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Abstract – Better understanding of electromagnetic wave
propagation through vegetation and forest environments
can be achieved with the aid of modeling and simula-
tion. Specifically, modeling the coherent summation of
electromagnetic waves due to both single scatter and
multi-scatter effects. To accurately perform simulations
in lower frequency bands, S-band and below, the Body
of Revolution (BOR) Method of Moments (MoM) must
be extended to calculate the scattered electric and mag-
netic near-fields from BOR in the presence of a plane
wave. The near field interactions specifically occur dur-
ing the various higher order scattering harmonics, i.e. 2nd

order and greater harmonics. Additionally, the method
must accurately capture scattered fields in the presence
of a non-plane wave incident upon BOR. The focus of
this study is modeling lossy dielectric BOR that are char-
acteristic of vegetation and forest environments, e.g.,
cylinders representing tree branches. Although the for-
mal electric and magnetic field scattering definitions are
known, this report presents analytical formulations of
near field scattering from BOR for this implementation
of BOR-MoM. The scattered-field extensions are val-
idated using the commercial software FEKO©, which
simulates electromagnetic-wave scattering in 3D using
MoM formulation of scattered fields.

Index Terms – Body of Revolution, Method of Moments,
near fields, remote sensing, scattering.

I. INTRODUCTION
Accurate modeling and simulation of electromag-

netic wave scattering from vegetation within forest
environments is essential for various remote sensing
and communications applications including Synthetic
Aperture RADAR imaging and cellular connectivity.

These models should consider the coherent single and
multi-path effects of electromagnetic waves propagat-
ing through environments consisting of vegetation and
forests. These effects can be described using Multiple
Scattering Theory (MST) [1]. Previously, multi-scatter
has been characterized through shooting bounce ray
methodologies where the physical optics approximations
apply, λ ≪ d, where d is the maximum size of the scat-
tering object [1–3]. These methodologies, however, are
not suitable when the physical optics approximation no
longer applies, i.e., objects in the scene are not suffi-
ciently electrically large.

Other methods that have been studied include itera-
tive radiative transfer methods and Fresnel double scat-
tering using Discrete Dipole Approximation [4, 5]. Full
wave solutions have also been used to examine mul-
tiple scattering effects in trees. The software FEKO©,
which is for simulation of electromagnetic-wave scatter-
ing in 3D using the Method of Moments (MoM) formu-
lation of scattered fields, was used to examine scatter-
ing from electrically small vegetation above a dielectric
ground plane [6]. Additionally, a two-step hybrid method
was employed, combining (1) 3D MoM (via FEKO©) to
fill in the T-Matrix coefficients for the individual scat-
terers and (2) MST [7]. These modeling efforts [6, 7]
showed exceptional results, but were not suited for the
study of large stochastic forest environments due to com-
putational requirements. Accordingly, these efforts have
motivated the need for faster simulation of wave propa-
gation through vegetation and forest environments, using
MoM formulation of Maxwell’s Equations.

Traditionally, trees and vegetation are characterized
by axi-symmetric objects, e.g., cylinders, which allows
for the use of the Body of Revolution (BOR) MoM [1–
8]. The classical BOR-MoM provides a full wave solu-
tion to scattering phenomenon for incident plane waves

Submitted On: January 19, 2024
Accepted On: June 21, 2024

https://doi.org/10.13052/2024.ACES.J.390501
1054-4887 © ACES

https://doi.org/10.13052/2024.ACES.J.390501


377 ACES JOURNAL, Vol. 39, No. 05, May 2024

[9–23]. Since the method only discretizes over an ana-
lytically singular generating arc for a set of harmonics,
the computational burden is an order of magnitude less
than that of the traditional 3D MoM. In turn, BOR-MoM
provides a fast, accurate solution for BOR. Additionally,
it allows for the calculation of both near fields and far
fields from the induced electric and fictitious magnetic
surface currents. Previous applications of BOR-MoM
analyzed singular scatterers with respect to an incident
field [9–22]. These analyses included: far field electric
and magnetic field expansions [9–23], RADAR Cross
Section (RCS) analysis using the scattering amplitude
[13, 17, 20], expansion of the integral formulation to con-
sider a dielectric medium surrounding BOR in a layered
system [15], and evaluation of the resonances of a BOR
in a lossy dispersive half-space [11–12, 15]. Typically,
these methodologies considered only a single scatterer or
integral expansions to BOR derivation to handle multi-
reflection/scatter effects that can occur in a scene.

Due to the stochastic nature of trees and foliage
however, expansion of the integral operators to account
for the connections between the branches is not well
posed computationally, in terms of discrete numeri-
cal representation. Additionally, BOR-MoM is primarily
used for single objects, and not multiple discrete scatter-
ers, within a scene. Thus, various scatterers must interact
via multi-scatter techniques rather than via integral oper-
ator additions in the impedance matrix. In turn, the nature
of foliage is that of Multiple BOR (MBOR) scattering
which has been extensively researched and applied to
foliage [24–31]. These techniques include various meth-
ods such as cylindrical and spherical wave expansions,
T-matrix approximations, and thin cylinder approxima-
tions [25–31]. To flush out the subtleties of tree scatter-
ing using MBOR approaches, however, these methods
are not ideal for physically and accurately understanding
the mechanisms by which the waves propagate through
foliage mediums and interact when minimal assumptions
are present.

