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Abstract – In this article, a metamodeling approach
based on non-intrusive polynomial chaos expansion
(PCE) with least angle regression (LAR) method is used
in boundary element analysis for a model-assisted prob-
ability of detection (MAPoD) study of eddy current non-
destructive testing (NDT) systems. The LAR-PCE meta-
model represents the NDT system model responses by
a set of coefficients with the polynomial basis functions
in lieu of pure kernel degeneration accelerated bound-
ary element method (KD-BEM) based physical model.
Both the computational accuracy and efficiency of the
LAR-PCE metamodel over the ordinary least squares
(OLS) based PCE metamodel are demonstrated by test-
ing the 3D eddy current NDT benchmarks with differ-
ent system setups, flaw lengths and widths. The simula-
tion results show two digits accuracy of the PoD metrics
compared with the ones achieved by the KD-BEM based
physical model as the benchmark. The LAR-PCE meta-
model has remarkable improvements in computational
efficiency over the OLS-PCE metamodel and accelerates
the MAPoD study.

Index Terms – Boundary element analysis, eddy cur-
rent nondestructive testing (NDT), meta learning, model-
assisted probability of detection (MAPoD), polynomial
chaos expansions with least angle regression (LAR-
PCE).

I. INTRODUCTION
Eddy current nondestructive testing (NDT) plays a

critical role in testing for material damage and disconti-
nuities (flaws) in components and in assessing the risk
of component failure. Because it provides high sensi-
tivity to small defects without needing to make direct
contact with inspection samples, it has gained popularity

in many industries such as aerospace, nuclear, railways,
and special equipment [1]. In general, components need
to be replaced if they have flaws whose sizes exceed a
threshold value that is considered harmless [2]. There-
fore, it is very important for NDT inspections to esti-
mate the flaw sizes precisely. Imperfect estimation is
primarily caused by measurement uncertainties (such as
environmental conditions, human factors and protective
clothing). Multiple output responses obtained repeatedly
using the same (nominal) test parameters and conditions
may vary significantly because of measurement uncer-
tainties, thus impacting the reliability of the NDT sys-
tem [3]. To quantify the reliability of NDT systems, the
notion of probability of detection (PoD) is introduced
[4]. PoD represents the probability of detecting a flaw as
a function of flaw size. PoD study is applied to both eddy
current and ultrasonic NDT by evaluating the presence of
a flaw with the impedance variations and reflected sig-
nals, respectively. It is also applied to evaluate wall thin-
ning due to backwall echo [5].

PoD assessments typically require performing a
large number of tests accurately to quantify the impact of
all uncertainties. It is challenging to perform a large num-
ber of measurements due to time and labor costs. Thus,
accurate theoretical and numerical simulation models,
which have been validated by experiment, are replac-
ing physical measurements partly or entirely to get the
required data for PoD analysis. This approach is called
model assisted PoD (MAPoD) [6]. The simulation mod-
els used in the above process need to be accurate and
efficient to ensure MAPoD analysis remains accurate
without requiring large amounts of computer resources.
Several simulation models have been proposed as for-
ward solvers in eddy current NDT [7–10]. Generally,
these solvers can be categorized into two types based on
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the equation solved as the finite element method (FEM)
and the boundary element method (BEM). Fast algo-
rithms have been proposed to accelerate solving BEM
matrix equations for large numbers of unknowns [11–
14]. These fast algorithms are generally of two types:
kernel independent and kernel dependent methods. In
kernel dependent methods, such as multilevel fast multi-
pole algorithm, different types of expansions are required
for BEM kernel functions [11]. These methods, there-
fore, lack generality because the BEM kernels depend
on the integral equation being solved. Kernel indepen-
dent methods, such as the adaptive cross approximation
algorithm and kernel degeneration (KD) algorithm, deal
with the matrix entries directly and the existing codes
can be reused for different kernels [12–14].

