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auluslu@iuc.edu.tr

Abstract – Optimal characterization is assumed to pro-
vide the best solution for the designed cost function
among the possible solutions within the specified range.
These processes can take a long time depending on the
applications and computer hardware used. Here, the opti-
mization process is supported by ANN modeling in order
to shorten the current optimization processes as much as
possible. For this purpose, the selection of design param-
eters of the bowtie patch antenna (BPA) is presented as a
multi-dimensional, multi-objective modeling-supported
design optimization problem. The operating frequency
of the proposed antenna is 28 GHz, which is the stan-
dard for millimeter wave band and 5G technologies.
To overcome this challenging design optimization, a
new, fast and powerful optimization algorithm was used
by modifying the non-dominant sorting genetic algo-
rithm (NSGA)-III, and the optimal characterization of
the microwave antenna design was achieved. Although
the proposed method gives the same results compared
to the existing process, it takes much less time. There-
fore, it is possible to shorten the process and reduce costs
without the need for extra applications or hardware. As
a whole, the proposed design optimization process is an
efficient, fast and reliable solution for all design prob-
lems.

Index Terms – Accelerated optimal characterization,
antenna applications, modeling support, non-dominated
sorting genetic algorithm, optimization.

I. INTRODUCTION
In recent years, antenna design for 5G systems has

become very popular in the communication world and
has become one of the most demanded topics. As a
result of the developments so far, this technology will
be used almost all over the world by the end of 2024
[1] (delay may occur due to pandemic conditions). Inter-
national Mobile Telecommunications (IMT) and Inter-
national Telecommunications Association (ITU) boards
have stated their requirements for 5G. In addition, in the
final statement of the 2019 World radiocommunication

conference, the operating frequencies of 5G antennas
were reported as 25, 38 or 66 GHz [2]. In another state-
ment, the Federal Communications Board (FCC) speci-
fied the operating frequencies of 5G antennas as 28 or
38 GHz, and for open source and unlicensed work, 37 or
64-71 GHz [3, 4]. It has been reported that the channel
bandwidth of the system should be a minimum of 1000
MHz for 6 GHz and above and a minimum of 100 MHz
for a frequency below 6 GHz [5, 6].

Pareto optimal characterization for microwave ele-
ments has been demonstrated in [7]. In a similar study,
the optimal characterization of a microwave transis-
tor was addressed as a multi-objective optimization
problem [8]. The older version of the algorithm used
in the study was non-dominated sorting genetic algo-
rithm (NSGA)-II [9, 10], which is a method used in
antenna design optimization problems in the literature
[11, 12]. Additionally, the other compared method, a
multi-objective evolutionary algorithm based on decom-
position (MOEA/D), is used for the pattern synthesis of
a Vivaldi linear array [13], for the design of a compact
broadband circularly polarized helical antenna [14], for
the synthesis of the shaped beam pattern of an antenna
array [15] used. NSGA-II and MOEA/D have been used
to overcome the problems stated in conventional antenna
design [16]. In [17], MOEA/D was proposed for antenna
design. In another study, a simple base station antenna
using two bow-tie dipoles has been proposed [18], devel-
oped for a compact log-periodic dipole array [19], and
proposed as an automation design scheme for com-
pact, high-isolation multiplex systems [20]. However, a
modeling-assisted optimization problem solving method
has not yet been found. Bowtie patch antenna (BPA) dif-
ferent frequencies [21, 22] and different design types pi-
and U-shaped [23, 24] are available in the literature.

As an optimization technique, NSGA-III uses the
MATLAB 2021a toolbox. The basic framework of the
proposed multi-purpose NSGA-III algorithm is similar
to that of NSGA-II, although it incorporates significant
changes [25]. Keeping variety among population mem-
bers in NSGA-III, on the other hand, helps by supplying
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and adaptively updating a collection of well-distributed
reference points, as detailed in [25, 26]. The ideal char-
acterization of the NSGA-III, a new, quick, and power-
ful optimization technique, is considered to be obtained
in this work to handle the tough optimization problem of
the 5G-28 GHz microwave antenna design. Furthermore,
the Method of Moments (MoM) was employed to pre-
cisely quantify the gain and S11 performance measure-
ments of the antenna design when the geometric design
parameters changed. The acquired performance measure
was then utilized to generate a cost function for use in the
design optimization issue. By using the MATLAB 2021a
application at 28 GHz, the design problem for 5G anten-
nas in accordance with the 5G criteria mentioned above
has been solved.