To analyze these multi-scatter effects, both near field
and far field scattered electromagnetic waves must be
analyzed for both plane wave and non-plane wave inci-
dence. The non-plane wave case occurs when a branch
scatters onto another branch that is within the near field;
the resultant incident wave upon the second branch has a
specific wave front, assumed non-plane wave, across the
branch [5–7].

In what follows, the focus of this paper is near field
scattering from a BOR. Although the formal electric
and magnetic field scattering definitions are known, this
paper provides a detailed derivation of the formal scat-
tering for this particular implementation of BOR-MoM.
Note that the near field derivation is valid for all of space;
however, it is not computationally advantageous to use it

when in the far field for a scatterer. First, presented is
a derivation for BOR-MoM. Secondly, the generalized
scattered fields for all of space - including the near fields
- are derived for this implementation of BOR-MoM.
Then the near field calculation method is validated for
both perfect electric conductors (PEC) and lossy dielec-
tric cylinders against the 3D MoM in FEKO©.

II. BODY OF REVOLUTION METHOD OF
MOMENTS

BOR is the rotation of a generating curve, planar arc
C, about an axis, see Fig. 1. In this study, the axis of
rotation will be the z-axis of a Cartesian coordinate sys-
tem, and the generating curve will only exist in the right
half plane where by definition the curve is rotated 360o

around the z-axis. In turn, the surface, S, formed by BOR
will be the interface separating free space and the scat-
terer with material properties ε=εrε0 and µ=µrµ0.

(a) (b)

Fig. 1. A Body of Revolution where (a) is the three-
dimensional model with the relevant coordinate system
definitions and (b) is the coordinate definitions along the
surface of BOR. Note that the BOR figure representa-
tion is from and with permission of Matthaeis and Lang
[10, 11].

The coordinate unit vectors are defined in Fig. 1 by:
τ̂ττ = sinψ cosϕ x̂+ sinψ sinϕ ŷ+ cosψ ẑ, (1)
n̂ = cosψ cosϕ x̂+ cosψ sinϕ ŷ− sinψ ẑ, (2)
ϕ̂ϕϕ =−sinϕ x̂+ cosϕ ŷ. (3)

The Electric Field Integral Equations (EFIE) used
to evaluate the surface currents along the surface, S, are
defined by:

Et(r)
2

= Ei
t(r)+

− jωµ0(I− n̂n̂) ·PV
∫
s+

G
(
r,r′

)
·Js

(
r′
)

dS′+

− (I− n̂n̂) ·PV
∫
s+

K
(
r,r′

)
×Ms

(
r′
)

dSS′, (4)
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Et(r)
2

= jωµ(I− n̂n̂) ·PV
∫
s−

G
(
r,r′

)
·Js

(
r′
)

dS′+

− (I− n̂n̂) ·PV
∫

S−

K
(
r,r′

)
×Ms

(
r′
)

dSS′, (5)

where Et(r) is the tangential field on the surface, ω is
the angular frequency, I is the unit dyadic, PV denotes a
principal value integral, S+is the outer surface of S,S−

is the inner surface of S,G(r,r′) is the electric dyadic
Green’s function, K(r,r′) is the magnetic dyadic Green’s
function, Js (r′) are the induced electric surface currents,
and Ms (r′) are the induced, fictitious magnetic surface
currents.

The incident fields and induced sources within EFIE
can then be split into τ and ϕϕϕ vector components:

Ei
t(r) = Ei

τ(l,ϕ)τ̂ττ +Ei
ϕ(l,ϕ)ϕ̂ϕϕ, (6)

Js(r) = Jτ(l,ϕ)τ̂ττ + Jϕ(l,ϕ)ϕ̂ϕϕ, (7)
Ms(r) = Mτ(l,ϕ)τ̂ττ +Mϕ(l,ϕ)ϕ̂ϕϕ, (8)

where l denotes the location on generating arc, C.

A. Fourier series expansion
To evaluate the induced surface currents on the gen-

erating arc, EFIE are expanded in Fourier series around
the z-axis such that MoM is only evaluated over the
generating arc for a series of harmonics. The resulting
induced sources are:

Ep
i(r) =

∞

∑
n=−∞

Ep,n
iejnϕ , (9)

Jp(r) =
∞

∑
n=−∞

Jp,nejnϕ , (10)

Mp(r) =
∞

∑
n=−∞

Mp,nejnϕ , (11)

where p,q = τ,ϕ and the Fourier Series Coefficients are
defined as:

Cn =
1

2π

π∫
−π

f(ϕ)e−jnϕ ′
dϕ

′, (12)

for f(ϕ)= E, J, M, etc.

B. Method of Moments expansion
Now the electric and magnetic surface currents can

be discretized for MoM such that:

Jτ,n (l) =
N

∑
m=1

Jτ,m,n=
N

∑
m=1

Λ
τ,n
m Pm (l)

ρm
, (13)

Jϕ,n(l) =
N

∑
m=1

Jϕ,m,n=
N+1

∑
m=1

Λ
ϕ,n
m Pm (l), (14)

Mτ,n (l) =
N

∑
m=1

Mτ,m,n=
N

∑
m=1

Ω
τ,n
m Pm (l), (15)

Mϕ,n (l) =
N

∑
m=1

Mτ,m,n=
N+1

∑
m=1

Ω
ϕ,n
m Pm (l), (16)

where Jτ,m,n,Jϕ,m,n,Mτ,m,n, and Mτ,m,n are the surface
currents per harmonic for their respective polarization
vector on each discretized segment of the generating arc,
m is the segment number, N is the total number of seg-
ments, Pm(1) is the chosen basis function expansion, ρm
is the distance from the z-axis, and Λ

τ,n
m ,Λ

ϕ,n
m ,Ωτ,n

m , and
Ω

ϕ,n
m are the basis function coefficients.