Unfortunately, the growing propagation of the
uncertainties in the input parameters inside the NDT
pushes the physical models toward their computational
limits, thus very large numbers of simulations are needed
in order to get the MAPoD curves. This drawback moti-
vates the replacement of physical models by efficient
and precise metamodels or surrogate models, which are
data-driven mathematical approximations to the physical
models [15–19]. Metamodels have been widely applied
in NDT and included methods such as support vec-
tor regression, kriging interpolation, probabilistic col-
location, polynomial chaos expansions (PCE) methods,
and so on [15–18]. PCE was first introduced by Wiener
to represent a random variable using expansions based
on standard Gaussian random variables and their corre-
sponding orthogonal basis functions: Hermite polynomi-
als. PCE can be viewed as a spectral representation of
random variables in terms of a set of polynomial basis
functions that are orthogonal with respect to the joint
distribution of the input variables, and it has advantages
over other metamodels because it systematically guar-
antees convergence in distribution to the output random
variable of interest if the latter has finite variance [17].

In contrast to the literatures mentioned above, this
work is focused on non-intrusive polynomial chaos
expansions with least angle regression (LAR-PCE)
assisted by kernel degeneration accelerated boundary
element method (KD-BEM) based physical model for
MAPoD study of eddy current NDT systems. To our
best knowledge, this is the first time that the LAR-PCE
is applied to build the metamodel with the assisted KD-
BEM physical model to accelerate the uncertainty prop-
agation within MAPoD analysis for eddy current NDT
systems. In the LAR-PCE metamodel, the NDT sys-
tem model responses are represented by a set of coef-
ficients with the polynomial basis functions in lieu of
pure KD-BEM based physical model for PoD analysis.
The LAR-PCE metamodel provides significant compu-
tational savings while still maintaining good accuracy

compared with the OLS-PCE metamodel by taking the
input parameter uncertainties into account in testing the
eddy current NDT benchmarks.

II. METHODS
In this section, the methods used in this work are

described in detail. It includes the KD-BEM based phys-
ical model in Section II, part A, the MAPoD analysis
in Section II, part B, and the metamodel in Section II,
part C.

A. KD-BEM based physical model
In BEM based physical models for 3D eddy current

NDT, Stratton-Chu formulas are selected as the integral
equation which has no low frequency breakdown issue.
Expanding equivalent electric and magnetic surface cur-
rents using RWG vector basis functions and the normal
component of the magnetic field using pulse basis func-
tions, and selecting the Galerkin method as the testing
method, the discretized impedance matrix is [20]: 0.5T−K×

1 0 R×
1

jµ2
/

µ1L×
2 0.5T+K×

2 0
µ2
/

µ1Kn
2 − jk2

2Ln
2 0.5D−Rn

2

 , (1)

where subscript l = 1, 2 stands for air or metal, the
superscripts × and n denote the cross or dot product with
the unit normal vector n̂, and give the tangential and nor-
mal components, respectively. The details of K, L, and
R operators can be found in [20].

In BEM, the complexity of both CPU time and
memory requirements are O

(
N2

)
when solved with iter-

ative solvers using the full impedance matrix. There-
fore, the KD algorithm is applied to accelerate the solu-
tion process by developing a low-rank approximation of
the impedance matrix. It is well known that the entire
impedance matrix is not rank deficient. Therefore, the
octal tree structure is required to subdivide the bounding
box of the object under inspection into blocks for apply-
ing the KD algorithm. The number of blocks is increased
by 2level×dim, where ‘dim’ represents the dimension of
the object. Near and far block pairs are defined based
on the relative distances between the blocks. Near block
pairs are the adjacent ones and calculated directly as full
sub-matrices. Due to the nature of the Green function,
BEM matrix elements corresponding to far block pairs
are rank deficient matrices and can be approximated by
the KD algorithm.

For a far block pair formed by blocks t and s with the
dimensions T by Q, the kernel function and its gradient
can be degenerated by the Lagrange polynomial interpo-
lation [20]. The KD algorithm leads to memory savings
because Kt and Ks are much smaller than T and Q. The
KD algorithm can also be applied to other submatrices in
the impedance matrix. The KD-BEM works as the effi-
cient physical model for MAPoD analysis in a 3D eddy
current NDT system.
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B. MAPoD analysis
The KD-BEM based physical model makes esti-

mations for MAPoD analysis. As we know, the PoD
curve relates the probability of detecting flaws to the
size. PoD calculations can be performed with two sta-
tistical methodologies: the “hit/miss” and the “â vs. a”
regression analysis. In “hit/miss” analysis, NDT system
responses larger than a defined threshold are regarded as
1 (“hit”), otherwise 0 (“missed”). This work focuses on
the “â vs. a” regression analysis, where the flaw response
(â) is assumed to be proportional to the flaw size (a). PoD
can be calculated by [3]:

PoD(a) = Φ
[
ln(a)−µ

/
σ
]
, (2)

where Φ denotes the normal cumulative distribution
function. Mean µ and standard deviation σ both on log
scale can be represented as:

µ = [ln(âth)−β0]
/

β1, (3)

σ = σr
/

β1, (4)

where âth is the defined threshold value, and β0, β1
and σr can be estimated using the maximum likelihood
method [21].

Although the KD-BEM physical model can simulate
a single model response efficiently, applying it for uncer-
tainty propagation within MAPoD analysis is still com-
putationally intensive because of the need for evaluating
a large number of model responses. This motivates the
use of metamodels in lieu of the physical model to accel-
erate MAPoD analysis. A flowchart of the metamodel-
accelerated MAPoD analysis is shown in Fig. 1.

The flowchart starts from the sampling process.
Sampling is the process to draw the values randomly
according to the probability distributions of random
inputs that represent uncertainty parameters, which are
proposed by NDT experts or statisticians. Two sampling
strategies are applied in this work: Monte Carlo sampling
(MCS) and Latin Hypercube sampling (LHS). In MCS,

Fig. 1. Flowchart of metamodel accelerated MAPoD
analysis.

the sampling points can be anywhere within the range
of random distributions. Thus, this strategy is applied
for generating the validation and prediction points. LHS
divides the cumulative curves into equal intervals on the
cumulative probability scale and the sampling is gener-
ated randomly in each interval. LHS avoids the sampled
values from being clustered. Therefore, LHS is selected
to generate the training points for the metamodel.

Subsequently, the uncertainty is propagated through
the physical model for different flaw sizes. In other
words, selected training points are simulated by the
KD-BEM based physical model to generate the model
responses. These responses are used as inputs for con-
structing the metamodel. To validate the metamodel, the
root mean squared error (RMSE) is defined as:

RMSE =

√√√√ Nt

∑
i=1

(
Ŷi −Yi

)2
/

Nt , (5)

where Nt is the total number of validation points,
and Ŷi and Yi are the prediction values and physical
model responses, respectively. The normalized RMSE
(NRMSE) is defined as RMSE divided by the scale of
model response.

C. Metamodel
PCE is a type of stochastic metamodeling method

for propagating uncertainty in the processes efficiently
and can be viewed as a spectral representation of ran-
dom variables in terms of polynomial basis functions
which are orthogonal with respect to the probability den-
sity function of input random variables [15–17]. Based
on whether it requires to reformulate or modify the exist-
ing governing equations, PCE can be categorized into
intrusive and non-intrusive methods. Non-intrusive PCE
considers the existing code or equations as a black box
which makes it easy to implement for complex problems.

Consider a physical model represented by deter-
ministic mapping yyy = M(xxx), where xxx = {x1, ...,xn}T ∈
Rn,n ≥ 1 is the vector of input variables, including
parameters in the experiment setup and material proper-
ties. yyy = {y1, ...,yQ}T ∈ RQ,Q ≥ 1 is the vector of the
model response. Uncertainties in the input parameters
arise during in-service inspections due to environmental
conditions, human factors, and so on. In order to rep-
resent the reality of MAPoD analysis, statistical distri-
butions of the uncertainties are introduced as inputs of
the simulation model. Therefore, these uncertainties are
considered in the input vector x, which is represented by
a random independent vector X with prescribed proba-
bility density function. The random variables of model
responses are denoted by Y = M (X). In PCE, the model
responses Y are expanded onto an orthogonal polynomial
basis as [17]:
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YYY = M(XXX) =
∞

∑
i=1

aiψi(XXX), (6)

where ψi is the multivariate polynomial basis, i is the
index of ith polynomial term, and ai is the correspond-
ing coefficient of the basis function needing to be deter-
mined. For inputs with uniform and normal distributions,
the Legendre and Hermite basis are selected, respec-
tively. In practice, a truncated form of PCE with suffi-
cient number of terms satisfies the accuracy requirement.