The remainder of this paper is briefly structured as
follows. Section II discusses the antenna design param-
eters and geometric form. The objective and cost func-
tion of the multi-objective optimization problem are dis-
cussed in Section III. Section IV discusses the function-
ing component. Literature comparison and self-criticism
are made in Section V. Section VI concludes the paper.

II. ANTENNA ARCHITECTURE
A planar variation of bionic dipole antennas is the

bowtie antenna. Bowtie antennas are one of the most
commonly used antenna types for communication sys-
tems and ground penetrating radar (GPR) applications.
Bowtie antennas offer several advantages such as small
weight, cheap cost, low profile and symmetrical emis-
sion pattern. It also offers ultra-wideband solutions with
high bandwidth [21]. There are design possibilities in
different shapes and geometries, for example, there are
modified examples with U [23] and pi [24] shaped slots.
The frequency value can go up to 28 GHz, which is the
candidate standard for 5G technologies [22]. The reflec-
tion coefficient is defined as the ratio of the amplitude
of the reflected signal to the amplitude of the transmit-
ted signal. Determining antenna performance is the most
basic parameter. Directivity, another important param-
eter, is the ratio of the power density in the direction
where the antenna radiates maximum radiation to the
power density of an isotropic antenna of the same power
at the same distance. Directional antennas are anten-
nas that can emit very strong radiation and receive very
strong signals when receiving. The gains of such anten-
nas are large wherever they are directed. Where it is
not directed, it is very low. Thus, unwanted noise or
broadcasts are prevented. The measure of the directiv-
ity ability of a lossless antenna is the antenna gain.
This value is closely related to the directivity of the
antenna. Unlike the directivity of the antenna, which only
describes its directivity characteristics, antenna gain also
includes the efficiency of its antenna and therefore also

represents the actual radiated power. This power is usu-
ally less than the power provided by the sender. How-
ever, since measuring this power is easier than measur-
ing directivity, antenna gain is more often used as direc-
tivity. Assuming that the antenna is a lossless antenna,
the directivity can be taken equal to the antenna gain.
However, the performance measurements of the design
largely depend on the geometric design values. Bowtie
antenna design can therefore be considered a multi-
purpose, multi-dimensional design optimization issue.
A triangular-shaped microstrip bowtie antenna is con-
sidered in this study on the application of the NSGA-
III algorithm for Pareto optimization of antenna design.
Figure 1 and Table 1 show the diagram of the antenna
design and its design parameters.

Fig. 1. Bowtie antenna.

Table 1: Antenna design parameters
Parameter Value Definition

Length (meters) 0.001-0.04 Planar bowtie length
Flare angle
(degrees)

5-90 Planar bowtie flare
angle

Conductor PEC Type of metal material
Tilt 0 Tilt angle of antenna

The design optimization of bowtie antenna is per-
formed by NSGA-III algorithm using the optimization
variables given in Table 1. All these processes were per-
formed by a computer with 8th generation Intel Core i7
CPU, 3.20 GHz processor and 8 GB RAM.

III. MULTI-OBJECTIVE OPTIMIZATION
Evolutional multi-objective optimization methods

have proven their age in finding many successful com-
bined and diversified non-dominant solutions in opti-
mization problems with two or more goals since the early
90s. Of course, in problems involving multiple goals and
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functions, there are usually many optimization problems
with three or more input and output values [27, 28].
For this reason, evolutional multi-objective optimiza-
tion algorithms are expected to research and develop by
addressing this problem for the last five years. Many
objective issues pose difficulties in an evolutional multi-
objective optimization algorithm as with any optimiza-
tion algorithm. The most significant of them is the pres-
ence of a high number of non-dominant solutions in the
solution set, which expands the archive solution set. If
these non-dominant solutions occupy a large place in the
solution set, the algorithm may have great difficulty in
dominating a sufficient number of new solutions. This
situation significantly slows down the search process of
the algorithm [29, 30]. Another challenge is that enact-
ing a large-scale problem can be a challenging task, so
evaluating the performance of the algorithm used in later
decision-making situations can be misleading and dif-
ficult. For this reason, performance evaluation criteria
hyper volume measure [31] and other criteria [29, 32]
are computationally meaningless or too costly. Using the
diversity protection operator crowd-distance [25], clus-
tering [33] operators as a third challenge, the solution
can increase the cost in terms of computation.

