensive learning particle swarm
optimization (CLPSO) and whale optimization algo-
rithm (WOA), have been concerned about solving this
complicated nonlinear constraint problem [7–11]. For
the geometry constraints, [7] has successfully trans-
formed the geometry constraints to the unconstrained
model by employing the vector mapping method and
has been widely used in array synthesis. However, there
is difficulty in satisfying the array pattern characteristic
constraints. To deal with the array pattern characteris-
tic constraints, [8–12] incorporate the constraints into the
fitness function, by which the fitness values of the infea-
sible vectors are large and will be discarded in the opti-
mization process. To satisfy the array pattern characteris-
tic constraints, [12] proposed the modified DE with con-
strained vector projection (MDE-CVP) algorithm, the
CVP method is used to exclude the infeasible solutions
which unsatisfy the desired null depth. Although the
lower null depth was realized, the SLL could not reach
the desired value.

When constrained array synthesis evolutionary algo-
rithms give priority to the satisfaction of constraints [13],
it is likely to cause the following two problems. On the
one hand, it is likely to make the population fall into a
local infeasible region, so that the algorithm cannot find
a feasible solution, which may result in failing to satisfy
some constraints. On the other hand, it is likely to make
the population converge to a locally feasible region, but
far away from the location of the constraint in which the
complete pareto optimal solution set in the target space
cannot be found. Thus, in the constraint array synthe-
sis, instead of excluding the infeasible solutions directly,
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exploring infeasible regions around the feasible region is
very effective in searching for the global optimal solu-
tions in the constraint optimization [14].

In this study, in order to find better layouts of the
antennas under multiple constraints, a modified DE algo-
rithm with the adaptive ε-constraint control method is
proposed to deal with the constraints, in which the epsilon
level dynamically is adjusted to enhance the exploration
of the infeasible regions in the optimization process. To
ensure the convergence speed of the optimization, the
adaptive ε-constraint control method is incorporated
with the success-history based differential evolution
with linear population reduction (LSHADE), which has
shown superiority in the single objective optimization
[15]. In addition, WOA mutation is introduced in the
mutation process to enhance exploitation [16, 17]. The
optimization of the array geometry is initialized to gener-
ate optimal radiation pattern under geometry constraints
and the SLL, the BW and the ND constraints. Compared
with other synthesis techniques [9, 10, 12], the proposed
method performs well in the constrained array synthesis.

II. PROBLEM FORMULATION
As shown in Fig. 1, consider a 2N element linear

array symmetrically placed along the x-axis with the
aperture of 2L, the array factor can be written as follows:

AF(θ ,X) =
N

∑
n=1

cos
(

2π

λ
xncosθ

)
, (1)

where θ is the steering angle, λ is the wavelength,
X = [x1,x2, ...,xN ] denote the element positions. Since
the array aperture is 2L, xN is L. The SLL of the radi-
ation pattern can be expressed as:

SLL(X) = max
θ∈Sidelobe

∣∣∣∣ AF(θ ,X)

AF(θs,X)

∣∣∣∣ , (2)

where Sidelobe is the sidelobe region corresponding to
X , θs is the mainbeam direction. The maximum ND is
denoted as:

ND(X) = max
m=1,2,..,M

∣∣∣∣AF(θm,X)

AF(θs,X)

∣∣∣∣ , (3)

where ND(X) is the maximun nulldepth corresponded
with X , and θm,(m = 1,2, ..,M) are the specific direc-
tions of the steering nulls.
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θ

Fig. 1. Geometry of the 2N-element symmetric linear
array.

In this study, we aim to design the layout of the lin-
ear array with the desired array aperture, the minimum
element spacing constraints and limited SLL, BW and
ND in some specific directions. Based on the vector map-
ping method in [7], the array layout constraints can be
transformed in the element positions optimization:{

xn = ∑
n
j=1 ∆x j

∆xn = ∆dxn +(L− (N −0.5)dc))×an/∑
N
j=1 a j

,

(4)
where ∆x j = x j − x j−1 is the element spacing, A =
[a1,a2, ...,aN ] is randomly generated among the range of
[0,1], ∆dx = [0.5dc,dc, ...,dc] is a N-dimensional vector,
dc is the required minimum element spacing and ∆dxn is
the nth element of ∆dx.