The responses of a physical model are represented
by a summation of PCE predictions at the same sampling
points and corresponding residual:

YYY =
P

∑
i=1

aiψi (XXX)+ εPC = aaaT
ψψψ (XXX)+ εPC, (7)

where εPC is the corresponding residual which is mini-
mized using least squares method and P is the required
number of polynomial terms:

P =
(p+n)!

p!n!
, (8)

where p is the required order of the PCE, n is the total
number of random variables.

The LAR algorithm aims at selecting the predictors,
which are the polynomial basis ψ , that have the great-
est impacts on the model response. LAR provides not
only a single PC metamodel but also a collection of PC
representations. The steps in the LAR algorithm are as
follows [17].

Step 1: Initialize the coefficients a as 0, which makes
the initial residual equal to the output responses.

Step 2: Find the basis ψ j that is most correlated with
the current residual, increase or decrease the coefficient
a j of ψ j just enough such that the updated residual has
as much correlation with another predictor ψk as it does
with ψ j.

Step 3: Move jointly
{

ψ j,ψk
}T in the direction

defined by their joint least-square coefficient of the cur-
rent residual until the other predictor has as much corre-
lation with the current residual.

Step 4: Continue this procedure until the number of
the predictors reaches the required numbers of samples
or responses. Thus, the metamodel associated with the
greatest estimate is retained.

III. NUMERICAL RESULTS
The eddy current NDT case involves a coil with

finite cross section placed above a thick plate with a sur-
face flaw as shown in Fig. 2. MAPoD analysis for dif-
ferent ECNDT setups and different uncertain parameters
are studied. In the first setup, the coil has an inner radius
9.34 mm, outer radius 18.4 mm, length 9 mm and num-
ber of turns 408. The thick plate has thickness 12.22 mm
and conductivity 30.6 MS/m. For the surface flaw, depth
is 5 mm, width is 0.28 mm, and length ranges from 0.1
to 0.5 mm with the interval 0.1 mm and from 1 to 5 mm

with the interval 1 mm. In the second setup, the speci-
men, coil parameters and defect size are changed with
regard to the first one. Coil has an inner radius 6.15 mm,
outer radius 12.4 mm, length 6.15 mm, and number of
turns 3790. The thick plate has thickness 5 mm and con-
ductivity 30.3 MS/m. For the surface flaw, depth is 4 mm,
length is 0.5 mm, and width ranges from 0.1 to 0.5 mm
with the interval 0.1 mm. Width is 0.5 mm while the
length ranges from 1.5 to 3.5 mm with the interval 0.5
mm. All cases are modeled after TEAM 15 benchmark
problems [22], and the accuracy of KD-BEM method for
modeling has been demonstrated in [20]. Only the single
position with the peak response is simulated. The PoD
metrics a50 and a90 represent that the flaw size is with
50% and 90% probabilities of detection, respectively.

(a)

(b)

Fig. 2. Sketch of ECT problem: (a) top view and (b) sec-
tional side view.

The relative x, y location, liftoff of the probe with
respect to the flaw center, the inner and outer radius of
the probe, and the tilt angle (the one between coil plane
and xoy plane) are selected as the uncertain parameters
with the distributions shown in Table 1. The operating
frequency is 7 kHz in cases 1, 2, 4 and 5 with first setup,
and 900 Hz in case 3 with second setup. In each case,
1000 MCS prediction points are generated for each flaw
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Table 1: Distributions of the uncertain parameters
Parameters CASE

1
CASE

2
CASE 3 CASE

4
CASE

5
Oper.

Freq. (Hz)
7000 7000 900 7000 7000

x (mm) N(13,
0.5)

U(12,
14)

N(9,
0.5)

N(14,
0.5)

U(12.5,
14.5)

y (mm) N(0,
0.5)

U(-1, 1) N(0,
0.5)

U(1.5,
1.5)

U(1.5,
1.5)

Liftoff
(mm)

N(2,
0.5)

N(2, 1) N(2,
0.5)

U(1.83,
2.23)

N(2,
0.7)

length/width and simulated through the KD-BEM physi-
cal model. In total (over all the flaw lengths), 5000 model
responses are obtained in each case for MAPoD anal-
ysis. The model responses are the absolute values of the
impedance variations which are treated in the metamodel
fitting.