It is feasible to solve multi-objective optimization
issues by using evolutional optimization procedures,
which typically involve two or more goals. To address
the multi-objective optimization issue in this article, a
modified NSGA-III method will be employed.

A. Multi-objective optimization for generic formula-
tion

A minimized multi-objective optimization problem
with N goals is defined as follows:

Minimize −→y = F (−→x ) = [ f1
−→x , f2

−→x , . . . , fN
−→x ]

T
,

subject to g j (
−→x )≤ 0, j = 1,2, . . . ,M,

where −→x = [x1,x2, . . . ,xp]
T

ε Ω.

The variable y⃗ is an objective vector, the variable
g j represent restrictions, and the variable x⃗ is a P-
dimensional vector expressing choice variables inside a
parameter space Ω. The area filled by objective vectors
is referred to as objective space. The relevant space is
the subspace of goal vectors meeting the requirements
[7, 34, 35].

B. Non-dominated sorting genetic algorithm acceler-
ated by modeling

Since the current optimization processes are unde-
sirably long and hardware upgrades or other tools will
increase the cost, optimization is supported by modeling.
For this purpose, it was modeled using a multi-layer per-
ceptron (MLP) with reduced data using the Latin hyper-
cube sampling (LHS) method before optimization. There
is a similar study in the literature [36]. Then, the modeled

parts will be included in the optimization process and a
unified structure will be created.

We use a reference point-based multi-objective evo-
lutionary algorithm following the NSGA-II framework.
This highlights population members that are not domi-
nant but are close to a set of provided reference points.
The NSGA-III used can be applied to multi-objective
testing problems containing 2 to 15 targets. mNSGA-III
was used in this study by making a series of modifica-
tions on the existing NSGA-III. First of all, a cutoff point
was added among the results found. For results that fall
outside the desired limits, the cost is shown to be high
and the algorithm is forced to find the desired results.
Subsequently, after calculating the targets, before creat-
ing the solution archive, ANN modeling is added and the
solution archive is multiplied. By reducing the number
of iterations to reach the minimum cost value, less costly
results can be obtained in terms of optimization time. In
addition, a feasible solution set was created by combin-
ing all the results found in each step and the selection
process was made from that set. A version of this con-
verted into a mathematical model is shown in Fig. 2. As
defined in Fig. 2, the process begins with the definition of
algorithm parameters, especially population size, max-
imum iteration and weight coefficients. Here, the most
important innovation, ANN model support, is specified
externally. Thus, a decrease of up to 8 times in optimiza-
tion time was observed. Again, as can be seen in Fig. 2, if
the ANN contains a model, this time saving is achieved
by skipping the calculation part. All of this results in
achieving optimal characterization.

Fig. 2. Flow chart of microwave antenna by model-
ing accelerated non-dominant sorting genetic algorithm
(NSGA)-III optimal solution modification.

C. Objective and cost functions
Among the antenna measurement functions, S11 and

90-degree directivity, which are among the most basic
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parameters determining the performance of the antenna
explained in detail in the previous section, were cho-
sen as reference points. Since multi-objective optimiza-
tion problems try to converge the two selected objec-
tive function values to zero at the same time, func-
tions that will keep the directivity parameter high and
the S11 parameter low are tried to be selected. Accord-
ing to all these, the following objective functions are
defined.

Objective functions:

OF1 = min{e−
directivity

wc1 }, (1)

OF2 = min{e
S11
wc2 }. (2)

Here, the maximum reference points are given as
directivity≥0 and the minimum reference points are
given as S11 <=0. Thus, the algorithm will try to opti-
mize both performance parameters at the same time
according to the importance of the determined weight
coefficients (wc1−2). The objective functions used in the
optimization of the algorithm are collected to determine
the cost function that will be used to demonstrate the suc-
cess of the results in comparison with each other and are
used to create the cost function:

cost = OF1+OF2. (3)
Objective functions (1-2) to be used in the optimiza-

tion process have been selected since analysis is required
for predefined performance parameters at a frequency of
28 GHz. It was tried to determine the result with the min-
imum average cost (3) taken over 10 runs with the deter-
mined goal functions.

In this optimization process, the decision variables
are antenna length (meters) and flare angle (degrees),
respectively. Since the importance of the requirements
is different, trials have been made for different weight
coefficients (wc1, wc2).