Testing functions are now applied using the symmet-
ric product:

⟨χ (l) ,α (l)⟩ =
∫

∞

−∞
χ (l) ·α (l)dl. (17)

Now the interaction matrix and incident field matrix
can be evaluated for a signal harmonic on BOR gener-
ating arc. The equivalent sources are solved by inverting
the interaction matrix:

[Jn] = [Zn]
−1 [En] . (18)

III. SCATTERED FIELD EQUATIONS FOR A
BODY OF REVOLUTION

The scattered field definition using equivalent
sources is:

Es(r) =−jωµ0

∮
G0 (r,r′

)
·Js

(
r′
)

dS′+

−
∮

K0 (r,r′
)
·Ms

(
r′
)

dS′, (19)

Hs(r) =
∮

K0 (r,r′
)
· Js

(
r′
)

dS′+

− jωε0

∮
G0 (r,r′

)
·Ms

(
r′
)

dS′, (20)

where Es(r) is the scattered electric field, Hs(r) is the
scattered magnetic field, r is the scattered field loca-
tion, and r′ is the surface current source location. Note
that equations (19) and (20) are derived from the gen-
eral formulation, Es(r) =Etotal (r)−Einc (r). The dyadic
Green’s functions are defined as:

G0 (r,r′
)
=

(
I+

∇∇

k2

)
g0 (r,r′

)
, (21)

K0 (r,r′
)
= ∇g0 (r,r′

)
× I, (22)

where:

g0
(

r,r
′
)
=

e−jk0

∣∣∣r−r
′ ∣∣∣

4π
∣∣r− r′ ∣∣ . (23)

Next, the scattered electric field equations, equation
(19), are separated, i.e.:

Es(r) =−jωµ0Es
1(r)−Es

2(r), (24)

Es
1(r) =

∮
G0 (r,r′

)
·Js

(
r′
)

dS′, (25)

Es
2(r) =

∮
K0 (r,r′

)
·Ms

(
r′
)

dS′. (26)

A. Es
1 (r) integral expansion
The electric field integral operator for the electric

surface currents, equation (25), can be combined with
equations (7), (10), and (21) to yield:

Es
1(r) =

∞

∑
n=−∞

Es
1,n

{
Js,n

(
l′
)}

ejϕs , (27)
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where ϕs is the azimuthal scattering angle. The Fourier
series coefficients are:

ES
1,n =

∫
S

G0(r,r) ·
(
Jτ,nτ̂ττ

′+Jϕ,nϕ̂ϕϕ
′)e jnϕ ′

dS′. (28)

Next, performing the dot products of the dyadic
Green’s function in spherical coordinates with the local
BOR coordinate system, and separating the scattered
field components into separate spherical components, r̂rr,
ϕ̂ϕϕ , and θ̂θθ , yields:

Es
1,n,r =

∫
S

g0 (r,r′
)

Fr (Js,n)ejnϕ ′
dS′r̂, (29)

Es
1,n,ϕ =

∫
S

g0 (r,r′
)

Fϕ (Js,n)ejnϕ ′
dS′

ϕ̂ϕϕ, (30)

Es
1,n,θ =

∫
S

g0 (r,r′
)

Fθ (Js,n)ejnϕ ′
dS′

θ̂θθ . (31)

The definitions of Fr, Fϕ , and Fθ are given in
Appendix I. Given derivation of the proper terms
accounting for the angular dependencies of the two coor-
dinate systems, equations (29-31) can be expanded fur-
ther using MoM definitions, equations (13) and (14):

ES
1,n,r =

N

∑
m=1

∫
S

g0 (r,r′
)

Fr (Jn,m)ejnϕ ′
e−jnϕ dS′r̂, (32)

Es
1,n,ϕ =

N

∑
m=1

∫
S

g0 (r,r′
)

Fϕ (Jn,m)ejnϕ ′
e−jnϕ dS′

ϕ̂ϕϕ, (33)

Es
1,n,θ =

N

∑
m=1

∫
S

g0 (r,r′
)

Fθ (Jn,m)ejnϕ ′
e−jnϕ dS′

θ̂θθ . (34)

Recognizing that the basis-function sets chosen are
rectangular and triangular, and that the discretization is
appropriately fine, the integration over a segment can be
approximated by:

tB∫
tA

f
(
l′
)

dl′ = (tB − tA) f
(

tB − tA
2

)
. (35)

Application of this approximation, with triangular
basis functions, minimizes error if either side of the basis
functions (left and right of the triangle) are evaluated
independently. Using equation (35) and equations (32-
34), the integration along the generating arc, l, over a
single segment becomes:

Es
1,n,r,m = ∆lm,kρm

2π∫
0

g0 (r,rm)Fr,n,m (Jn,m)ejnϕ ′
dϕ

′r̂,

(36)

Es
1,n,ϕ,m = ∆lm,kρm

2π∫
0

g0 (r,rm)Fϕ,n,m (Jn,m)ejnϕ ′
dϕ

′
ϕ̂ϕϕ,

(37)

Es
1,n,θ ,m = ∆lm,kρm

2π∫
0

g0 (r,rm)Fθ ,n,m (Jn,m)ejnϕ ′
dϕ

′
θ̂θθ .