Convergence analysis and accuracy of proposed
metamodels for surface flaw length ranges from 0.1 mm
to 0.5 mm is studied in cases 1 and 2, and width ranges
from 0.1 mm to 0.5 mm is studied in case 3. To test the
performance of metamodels accelerated MAPoD anal-
ysis, the practical eddy current NDT cases are tested in
cases 4 and 5. In cases 4 and 5, surface flaw length ranges
from 1 mm to 5 mm are studied.

In case 1, to reach the predefined 1% accuracy in
NRMSE and PoD metrics, the OLS-PCE method needs
500 LHS training points for each flaw length, while the
LAR-PCE method needs only 150 LHS points. The com-
putational costs are shown in Table 2. LAR-PCE only
need to compute 30% physical model evaluations of
OLS-PCE and the convergence of LAR-PCE is faster
than OLS-PCE, which results in 72% training time sav-
ings. The NRMSE of LAR-PCE and OLS-PCE methods
for flaw length ranges from 0.1 mm to 0.5 mm are shown
in Fig. 3. NRMSE values are smaller than 1% for all flaw
lengths. The regression line of the LAR-PCE metamodel
can be found in “â vs. a” plot as shown in Fig. 4.

Table 2: Computation costs for case 1
Model Training Points

per Flaw Length
Total Training

Time (s)
OLS-PCE 500 25
LAR-PCE 150 7

Pure physical
model

1000 /

In Case 2, the OLS-PCE method needs 250 LHS
training points, while the LAR-PCE method needs only
100 LHS training points to reach the predefined accuracy
level for each flaw length. The computational costs are
shown in Table 3. To reach the required accuracy level,

Fig. 3. NRMSE of OLS-PCE with 500 LHS training
points and LAR-PCE with 150 LHS training points.

Fig. 4. Case 1: “â vs. a” plot with regression line of LAR-
PCE metamodel.

the LAR-PCE method needs to compute 40% physical
model evaluations with 63.6% training time savings over
the OLS-PCE method. The regression line of the LAR-
PCE metamodel can be found in “â vs. a” plot as shown
in Fig. 5. Again, the LAR-PCE method accelerated phys-
ical model shows improved efficiency over the OLS-PCE
method with well-maintained accuracy.

Table 3: Computation costs for case 2
Model Training Points

per Flaw Length
Total Training

Time (s)
OLS-PCE 250 11
LAR-PCE 100 4

Pure physical
model

1000 /

In case 3, flaw widths are analyzed to study the
performance and accuracy of the LAR-PCE metamodel.
LAR-PCE needs only 100 LHS training points while
OLS-PCE needs 220 points to satisfy the accuracy level
for each flaw width. Computational costs can be found
in Table 4 that LAR-PCE requires 54.5% less physical
model evaluations and 60% less training time than the
OLS-PCE metamodel. The regression line of the LAR-
PCE metamodel can be found in the “â vs. a” plot as
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Fig. 5. Case 2: “â vs. a” plot with regression line of LAR-
PCE metamodel.

shown in Fig. 6. Once more, the remarkable performance
of the proposed LAR-PCE metamodel is demonstrated
over the OLS-PCE metamodel.

Table 4: Computation costs for case 3
Model Training Points

per Flaw Length
Total Training

Time (s)
OLS-PCE 220 15
LAR-PCE 100 6

Pure physical
model

1000 /

Fig. 6. Case 3: “â vs. a” plot with regression line of LAR-
PCE metamodel.

The LAR-PCE metamodel shows advantages over
the OLS-PCE metamodel in numbers of physical model
evaluation needed and training time costed with faster
convergence. The performance of metamodels acceler-
ated MAPoD analysis for practical eddy current NDT
problems are considered in the following cases. Flaw
lengths ranging from 1 mm to 5 mm are studied in cases
4 and 5 with different uncertain parameters. The thresh-
old value is 0.1 Ω.