IV. RESULTS
A. Comparison of ANN aided and unaided NSGA-III
and MOEA/D

First, the performance of NSGA-III was compared
with a recently proposed MOEA/D procedure. The
default parameters of the algorithm used (MOEA/D)
are given as crossover percentage (Pc)=0.5, maximum
iteration=30, archive=100 and population (N)=100.
The default parameters of the proposed algorithm
(NSGA-III) are given as percentage of crossover used
(Pc)=0.5, mutation (Pm)=0.5, maximum iterations=30
and population (N)=80. Experiments were conducted
for four different conditions in total. The results of
two different algorithms are presented, with and without
modeling support. Figure 3 shows typical cost and func-
tion evaluation number (FEN) variations with a repeat
of the best performance. It was selected from 10 dif-
ferent studies for MOEA/D and NSGA-III with and

without ANN support. As seen in the figure, the pro-
posed algorithm showed more successful results than
its rival. With ANN support, the steps to reach the
MOEA/D minimum cost were reduced from 26 to 23.
Similarly, NSGA-III also decreased from 16 to 13.
Thus, the optimum was reached approximately 20% ear-
lier in NSGA-III. In addition, since the ANN model-
ing part added to the very beginning of the applica-
tion shown in Fig. 2 and the archive part created with
these models skipped the calculation part of the lenses,
there was an approximately 8-fold decrease in the total
time.

Fig. 3. Typical cost and FEN variations with iteration of
the best performance of NSGA-III and MOEA/D algo-
rithms selected from 10 runs for multi-objective opti-
mization.

B. Optimal parameter set selection for optimization
Instead of starting from a single point, genetic algo-

rithms seek from a collection of points. It is vital to select
the algorithm settings that are best for this purpose. The
algorithm’s default settings are supplied as follows: pop-
ulation (N)=80; crossover percentage (Pc)=0.5; muta-
tion (Pm)=0.5; maximum iterations (I)=30. For the 28
GHz algorithm, tests with various population character-
istics have been conducted. With a duplicate of the best
performance chosen from 10 distinct runs with crossover
percentage (Pc)=0.5, mutation (Pm)=0.5 and popula-
tion (N)=30, 50, 80. Figure 3 displays typical cost and
FEN fluctuations. Additionally, a numerical summary
of the cost and FEN changes from Fig. 4 is provided
in Table 2. The best parameter set was determined to
be crossover percentage (Pc)=0.5, mutation (Pm)=0.5,
maximum iteration=30 and population (N)=50 based
on the graph and table. The chosen optimal parameters
will be used to continue the investigation in the next
section.
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Fig. 4. Typical cost and FEN variations with iteration
of the best performance of the algorithm selected out
of 10 runs for optimization by population: crossover
percentage (Pc)=0.5, mutation (Pm)=0.5 and maximum
iteration=30.

Table 2: Performance evaluations of the algorithm by
population for optimization: crossover percentage (Pc)
= 0.5, mutation (Pm) = 0.5 and maximum iteration = 30
Population

(N)
Minimum Maximum Mean

30 Cost 0.119×
10−3

2.307×10−3 0.220×10−3

FEN 450 60 930

50 Cost 0.117×
10−3

0.454×10−3 0.157×10−3

FEN 1000 100 1550

80 Cost 0.119×
10−3

0.196×10−3 0.125×10−3

FEN 2480 160 2480

C. Weight coefficient selection for cost
Determining the weight coefficients inside the cost

(3) function is crucial since the working concept of the
algorithm aims to obtain the solution with the lowest
cost. Weight coefficient-1 (wc1) represents the directivity
parameter in the cost function, while weight coefficient-
2 (wc2) represents the parameter S11. The best perfor-
mance, chosen from 10 distinct runs, is shown in Fig. 4
along with its repeating typical cost and FEN variations
for wc1−2=0.3, 0.5 and 0.7, respectively. Additionally, a
numerical summary of the cost and FEN changes from
Fig. 5 is provided in Table 3.

D. S11 for bowtie antenna
Figure 6 shows the typical magnitude and frequency

variations at 25-32 GHz for S11 of three antennas with
the best performance for percent transition (Pc)=0.5,
mutation (Pm)=0.5, and population (N)=30, 50 and 80.
Additionally, the variations in magnitude and frequency

Fig. 5. Typical cost and FEN variations with iteration of
the best performance of the selected algorithm over 10
runs for optimization by weight coefficients: crossover
percentage (Pc)=0.5, mutation (Pm)=0.5, maximum
iteration=30 and population (N)=50.