(38)

Consistently, this reformulation has reduced the
multivariable integration to that of a single integration
around the ϕ-axis.

B. Es
2 (r) integral expansion
As for equation (27), Es

2 can be expanded into
Fourier series as:

Es
2(r) =

∞

∑
n=−∞

Es
2,n

{
Ms,n

(
l′
)}

ejϕ , (39)

where:

Es
2,n =

∫
S

K0(r,r) ·
(

Mτ,n ı̂ıı′+Mϕ,nϕ̂ϕϕ
′
)

e jnϕ ′
dS′. (40)

Next, applying analysis similar to that for Es
1 (r)

yields:

Es
2,r,n,m = ∆lm,kρm

2π∫
0

Dr,n,m (Mn,m)ejnϕ ′
dϕ

′r̂, (41)

Es
2,θ ,n,m = ∆lm,kρm

2π∫
0

Dθ ,n,m (Mn,m)ejnϕ ′
dϕ

′
θ̂θθ , (42)

Es
2,ϕ,n,m = ∆lm,kρm

2π∫
0

Dϕ,n,m (Mn,m)ejnϕ ′
dϕ

′
ϕ̂ϕϕ. (43)

Note that Dϕ,m, Dθ ,m, and Dr,m are listed in
Appendix I. Additionally, note that both Do,m and Fo,m
- where ô is the unit vector direction of interest - can
be expanded in other coordinate systems. The Cartesian
coordinate expansions of these quantities are given in
Appendix II.

C. Hs
1 (r) and Hs

2 (r) integral expansion
Observing the forms of equations (19-20) and equa-

tions (24-26), it is apparent that Hs
1(r) and Hs

2(r) are of
similar form to Es

1(r) and Es
2(r) except with the surface

currents substituted as - Js (r′)→ Ms (r′) and Ms (r′)→
−Js (r′). Thus, based on this formal similarity and elec-
tromagnetic duality, the expansions for Hs

1(r) and Hs
2(r)

are:

Hs
1,r,n,m = ∆lm,kρm

∫ 2π

0
Dr,n,m (Jn,m)ejnϕ ′

dϕ
′r̂, (44)

Hs
1,θ ,n,m = ∆lm,kρm

∫ 2π

0
Dθ ,n,m (Jn,m)ejnϕ ′

dϕ
′
θ̂θθ , (45)

Hs
1,ϕ,n,m = ∆lm,kρm

∫ 2π

0
Dϕ,n,m (Jn,m)ejnϕ ′

dϕ
′
ϕ̂ϕϕ, (46)

Hs
2,n,r,m = ∆lm,kρm

∫ 2π

0
g0 (r,rm)Fr,n,m (Mn,m)ejnϕ ′

dϕ
′r̂,

(47)
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Hs
2,n,ϕ,m = ∆lm,kρm

∫ 2π

0
g0 (r,rm)Fϕ,n,m (Mn,m)ejnϕ ′

dϕ
′
ϕ̂ϕϕ,

(48)

Hs
2,n,θ ,m = ∆lm,kρm

∫ 2π

0
g0 (r,rm)Fθ (Mn,m)ejnϕ ′

dϕ
′
θ̂θθ .

(49)

IV. SCATTERED FIELD VALIDATION
The near field scattering calculations were initially

examined in the far field by comparing the far field solu-
tion (scattering amplitude) of BOR-MoM - previously
validated by Matthaeis and Lang [10] - with the general-
ized scattering equations evaluated in the far field. Addi-
tionally, the FEKO© 3D MoM solution was used to com-
pute the near fields around cylinders, and those results
were compared to BOR generalized scattering calcula-
tions within the near field of cylinders. The general scat-
tered field equations reduce to the far field results, as
expected.

The complexity of near field scattering presents a
vast dataset to validate against. For brevity, only the
magnitude of the scattered fields is compared for both
the scattered electric and magnetic fields in the princi-
pal component directions, r, θ , ϕ , x, y, and z. The cross
polarized terms are neglected, and only bistatic scatter-
ing is considered. The results presented examine only
scattering from both PEC and lossy dielectric cylinders,
although the methodology can and has been evaluated
for other shapes and material properties, e.g., spheres.
For this analysis, the incident electric field will be 377
V/m, at a frequency of 3 GHz. Figures 2 and 3 shows the
scene and scattering angles.

Fig. 2. Cylinder scattering scene for spherical coordi-
nates where Ei is the incident electric field at ϕi = 0◦

and an arbitrary polar angle θi. The variables ES, ϕs, and
θs are the scattered electric field vector, radial scattering
angle, and polar scattering angle, respectively.

Fig. 3. Cylinder scattering scene for Cartesian coordi-
nates where Ei is an incident electric field at ϕi = 0◦ and
an arbitrary polar angle θi. The variables ES

x , ES
y , and ES

z
are the cardinal direction vectors in which the scattered
fields shall be examined.

A. Far field evaluation
Presented in this section is validation of the scat-

tered electric field calculation for the far field (r >
2D2/λ ) using the generalized scattering definition for
PEC BORs. Inherently, PEC BORs are of little value to
vegetation scattering, but their evaluation is relevant in
the total examination for the near field derivation. Table 1
lists the relevant statistics for the evaluation and valida-
tion. The first set of plots, Figs. 4–11, describe a far field
comparison between BOR near field calculator and BOR
scattering amplitude calculator at 100 m from BOR.