Inspired by the objective function implemented in
[18], the new objective function, which not only aims to
meet the BW, the SLL and the ND requirements, but also
optimizes these array pattern characteristics is developed
as follows:

min
A

|BW (A)−BWd |+SLL(A)+ND(A)

s.t. SLL(A)≤ SLLd

ND(A)≤ NDd

|BW (A)−BWd | ≤ τBWd

, (5)

where BW (A) is the beamwidth corresponded with A,
BWd is the desired beamwidth, SLLd is the constraint
SLL, NDd is the desired maximum ND, and τ is the
desired tolerance percentage of the beamwidth.

III. PROPOSAL OF THE ARRAY
SYNTHESIZER

The array synthesis model in (5) is a nonconvex
and highly nonlinear problem. With good global search
capability, the success history based adaptive differential
evolution with linear population reduction (LSHADE) is
used in this study. Additionally, to handle the constraints
and enhance the local search capability, the LSHADE
is modified with the adaptive ε-constraint handling and
WOA mutation, respectively.

A. Basic LSHADE
LSHADE is an improved DE algorithm, which

adapts the parameters based on the success-history and
employs the population size reduction (LPSR) mecha-
nism [19]. The population of LSHADE is initialized as
follows:

y0
i, j = lb j + rand · (ub j − lb j) , (6)

where rand represents a random number which dis-
tributed uniformly in [0,1]. y0

i, j is the jth component
( j = 1,2, ..,D) of the ith individual (i = 1,2, ..,N) in the
initial population, ub j and lb j are the upper and lower
bounds of the jth variable. And then, these individu-
als are evolved by the mutation, crossover and selection
operators with the successful history based parameter
adaption and linear population reduction.



293 ACES JOURNAL, Vol. 39, No. 04, April 2024

a) Mutation: in this operator, the mutant vector vG
i

is created according to current-to-pbest/1 mutation strat-
egy:

vG
i = yG

i +FG
i

(
yG

pbest − yG
i

)
+FG

i
(
yG

r1 − yG
r2
)

, (7)

where yG
i represents the ith target vector of the Gth

generation. yG
pbest is randomly selected from the best

NP× p,(p∈ [0,1]) vectors of current population. yr1 and
yr2 is randomly chosen from the union of the current pop-
ulation and the external archive. FG

i is the scaling factor
and is updated according to its historical successful expe-
rience.

b) Crossover: in this operator, the trial vector uG
i =

[uG
i,1,u

G
i,2, ...,u

G
i,D] is generated according to the crossover

rate, which can be expressed by:

uG
i, j =

{
vG

i, j i f
(
randi, j ≤CrG

i or j = jrand
)

yG
i, j otherwise

, (8)

where jrand is an integer randomly selected from [1,D],
CrG

i is the crossover rate and is updated according to its
historical successful experience.

c) Selection: in this operator, not only the popula-
tion is generated, but also the external archive is updated.
After the selection of the vectors with better fitness func-
tion value, only NPG+1 best vectors will survive into the
next generation, which is updated by linear population
size reduction mechanism:

NPG+1=round
[(

NPmin−NPini

MFES

)
×FES+NPini

]
, (9)

where NPini is the initial population size, NPmin is the
population size of the last generation, MFES is the max-
imum number of fitness function evaluations, and FES
is the current number of fitness function evaluations. The
other NPG −NPG+1 vectors are removed to the external
archive.

B. Adaptive ε-constraint handling
To ensure the searching ability under multiple con-

straints, this paper incorporates an adaptive ε-constraint
handling technique in SHADE. In constraint problems
optimization, the constraint violation is an important fac-
tor in measuring the constraints. In this array synthesis
problem (5), the constraint violation is:

ϕ(A) =max(0,SLL(A)−SLLd)

+max(0,ND(A)−NDd)

+max(0, |BW (A)−BWd |− τBWd)

, (10)

For two solutions A1 and A2, their constraint viola-
tions are ϕ1 and ϕ2. Then, for any ε satisfies ε ≥ 0, the ε-
level comparison selects the better solutions as follows:

(A1,ϕ1)⪯ε (A2,ϕ1)⇔


A1 ⪯ A2, if ϕ1,ϕ1 ≤ ε

A1 ⪯ A2, if ϕ1 = ϕ2

ϕ1 < ϕ2, otherwise

. (11)

Through the ε-level comparison, LSHADE algo-
rithm can be used for constrained optimization
directly [15]. Moreover, the ε-level comparison can
extend the exploration of the infeasible regions around
the feasible regions by setting appropriate ε value. Thus,
to maintain the balance of searching between infeasible
and feasible regions, an improved adaptive ε level con-
trol based on the exponential decline scheme is formu-
lated in this study as:

ε(t) =



(1− t
Tc
)cpϕmax if ϕmax≤T h or rt ≤ap1

and t ≤ T c

ap×ϕmax if ϕmax > T h or rt > ap1

and t ≤ T c

0 if t > T c

, (12)

where ϕmax is the maximum constraint violation in the
current generation, cp controls the speed of declining
constraints, rt is the ratio of feasible vectors to total vec-
tors in the tth generation, T h and ap1 is to control the
preference rule of setting ε value, ap is a small value.

Considering that in the exponential decline scheme,
the ε may maintain a big value over a long period, which
will degrade the search efficiency. When ϕ is larger than
T h or there are enough feasible vectors, the ε value is
set as a relatively small value to make the search focus
on the feasible region and the infeasible region around
the feasible region. In the final-stage, when the iteration
number is larger than T c, the ε value is set as 0 to enable
the final exploitation in the feasible region.

C. WOA mutation
To enhance the exploitation around the best vectors,

the spiral movement operator of WOA is incorporated
into the mutation process[16]. The mutant vector vG

i has
a chance to make further updates using the spiral move-
ment of WOA:

vG
i =

{
wDiel cos(2πl)+ yG

pbest if rand < 0.5

vG
i otherwise

, (13)

where w = cos( 0.5πG
Gm ) is the weight coefficient, Di =∣∣∣yG

pbest − vG
i

∣∣∣ and l is the uniform random number in the
intervals [−1,1].

D. Synthesis procedure
The pseudo-code for the ε-WOA-DE is summarized

in Algorithm 1.
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Algorithm 1: ε-WOA-DE based array synthesis proce-
dure
1: Set the number of elements N, the required array char-
acters, the initial population size NPini, maximum gener-
ation number Gmax.
2: Randomly generate NPini individuals
3: Calculate the fitness value by (5) and the constraint
violation by (7)
4: Set G = 1
5: while G < Gmax, do
6: for i = 1 : NPG, do
7: Calculate FG

i and CRG
i

8: Make mutant vector vG
i by (10) and (12)

9: Make trail vector uG
i using (11)

10: Calculate the fitness function by (5) and
the constraint violation by (7)

11: Select the next generation and update
the external archive

12: end for
13: G = G+1
14:end while
15: Output the best vector and the corresponding array
element positions

IV. NUMERICAL RESULTS
To verify the effectiveness and efficiency of the ε-

WOA-DE algorithm, two linear array synthesis examples
are presented and compared with CLPSO [9], WOA [10]
and MDE-CVP [12].

The initial population size NPini, the minimum pop-
ulation size NPmin and the maximum generation number
Gmax are set as 50, 10, 500, respectively. The other DE
control parameters are the same as those in [19]. For the
ε level handling, the decline speed cp is set as 2, ap is set
as 0.2, the threshold parameters T h, T c and ap1 are set
as 0.25, 150 and 0.2, respectively. For all examples, ten
independent trails are performed and the best simulation
results are evaluated.