Table 3: Performance evaluations of the algorithm
according to the weight coefficients for optimization:
crossover percentage (Pc)=0.5, mutation (Pm)=0.5,
maximum iteration=30 and population (N)=50
wc 1 wc 2 Minimum Maximum Mean

0.3 0.7 Cost 0.138×10−3 0.509×
10−3

0.197×10−3

FEN 900 100 1550

0.5 0.5 Cost 0.117×10−3 0.454×
10−3

0.157×10−3

FEN 1000 100 1550

0.7 0.3 Cost 0.914×10−3 4.79×
10−3

1.20×10−3

FEN 1500 100 1550

Fig. 6. S11 of antenna for the best performance selected
among different population values: Pc=0.5, Pm=0.5 and
maximum iteration=30.
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in Fig. 6 are given in Table 4 as a numerical table.
As a result, the increase in the population value gives
more result value and increases the cost of optimization.
Figure 7 shows the three best performances for popula-
tion (N)=50, wc1=0.3, 0.5 and 0.7, and wc2=0.3, 0.5
and 0.7, in addition to the parameters used in Fig. 6.
The S11 of the antenna shows typical angle and fre-
quency variations between 25 and 32 GHz. Addition-
ally, the variations of angle and frequency in Fig. 7 are
given in Table 5 as a numerical table. It is seen that
increasing the weight coefficient of S11 is reflected in the
results. According to the results in Figs. 6 and 7, it can
be said that the bandwidth of the antennas is 26-30 GHz.
In addition, using the population (N)=80, wc1=0.5 and
wc2=0.5 parameters given in Fig. 6, the best result is -
47.96 dB S11. Directivity for the result is shown in Fig. 8,
and the most successful design parameters were obtained
using the 3D EM simulation tool CST Microwave stu-

Table 4: Numerical form of frequency and S11 values in
Fig. 6
Population (N) Frequency (GHz) S11 (dB)

30 28.1 −43.41
50 27.9 −47.27
80 28 −47.96

Fig. 7. S11 of antenna for the best performance selected
among different weight coefficients values: Pc=0.5,
Pm=0.5, N=50 and maximum iteration=30.

Table 5: Numerical form of frequency and S11 values in
Fig. 7

wc1-wc2 Frequency (GHz) S11 (dB)
0.3-0.7 28.1 −36.86
0.5-0.5 27.9 −47.27
0.7-0.3 28 −48.96

dio. In Fig. 9, the variation of S11 is given as typical
amplitude-frequency.

Fig. 8. Directivity of antenna for the best perfor-
mance selected: Pc=0.5, Pm=0.5, N=80 and maximum
iteration=30.

Fig. 9. S11 of the antenna from the results using CST
(Substrate to RT/Duroid 5880).

V. DISCUSSION
In a similar study, it was stated that the proposed

antenna had good performances operating at 28 GHz,
with a S11 of -30 dB, VSWR below 2, good directivity
and the radiation pattern of the proposed antenna provid-
ing a good match on the required frequency [22]. In our
study, a S11 of -49 dB was obtained at 28 GHz. It is stated
in detail in Table 6. In another study, two multi-objective
optimization meta-heuristic strategies combined with the
carrier model NSGA-II and MOEA/D are used to over-
come the problems noted in conventional antenna design
[16]. A total of 4 hours of process was reduced to 55
minutes with improvement. Thus, the process was made
4.4 times faster. In our study, it was seen that the time
was made 8 times faster in total. It is stated in detail
in Table 7. When compared with both similar studies,
the success of the proposed method was once again con-
firmed.

At the very beginning of the study, modeling support
was not added because the optimization processes for the
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Table 6: Comparison of S11 values
Frequency (GHz) S11 (dB)

Current Study 28 −48.96
[22] 28 −30

Table 7: Comparison of optimization time
Previous

Working Time
Subsequent

Working
Time

Current Study 8X 1 X
[16] 8X 1.4 X

relevant model did not take very long. In similar studies
or different models, it was observed that the optimiza-
tion processes took undesirably long and this situation
made optimization inextricable, and the flow of the study
evolved in this direction. Architecturally, a longer lasting
model could have been chosen. However, this would only
prolong the processes and would not have any impact on
the confirmation of the success of the application.