Table 1: PEC cylinder test cases for the validation of
MoM with BOR, specifically cylinders

Cylinder Length 1λ , 3λ , 5λ , 10λ

Cylinder Radius 0.04λ

θθθ iii [◦] 20◦

εεε rrr PEC
Harmonics 10
Mesh Size λ m/10

Range 100 m
Ei 377 V/m

B. Near field electric and magnetic field validation
Presented in this section is validation of the scattered

electric and magnetic field calculation for the near field
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Fig. 4. Magnitude of the bistatic electric field vs. θs on a
PEC cylinder with a radius of 0.04λ , L= 1λ , at θi = 20◦.

Fig. 5. Magnitude of the bistatic electric field vs. ϕs on a
PEC cylinder with a radius of 0.04λ , L= 1λ , at θi = 20◦.

Fig. 6. Magnitude of the bistatic electric field vs. θs on a
PEC cylinder with a radius of 0.04λ , L= 3λ , at θi = 20◦.

Fig. 7. Magnitude of the bistatic electric field vs. ϕs on a
PEC cylinder with a radius of 0.04λ , L= 3λ , at θi = 20◦.

Fig. 8. Magnitude of the bistatic electric field vs. θs on a
PEC cylinder with a radius of 0.04λ , L= 5λ , at θi = 20◦.

Fig. 9. Magnitude of the bistatic electric field vs. ϕs on a
PEC cylinder with a radius of 0.04λ , L= 5λ , at θi = 20◦.
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Fig. 10. Magnitude of the bistatic electric field vs. θs
on a PEC cylinder with a radius of 0.04λ , L = 10λ , at
θi = 20◦.

Fig. 11. Magnitude of the bistatic electric field vs. ϕs
on a PEC cylinder with a radius of 0.04λ , L = 10λ , at
θi = 20◦.

(r < 2D2/λ and kr ≫ 1) where λ is the free space wave-
length and λ m is the material adjusted wavelength, using
the generalized scattering definition. Table 2 lists the
relevant statistics for the evaluation and validation. The
plots shown in Figs. 12–22 compare BOR near field sim-
ulation and the FEKO© 3D MoM simulation. Note that
because there exists a significant number of validation
cases, the plots presented tend to capture an “entourage”
of validation cases.

The first set of plots, Figs. 12–15, consider near
field scattering from PEC cylinders with respect to rs,
θs, and ϕs for both the electric and magnetic scattered
fields. The second set of plots consider near field elec-
tric and magnetic field scattering from lossy dielectrics in
Cartesian coordinates, i.e., scattering with respect to xs,
ys, and zs.

Table 2: Dielectric cylinder test cases for the validation
of MoM with BOR, specifically cylinders

Cylinder Length 1λ , 5λ , 10λ

Cylinder Radius 0.04λ

Far Field Criterion 2λ , 50λ , 200λ

θθθ iii [◦] 45◦, 90◦

εεε rrr 18-j6
Harmonics 10
Mesh Size λ m/10

Range Varies
Ei 377 V/m

Fig. 12. Magnitude of the bistatic magnetic field vs. θs
on a PEC cylinder with a radius of 0.04λ , L = 1λ , at
θi = 45◦ at rs = 0.1 m.

Fig. 13. Magnitude of the bistatic magnetic field vs. ϕs
for a PEC cylinder with a radius of 0.04λ , L = 1λ , at
θi = 45◦ at rs = 0.1 m.

The following plots will switch notation from XX,
e.g., HH and VV, where XX represents an X-polarized
scatter from an X-polarized incident field, to XR, Xθ ,
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Fig. 14. Magnitude of the bistatic magnetic field vs. rs
with r polarized scattering for a PEC cylinder with a
radius of 0.04λ , L = 1λ , at θi = 45◦ at rs = 0.1 m.

Fig. 15. Magnitude of the bistatic magnetic field vs. rs
with θ and ϕ polarized scattering for a PEC cylinder with
a radius of 0.04λ , L = 1λ , at θi = 45◦ at rs = 0.1 m.

Fig. 16. Magnitude of the bistatic electric field vs. xs
for an H-polarized wave with y polarized scattering on
a dielectric cylinder with εr = 18− j6, radius of 0.04λ ,
L = 1λ , at θi = 90◦, ys = 0 and zs = 0.

Fig. 17. Magnitude of the bistatic electric field vs. xs for a
V-polarized wave with x polarized scattering on a dielec-
tric cylinder with εr = 18− j6, radius of 0.04λ , L = 1λ ,
at θi = 90◦, ys = 0, and zs = 0.

Fig. 18. Magnitude of the bistatic electric field vs. xs for a
V-polarized wave with z polarized scattering on a dielec-
tric cylinder with εr = 18− j6, radius of 0.04λ , L = 1λ ,
at θi = 90◦, ys = 0, and zs = 0.

Fig. 19. Magnitude of the bistatic electric field vs. ys for a
V-polarized wave with y polarized scattering on a dielec-
tric cylinder with εr = 18− j6, radius of 0.04λ , L = 1λ ,
at θi = 90◦, xs = 0, and zs = 0.
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Fig. 20. Magnitude of the bistatic electric field vs. ys for a
V-polarized wave with z polarized scattering on a dielec-
tric cylinder with εr = 18− j6, radius of 0.04λ , L = 1λ ,
at θi = 90◦, xs = 0, and zs = 0.