The first example is a 28-element unequally spaced
linear array synthesis. For comparison, we set 2L =
15.8 λ , dc = 0.25 λ , θs = 90◦,θm = [120◦ 122.5◦ 125◦],
BWd = 8.35◦, τ = 0.05, SLLd = −23 dB and NDd =
−90 dB, respectively. The corresponding optimal array
geometry is shown in Table 1. Figure 2 compares the
radiation pattern obtained by the ε-WOA-DE algorithm

Table 1: Optimal geometries of the antenna arrays obtained by the the ε-WOA-DE algorithm
Example [ x1/λ ,x2/λ , ...,xN/λx1/λ ,x2/λ , ...,xN/λx1/λ ,x2/λ , ...,xN/λ ]

Example 1 [0.3380 0.6104 1.3092 1.8184 2.1648 2.8049 3.1209 3.4471 4.1020
4.9288 5.8134 6.5189 7.1720 7.9]

Example 2 [0.2042 0.6589 1.0253 1.3998 1.8792 2.2190 2.7378 3.0639 3.5908
4.0176 4.5907 5.0038 5.7295 6.6059 7.5015 8.4 ]
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Fig. 2. Best radiation pattern of the 28-element array
obtained by different algorithms.

and the other algorithm. The corresponding array pat-
tern factors comparison of different algorithms are listed
in Table 2. The ε-WOA-DE algorithm has achieved the
lowest SLL and satisfied all the required array pattern
characters in the two examples. The convergence plots of
the objective function value, constraint violation, and the
value of ε are shown in Fig. 3. The ε value is adjusted
adaptively during the optimization process while the
constraint violation declined gradually to 0. The algo-
rithm converges in generations, respectively.

The second example is a 32-element linear array.
The desired array factors are set as 2L = 16.8 λ , dc =
0.25 λ , θs = 90◦, θm = 99◦, BWd = 8.3◦, SLLd =
−23.5 dB and NDd = −110 dB, respectively. The opti-
mal array geometry is shown in Table 1. The perfor-
mance comparisons are presented in Fig. 4 and Table 3.
The ε−WOA-DE algorithm has met all the required

Table 2: Comparison of the MDE-CVP algorithm with
other algorithms for the 28-element array

Algorithm SLL, dB ND, dB BW, deg
CLPSO [9] -21.60 -60 8.35
WOA [10] -21.86 -106.27 8.49

MDE-CVP [12] -22.80 ≤−150 8.6
ε-WOA-DE -23.03 -114.02 8.6
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Fig. 3. Convergence curve plots of the 28-element array.
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Fig. 4. Best radiation pattern of the 32-element array
obtained by different algorithms.

Table 3: Comparison of the MDE-CVP algorithm with
other algorithms for the 32-element array

Algorithm SLL, dB ND, dB BW, deg
CLPSO [9] -22.73 -60.45 8.35
WOA [10] -23.62 -122.41 7.86

MDE-CVP [12] -22.98 ≤−150 8.4
ε-WOA-DE -23.83 -151.17 8.5

array pattern characters with lower ND and lowest SLL.
The convergence curves of the objective function, con-
straint violation, and the ε value can be seen in Fig. 5.

In order to investigate the convergence performance
and computational costs of the proposed ε-WOA-DE,
Table 4 compares the required number of fitness function
evaluations for convergence (NEC) in all examples. In
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Fig. 5. Convergence curve plots of the 32-element array.

Table 4: Convergence analysis of different methods

Algorithm NECs
Example1 Example2

CLPSO [9] 47560 27360
WOA [10] 21460 7440

ε-WOA-DE 7711 6220

addition, the algorithm converges at around 24000 NECs
for all the examples in MDE-CVP [12]. In comparison,
the ε-WOA-DE algorithm not only has powerful search
capability but also performs quick convergence rate.

V. CONCLUSION
In this study, in order to optimize the positions of

the unequally spaced array under multiple constraints,
we propose a modified DE algorithm. The algorithm is
based on the LSHADE and modified by implementing
the adaptive constraint handling technique and integrat-
ing the spiral movement of the DE mutation process.
Simulation results show that the proposed ε-WOA-DE
algorithm has an improved performance in the array pat-
tern characteristics control and the efficient computation
time. Although ε-WOA-DE is only used for linear array
synthesis in this study, it is worth noting that the con-
straint handling implemented technique is suitable for
the other geometry array synthesis such as the circular
and planar array. In future, in order to more accurately
simulate and optimize the performance of unequally
spaced arrays, we will investigate the incorporation of
mutual coupling into the synthesis of unequally spaced
arrays.
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