In future studies, the processes can be further accel-
erated by changing the network used in modeling sup-
port. Additionally, the suggested method can be tried on
models that take more time, such as filter optimization.

VI. CONCLUSION
In the literature, the definition of optimal character-

ization is defined as the process of finding the optimal
solution possible within the range specified by the user.
This process may take an undesirably long time due to
both the complexity of the problem and hardware inade-
quacies.

In this study, it has been shown that the current opti-
mal characterization process can be reduced up to 8 times
with only ANN support, without requiring any additional
hardware or tools. Thus, this and similar optimization
processes can be solved much more economically with-
out any additional cost. The proposed ANN modeling
addition is only a software add-on and does not require
any additional budget. In the application part, compact
microstrip single-band antenna designs that can operate
in millimeter wave communication are formulated as a
multi-objective optimization problem supported by ANN
modeling, and are expressed in terms of dominant solu-
tions and variation relations according to the geomet-
ric design parameters of the antennas. NSGA-III algo-
rithm has been successfully applied to obtain optimum
design values for desired cost functions using MOM
technique. The fact that the originally designed system
was supported by modeling caused the current optimiza-
tion process to reach optimum by an additional 20%
earlier. In addition to all these, the results in the study

were compared with the MOEA/D, a recently proposed
EMO algorithm, to compare the superiority of the prob-
lem and it was found to be more successful. When com-
pared with similar studies in the literature, more effective
results were obtained. As can be seen from the simula-
tion results, the proposed NSGA-III-based design opti-
mization method is an impact algorithm for generating
optimal solutions of a microwave antenna in terms of
geometric design parameters and performance criteria.
In terms of verifying the results with a different pro-
gram, the most successful design parameter was obtained
using the 3D EM simulation tool CST Microwave
studio.

In summary, the proposed modeling support can be
successfully applied to any optimization algorithm pro-
cesses and thus significant savings can be achieved in all
other optimization processes.

REFERENCES
[1] T. Fisher, 5G availability around the world

[Online]. Available: https://www.lifewire.com/5
g-availability-world-4156244

[2] W. Hong, Z. H. Jiang, C. Yu, J. Zhou, P. Chen,
Z. Yu, H. Zhang, B. Yang, X. Pang, M. Jiang, Y.
Cheng, M. K. T. Al-Nuaimi, Y. Zhang, J. Chen,
and S. He, “Multibeam antenna technologies for
5G wireless communications,” IEEE Trans Anten-
nas Propag, vol. 65, no. 12, pp. 6231-6249, Dec.
2017.

[3] H. Jaafar, M. T. Ali, S. Subahri, A. L. Yusof, and
M. K. M. Salleh, “Improving gain performance by
using air substrate at 5.8GHz,” in 2012 Interna-
tional Conference on Computer and Communica-
tion Engineering (ICCCE), IEEE, July 2012, pp.
95-98.

[4] J. Bang and J. Choi, “A SAR reduced mm-wave
beam-steerable array antenna with dual-mode oper-
ation for fully metal-covered 5G cellular handsets,”
IEEE Antennas Wirel Propag Lett, vol. 17, no. 6,
pp. 1118-1122, June 2018.

[5] 5G spectrum GSMA public policy position
[Online]. Available: https://www.gsma.com/latin
america/resources/5g-spectrum-gsma-public-polic
y-position-2/

[6] A. Sharma, S. Khah, and S. Rawat, “Compact Y-
shaped antenna with partial and meandered ground
for WLAN/Wi-Max Applications,” Scientia Iran-
ica, 2022.

[7] F. Gunes, A. Uluslu, and P. Mahouti, “Pareto opti-
mal characterization of a microwave transistor,”
IEEE Access, vol. 8, pp. 47900-47913, 2020.

[8] F. Kiani, A. Seyyedabbasi, and P. Mahouti, “Opti-
mal characterization of a microwave transistor
using grey wolf algorithms,” Analog Integr Circuits

https://www.lifewire.com/5g-availability-world-4156244
https://www.lifewire.com/5g-availability-world-4156244
https://www.gsma.com/latinamerica/resources/5g-spectrum-gsma-public-policy-position-2/
https://www.gsma.com/latinamerica/resources/5g-spectrum-gsma-public-policy-position-2/
https://www.gsma.com/latinamerica/resources/5g-spectrum-gsma-public-policy-position-2/


403 ACES JOURNAL, Vol. 39, No. 05, May 2024

Signal Process, vol. 109, no. 3, pp. 599-609, Dec.
2021.