Fig. 21. Magnitude of the bistatic magnetic field vs. zs
for a V-polarized wave with y polarized scattering on a
dielectric cylinder with εr = 18− j6, radius of 0.04λ , L=
1λ , at θi = 90◦, xs = 0, and ys = 0.

Fig. 22. Magnitude of the bistatic magnetic field vs. zs
for a H-polarized wave with x polarized scattering on a
dielectric cylinder with εr = 18− j6, radius of 0.04λ , L=
1λ , at θi = 90◦, xs = 0, and ys = 0.

and Xϕ , where R, θ , and ϕ are the scattered field polar-
izations and X is the incident field polarization, either H
or V. The change creates a more understandable repre-
sentation of the three (3) orthogonal scattering polariza-
tions for near field scattering.

Throughout part B, the validations between the 3D
MoM and BOR-MoM show a greater degree of error
than that of the far field comparison from part A.
This error can be attributed to two factors. First, this
implementation of BOR-MoM uses lower order basis
functions resulting in lower order accuracy, especially
in the near field where the fields are highly oscilla-
tory and volatile, i.e., Gibb’s Phenomenon. Addition-
ally, the error can be attributed to an inherent weak-
ness of BOR-MoM, poor cross-polarization characteri-
zation of scatterers, e.g., HV and VH. This is a known
phenomenon that occurs in BOR-MoM since the basis
functions span only two principle directions whereas
the 3D MoM basis functions span the three principle
planes. Thus, the coherent summation of any cross polar-
ized terms are neglected within this model resulting in a
higher order of error. This does not affect the far field
results as the cross-polarized terms are of significantly
lower magnitude in the far field. Overall, this additional
error can be considered inconsequential with regards
to our applications; a discussion better served for a
future work.

V. VECTORIZATION OF BOR
BOR-MoM was selected as the method for evaluat-

ing axisymmetric objects due to its reduction of MoM
from a 3D simulation to a 2-D simulation. This reduced
the memory and computing requirements from N2

3D ele-
ments to approximately n · N2

1D elements (n · N2
1D<<

N2
3D), where n is the number of harmonics and N is the

number of segments due to the discretization. Based on
previous simulation results, a maximum of 10 harmonics
are required; thus, any object discretized into more than
10 segments will benefit in terms of speed and memory
usage from BOR methodology.

A comparison of the FEKO© MoM solution and
BOR-MoM solution with respect to computation time,
number of elements, and peak memory usage is pre-
sented in Tables 3, 4 and 5. Additionally, Table 4 specif-
ically compares the effects of vectorization on BOR-
MoM implementation in MATLAB©. The comparisons
use a dielectric cylinder with a dielectric constant of
ε = 4 and a radius of λ at θi = 45◦ and ϕi = 0◦.

The test cases were run on a computer with an Intel
i9-10900k CPU overclocked to 4.9 GHz all core, 64 GB
of 3600 MHz DDR4 RAM, and a Samsung 970 Evo Plus
NVMe SSD. Note that the computer had enough RAM
such that a full in core solution was able to be run in
FEKO©. If enough RAM is not available, an out of core
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Table 3: BOR-MoM solution with respect to peak mem-
ory usage and computation time. Note that N represents
the number of triangular elements and number of seg-
ments for the FEKO© and BOR meshes, respectively

BOR-MoM Non-Vectorized
Length N Memory [GB] Solver Time [s]

λλλ 122 8.7 207
3λλλ 202 10.6 481
6λλλ 322 10.6 1111

10λλλ 482 10.6 2399

Table 4: Vectorized BOR-MoM solution in MATLAB©
with respect to peak memory usage and computation
time. Note that N represents the number of triangular ele-
ments and number of segments for the FEKO© and BOR
meshes, respectively

BOR-MoM Vectorized
Length N Memory [GB] Solver Time [s]

λλλ 123 22.1 29
3λλλ 203 22.7 78
6λλλ 323 24.1 196

10λλλ 483 26.4 469

Table 5: FEKO© 3D MoM solution with respect to peak
memory usage and computation time. Note that N repre-
sents the number of triangular elements and number of
segments for the FEKO© and BOR meshes, respectively

FEKO© MoM
Length N Memory [GB] Solver Time [s]

λλλ 4264 1.2 61
3λλλ 8328 4.7 238
6λλλ 14664 14.5 680

10λλλ 23320 35.9 2005

solution must run - FEKO© writes data to and from the
hard drive - which more than doubles computation time.

Overall, vectorization of BOR provided approxi-
mately a 10x speed but required additional memory
usage. With regards to the 3D MoM, BOR provided an
approximate 4x speed up. This implementation of BOR-
MoM can be improved with regards to speed and mem-
ory usage through careful algorithm implementation in a
coding language other than MATLAB©.

VI. CONCLUSION
Although scattering from BOR using MoM has been

studied extensively, this paper provides derivation and
application of an optimal and formally elegant math-
ematical formulation for near field scattering, for a
particular implementation of BOR-MoM using a well-
conditioned and numerically-stable basis function set.
This elegant formulation should provide analysts with a

direct computational encoding that minimizes required
integrations. Although direct computational encodings
have been derived previously for far field scattering,
those derivations were not for the near fields.