In case 4, for each flaw length, LAR-PCE and OLS-
PCE need 80 and 150 training points, respectively, to
reach the required accuracy level with the computa-
tional costs shown in Table 5. The OLS-PCE metamodel

needs 1.88 times computational cost and 1.43 times total
training time of the LAR-PCE metamodel. PoD met-
rics achieved by the pure physical model, LAR-PCE and
OLS-PCE metamodels are shown in Table 6. The relative
differences among these metrics are smaller than 1%,
which satisfy the accuracy requirement. PoD curves pre-
dicted by LAR-PCE for flaw lengths are shown in Fig. 7.
Both the accuracy and efficiency of the LAR-PCE meta-
model over OLS-PCE are demonstrated in the practical
eddy current NDT problem.

Table 5: Computation costs for case 4
Model Training Points

per Flaw Length
Total Training

Time (s)
OLS-PCE 150 10
LAR-PCE 80 7

Pure physical
model

1000 /

Table 6: PoD metrics for case 4
Metrics Pure Physical

Model
OLS-PCE LAR-PCE

µ 0.91626 0.91543 0.91564
σ 0.026475 0.027011 0.026402

a50 2.4999 2.4978 2.4984
a90 2.5862 2.5858 2.5844

(a)

(b)

Fig. 7. Case 4 (a) “â vs. a” plot with regression line of
LAR-PCE metamodel and (b) PoD curves.

In case 5, PoD metrics achieved by the LAR-PCE
method with 150 LHS training points, the OLS-PCE



467 ACES JOURNAL, Vol. 39, No. 05, May 2024

method with 500 LHS training points and the pure KD-
BEM based physical model with 5000 MCS points are
shown in Table 7. It can be seen that all PoD metrics
predicted by the OLS-PCE and LAR-PCE agree well
with those calculated by the pure physical model with
the relative differences smaller than 1%. The relative dif-
ferences of PoD metrics predicted by the LAR-PCE and
pure physical model are 0.808%, 0.902%, 0.734% and
0.876% for µ , σ , a50 and a90, respectively. The PoD
curve predicted by LAR-PCE for flaw lengths is shown
in Fig. 8. It can be concluded that, for case 5 to reach
the required accuracy level 1% in the MAPoD analysis,
the computational cost in LAR-PCE is just 30% of the
OLS-PCE. This shows the advantage of applying LAR-
PCE over OLS-PCE to replace the pure physical model
in MAPoD analysis.

Table 7: PoD metrics for case 5
Metrics Pure Physical

Model
OLS-PCE LAR-PCE

µ 0.90845 0.90116 0.90111
σ 0.12531 0.12449 0.12418

a50 2.4805 2.4625 2.4623
a90 2.9126 2.8884 2.8871

(a)

(b)

Fig. 8. Case 5 (a) “â vs. a” plot with regression line of
LAR-PCE metamodel and (b) PoD curves.

IV. CONCLUSION
In this paper, the LAR-PCE method is proposed to

accelerate eddy current MAPoD analysis based on the
KD-BEM physical model. Both the accuracy and effi-
ciency of the LAR-PCE metamodel are demonstrated
by comparing the predicted PoD metrics with the ones
achieved by the OLS-PCE metamodel and the pure
physical model. Through numerical tests, which include
different system setups and uncertain parameters, the
results show that to ensure the relative differences of PoD
metrics smaller than 1.1%, the LAR-PCE metamodel
needs fewer training points than the OLS-PCE model.
This makes LAR-PCE more efficient than the OLS-PCE
metamodel in MAPoD analysis for eddy current NDT
systems. The proposed LAR-PCE metamodel should
work for accelerating the MAPoD analysis regardless
of achieving the physical responses from experiment or
simulation only, or from both. The uncertainties consid-
ered in this study do not significantly influence the rel-
ative efficiencies of the two metamodeling techniques
we compared. In other words, regardless of the uncer-
tainties considered, the LAR-PCE based metamodel per-
formed better than OLS-PCE, as evident from the simu-
lation time and accuracy values. Also, it can find merits
in MAPoD study in other NDT areas such as ultrasound,
eddy current thermography and so on which could be the
future work.
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