[9] J. O. Yang, Q. R. Yuan, F. Yang, H. J. Zhou, Z.
P. Nie, and Z. Q. Zhao, “Synthesis of conformal
phased array with improved NSGA-II algorithm,”
IEEE Trans Antennas Propag, vol. 57, no. 12, pp.
4006-4009, Dec. 2009.

[10] G. Li, S. Yang, Q. Feng, X. L. Zhao, and X.
Yin Zhang, “Dual-polarized differential-fed phased
array antenna with sidelobe suppression based on
NSGA-II for 5G millimeter wave application,” in
2020 International Conference on Microwave and
Millimeter Wave Technology (ICMMT), IEEE, pp.
1-3, Sep. 2020.

[11] C. Zhang and A. Qing, “Sidelobe level and side-
band suppression in time-modulated linear arrays
by NSGA-II,” in 2017 IEEE International Sympo-
sium on Antennas and Propagation & USNC/URSI
National Radio Science Meeting, IEEE, pp. 531-
532, July 2017.

[12] J. Moreno, I. Gonzalez, and D. Rodriguez, “Using
simulation and the NSGA-II evolutionary multi-
objective algorithm in the design of a compact dual-
band equatorial helix antenna,” in 2017 6th Interna-
tional Conference on Space Mission Challenges for
Information Technology (SMC-IT), IEEE, pp. 56-
60, Sep. 2017.

[13] H. Li, Y. Chen, and S. Yang, “Pattern synthe-
sis of a time-modulated Vivaldi linear array with
MOEA/D algorithm,” in 2019 IEEE International
Conference on Computational Electromagnetics
(ICCEM), IEEE, pp. 1-3, Mar. 2019.

[14] D. Ding, Y. Tu, Y. Lin, and X. Ding, “Design
of dielectric-loaded compact broadband circularly-
polarized helix antenna by using multiobjective
evolutionary algorithm based on decomposition
(MOEA/D),” in 2017 IEEE 2nd Information Tech-
nology, Networking, Electronic and Automation
Control Conference (ITNEC), IEEE, pp. 1504-
1507, Dec. 2017.

[15] W. Feng, N. Zhao, S. Ao, J. Tang, X. Zhang, Y.
Fu, D. K. C. So, and K. Wong, “Joint 3D trajectory
and power optimization for UAV-aided mmwave
MIMO-NOMA networks,” IEEE Transactions on
Communications, vol. 69, no. 4, pp. 2346-2358,
Apr. 2021.

[16] M. C. De Melo, P. B. Santos, E. Faustino, C. J. A.
Bastos-Filho, and A. Cerqueira Sodre, “Computa-
tional intelligence-based methodology for antenna
development,” IEEE Access, vol. 10, pp. 1860-
1870, 2022.

[17] X. Wang, G. Wang, D. Wang, and Q. Zhang,
“Ensemble-learning-based multiobjective opti-
mization for antenna design,” IEEE Trans Antennas

Propag, vol. 71, no. 2, pp. 1295-1303, Feb. 2023.
[18] D. Lu and J. Zhao, “Design of high-isolation

fragment-type 5G base station antennas with
MOEA/D-GO,” in 2020 International Symposium
on Antennas and Propagation (ISAP), IEEE, pp.
467-468, Jan. 2021.

[19] Q.-Q. Li, Q.-X. Chu, Y.-L. Chang, and J. Dong,
“Tri-objective compact log-periodic dipole array
antenna design using MOEA/D-GPSO,” IEEE
Trans Antennas Propag, vol. 68, no. 4, pp. 2714-
2723, Apr. 2020.

[20] Q.-Q. Li, Q.-X. Chu, and Y.-L. Chang, “Design of
compact high-isolation MIMO antenna with mul-
tiobjective mixed optimization algorithm,” IEEE
Antennas Wirel Propag Lett, vol. 19, no. 8, pp.
1306-1310, Aug. 2020.

[21] K. Y. Yazdandoost and R. Kohno, “Slot antenna
for ultra wideband system,” in IEEE/ACES Inter-
national Conference on Wireless Communica-
tions and Applied Computational Electromagnetics
2005, IEEE, pp. 212-216, 2005.
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