The results of this study are a derivation of the gen-
eralized scattered field equations for BOR-MoM. Fields
were derived for both the scattered electric and magnetic
fields for all of space while accounting for the various
coordinate transformations, Fourier series expansions,
and basis function definitions.

The results were validated by comparison to the
FEKO© 3D MoM solution near field calculations. The
results showed great agreement between the different
MoM implementations. The primary sources of error
occurred in the reactive near field region of BOR. This
error is likely due to the low order basis functions, tri-
angular and rectangular, used within this implementa-
tion of BOR-MoM. This can be partially attributed to
the occurrence of Gibb’s phenomenon within the Fourier
series expansions and discretization along the generat-
ing arc. The sacrifice in accuracy due to low order basis
functions, however, provides a benefit in computational
speed for larger MoM problem sets. Overall, the error
between the FEKO© MoM and BOR-MoM is an accept-
able trade-off for the >4x speed increase that BOR-
MoM provides, providing more tractable predictive sim-
ulations in practice.

With regards to this works impact on tree scattering
analysis, examining the connections between branches
and the interaction between multiple discrete scatterers
is important for continued model verification, valida-
tion, and performance characterization. Further examina-
tion of these aspects, and associated discussion, however,
defines separate and continuing studies in themselves,
and thus not within the scope of this paper. Appropri-
ately, such discussion is within the context of future
studies.
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APPENDIX I: SPHERICAL COORDINATES
The scattering definition using equivalent sources is:

Es(r) =−jωµ0

∮
G0 (r,r′

)
·Js

(
r′
)

dS′+

−
∮

K0 (r,r′
)
·Ms

(
r′
)

dS′, (50)

Hs(r) =
∮

K0 (r,r′
)
· Js

(
r′
)

dS′+

− jωε0

∮
G0 (r,r′

)
·Ms

(
r′
)

dS′. (51)

Following the analysis from section III, the integra-
tion along the generating arc, l, over a single segment for
a single harmonic becomes:

Es
1,n,r,m = ∆lm,kρm

2π∫
0

g0 (r,rm)Fr,n,m (Jn,m)ejnϕ ′
dϕ

′r̂,

(52)

Es
1,n,ϕ,m = ∆lm,kρm

2π∫
0

g0 (r,rm)Fϕ,n,m (Jn,m)ejnϕ ′
dϕ

′
ϕ̂ϕϕ,

(53)

Es
1,n,θ ,m = ∆lm,kρm

∫ 2π

g0 (r,rm)Fθ ,n,m (Jn,m)ejnϕ ′
dϕ

′
θ̂θθ ,

(54)

Es
2,r,n,m = ∆lm,kρm

2π∫
0

Dr,n,m (Mn,m)ejnϕ ′
dϕ

′r̂, (55)

Es
2,θ ,n,m = ∆lm,kρm

2π∫
0

Dθ ,n,m (Mn,m)ejnϕ ′
dϕ

′
θ̂θθ , (56)

Es
2,ϕ,n,m = ∆lm,kρm

2π∫
ϕ,n,m

(Mn,m)ejnϕ ′
dϕ

′
ϕ̂ϕϕ. (57)

These equations require the expansion of
Fr,n,m, Fϕ,n,m, Fθ ,n,m, Dr,n,m, Dθ ,n,m, and Dϕ,n,m
terms. Due to the length of the derivation for these
terms, only the final results will be listed below. The F
terms are:

Fr (JJJs,n) =


A1Jτ,nC1 +A1Jϕ,nC2+

+A2Jτ,n sinθ sinψ ′ cos(ϕ −ϕ ′)+
+A2Jτ,n cosθ cosψ ′+

+A2Jϕ,n sinθ sin(ϕ −ϕ ′)

 ,

(58)

Fϕ (JJJs,n) = A2Jτ,n sinψ
′ sin

(
ϕ
′−ϕ

)
+

+A2Jϕ,n cos
(
ϕ −ϕ

′) , (59)

Fθ (Js,n) = A2Jτ,n cosθ sinψ
′ cos

(
ϕ −ϕ

′)+
−A2Jτ,n sinθ cosψ

′+

+A2Jϕ,n cosθ sin
(
ϕ −ϕ

′) , (60)

where the A terms and C terms are:

A1 =
3

k2
0R2 +

3j
k0R

−1, (61)

A2 = 1− j
k0R

− 1
k2

0R2 , (62)

C1 = sinθ sinψ
′ cos

(
ϕ −ϕ

′)+ cosθ cosψ
′, (63)

C2 = sinθ sin
(
ϕ −ϕ

′) , (64)

and R in spherical coordinates is:

R =

√√√√√ r2 + r′2+
−2rr′sinθ sinθ ′cos(ϕ −ϕ ′) +

−2rr′cosθ cosθ ′
. (65)

The D terms are derived as:

Dr (MMMn) =

MMMτ,n
(
lll′
) 1

r
dg
dθ

sinψ ′ sin(ϕ ′−ϕ) +

−MMMτ,n(lll′)
rsinθ

dg
dϕ

cosθ sinψ ′ cos(ϕ −ϕ ′) +

+
MMMτ,n(lll′)

rsinθ

dg
dϕ

sinθ cosψ ′ +

+MMMϕ,n
(
lll′
) 1

r
dg
dθ

cos(ϕ −ϕ ′) +

−MMMϕ,n
(
lll′
) 1

rsinθ

dg
dϕ

cosθ sin(ϕ −ϕ ′)

,

(66)

Dθ (MMMn) =

−MMMτ,n
(
lll′
) dg

dr sinψ ′ sin(ϕ ′−ϕ) +

+MMMτ,n
(
lll′
) 1

rsinθ

dg
dϕ

sinθ sinψ ′ cos(ϕ −ϕ ′) +

+MMMτ,n
(
lll′
) 1

rsinθ

dg
dϕ

cosθ cosψ ′ +

−MMMϕ,n
(
lll′
) dg

dr cos(ϕ −ϕ ′) +

+MMMϕ,n
(
lll′
) 1

rsinθ

dg
dϕ

sinθ sin(ϕ −ϕ ′)

,

(67)

Dϕ (MMMn) =

MMMτ,n
(
lll′
) dg

dr cosθ sinψ ′ cos(ϕ −ϕ ′) +

−MMMτ,n
(
lll′
) dg

dr sinθ cosψ ′ +

−MMMτ,n
(
lll′
) 1

r
dg
dθ

sinθ sinψ ′ cos(ϕ −ϕ ′) +

−MMMτ,n
(
lll′
) 1

r
dg
dθ

cosθ cosψ ′ +

MMMϕ,n
(
lll′
) dg

dr cosθ sin(ϕ −ϕ ′) +

−MMMϕ,n
(
lll′
) 1

r
dg
dθ

sinθ sin(ϕ −ϕ ′)

,

(68)
where:

dg
dr

=

(
r− r′ sinθ sinθ ′ cos(ϕ −ϕ ′)+

−r′ cosθ cosθ ′

)
e−jk0R

4πR

(
−jk
R

− 1√
R

)
,

(69)
dg
dθ

=

(
rr′ cosθ ′ sinθ+

−rr′ sinθ ′ cos(ϕ −ϕ ′)cosθ

)
e−jk0R

4πR

(
−jk
R

− 1√
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(70)
dg
dϕ

= rr′ sinθ sinθ
′ sin

(
ϕ −ϕ

′) e−jk0R

4πR

(
−jk
R

− 1√
R

)
. (71)

APPENDIX II: CARTESIAN COORDINATES
Similar to Appendix I, the scattered electric and

magnetic fields can be expanded in the Cartesian coor-
dinate system. The electric field (EEEs

1,n,m,x) as a function
of the electric surface currents for a single harmonic over
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a single segment is:

EEEs
1,n,m,x = ∆lm,kρm

∫
g0 (rrr, rrrmmm)Fx,J (Jn,m)ejnϕ ′

dϕ
′x̂xx,

(72)

EEEs
1,n,m,y = ∆lm,kρm

∫
g0 (rrr, rrrmmm)Fy,J (Jn,m)ejnϕ ′

dϕ
′ŷyy,

(73)

EEEs
1,n,m,z = ∆lm,kρm

∫
g0 (rrr, rrrmmm)Fz,J (Jn,m)ejnϕ ′

dϕ
′ẑ,

(74)
where:

Fx (Jn,m) = A1C1RxJτ,n +A1C2RxJϕ,n+

+A2 sinψ
′ cosϕ

′Jτ,n −A2 sinϕ
′Jϕ,n, (75)

Fy (Jn,m) = A1C1RyJτ,n +A1C2RyJϕ,n+

+A2 sinψ
′ sinϕ

′Jτ,n +A2 cosϕ
′Jϕ,n, (76)

Fz (Jn,m) = A1C1RzJτ,n +A1C2RzJϕ,n+

+A2 cosψ
′Jτ,n. (77)

The electric field (EEEs
2,n,m,x) as a function of the fic-

titious magnetic surface currents for a single harmonic
over a single segment is:

EEEs
2,x,n,m =

∫
S

Dx (Mn,m)ejnϕ ′
dS′x̂xx, (78)

EEEs
2,y,n,m =

∫
S

Dy (Mn,m)ejnϕ ′
dS′ŷyy, (79)

EEEs
2,z,n,m =

∫
S

Dz (Mn,m)ejnϕ ′
dS′ẑzz, (80)

where:

Dx = MMMτ,n
(
lll′
) dg

dy
cosψ

′+

−MMMτ,n
(
lll′
) dg

dz
sinψ

′ sinϕ
′+

−MMMϕ,n
(
lll′
) dg

dz
cosϕ

′, (81)

Dy =−MMMτ,n
(
lll′
) dg

dx
cosψ

′+

−MMMτ,n
(
lll′
) dg

dz
sinϕ

′+

−MMMϕ,n
(
lll′
) dg

dz
sinϕ

′, (82)

Dz =MMMτ,n
(
lll′
) dg

dx
sinψ

′ sinϕ
′+

+MMMτ,n
(
lll′
) dg

dy
sinϕ

′+

+MMMϕ,n
(
lll′
) dg

dx
cosϕ

′+

+MMMϕ,n
(
lll′
) dg

dy
sinϕ

′, (83)

and the Green’s functions derivatives are:
dg
dx

=
(x−x′)e−jk0R

4πR

(
−jk
R

− 1√
R

)
, (84)

dg
dy

=
(y−y′)e−jk0R

4πR

(
−jk
R

− 1√
R

)
, (85)

dg
dz

=
(z− z′)e−jk0R

4πR

(
−jk
R

− 1√
R

)
. (86)
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