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Abstract – Existing databases of RCS benchmarks lack a
complex, low-observable target. This paper describes the
design of such a complex and low-observable measure-
ment model. Starting point of the design is the so-called
Muldicon model, developed by the NATO/STO/AVT
panel. Hot spots of the original model are identified and
treated with radar-absorbing materials. Simulations on
the treated model demonstrate that the model is indeed
low observable. The effect of the manufacturing process
of 3D-printing and separable parts is assessed experi-
mentally on a cone-sphere; the effect is found to be negli-
gible. These results give confidence that the model, when
built, satisfies the requirements of being complex and
low observable; and that artefacts of the manufacturing
process will not impair its signature.

Index Terms – Low observable, measurement model,
radar signature.

I. INTRODUCTION
With the ever-increasing use of computational elec-

tromagnetics, there is a constant need to validate the
computational tools with measurement data. The pio-
neering work of Woo et al. [1] presented a first set of
canonical test cases which still serve as benchmarks for
the validation of computational tools [2]. More databases
for validation followed [3][4]. The publicly available
Austin RCS benchmark suite [4] is the most recent; it
contains canonical geometries, but also a generic mili-
tary aircraft. Moreover, the suite not only contains per-
fectly electrically conducting (PEC) bodies, but also
(fully homogeneous) dielectric bodies [5].

Military aircraft generally are designed to have
low radar signature by shaping and the application of
radar-absorbing materials. This type of target is miss-
ing in the above databases: complex targets with doubly
curved surfaces, sharp edges, concealed inlet, with radar-
absorbing materials. The resulting low signature (typi-
cally one or two orders of magnitude less than the size
would suggest) poses challenges to computational tools,
since the correct modelling of small details becomes
important.

This paper presents the design of a low-observable
unmanned aerial combat vehicle (UCAV) measurement
model. In future, it could serve as a standard prob-
lem for validation (in the formulation of the IEEE stan-
dard on validation [6]). Starting point of the design
is the so-called Muldicon model developed by the
NATO/STO/AVT panel [7], as a paper exercise for multi-
disciplinary design (aerodynamic and structural proper-
ties were considered). Figure 1 presents both the outer
mold of the aircraft and the inlet and outlet. The air-
craft has certain features which may lead to a low sig-
nature, such as a concealed air intake. Nonetheless, the

(a)

(b)

Fig. 1. Geometry of the unmanned aerial vehicle
Muldicon [7]: (a) outer mold and (b) inlet and outlet.

aircraft shape has not been driven, nor comprised, by its
radar signature, so its signature has not been optimized.
Changing the outer mold will require a new design loop
to assure the aerodynamic characteristics of the aircraft.
Its signature can only be reduced by the application of
radar absorbing materials (RAM).

This paper will address some of the topics in
the design process. The design and manufacturing of
the measurement model has been the task of the
NATO/STO/SET-252 Task Group [8]. It was a five-year
effort of the authors of the present paper. Obviously,
there is not enough space to incorporate all details of the
design process.

The structure of this paper is as follows. In Section
II the design requirements and an overall design of the
model is presented. Section III contains a hot spot anal-
ysis which will be used to reduce the nose-on signature.
Parts of the model will be 3D printed; the required accu-
racy of the printing process is assessed experimentally in
Section IV. Section V contains a computational assess-
ment of the low observability characteristics of the mea-
surement model. Finally, Section VI draws the conclu-
sions of the study.

II. OVERALL DESIGN OF THE
MEASUREMENT MODEL

As stated in the introduction the overall objective
is to design a low-observable, complex, radar signature
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measurement model. The requirement on geometrical
complexity of the model is satisfied for the Muldicon.
Modeling complexity will be satisfied by the application
of radar-absorbing material which shall reduce the RCS
by at least 10 dB in the nose section. The model will be
measured at different sites, so must be transportable.

The measurement model will be measured at a cen-
ter frequency of 10 GHz. RAM is applied to certain parts
of the aircraft to reduce the radar signature. The RAM
can be narrowband RAM since no broadband measure-
ments are foreseen.

The span of the model will be 3 meters. The size
is a compromise. On the one hand, the model should be
sufficiently large to correspond to the objects of practi-
cal interest (UCAV, drones), and the field scattered by
the model should be sufficiently strong to be registered
by the receiving system of an RCS measurement facility
with enough signal-to-noise ratio to ensure high accu-
racy of the results and good dynamic range. On the other
hand, its electrical size should permit numerical evalua-
tion of RCS with commercial EM solvers and fit into the
quiet zone of a typical compact test range RCS measure-
ment facility. The weight of the model (which is directly
related to its size) should be acceptable for the supporting
and positioning structures of the measurement facilities
and allow uncomplicated transportation between mea-
surement sites. Moreover, RCS measurement of a three
meters object can also be performed on outdoor test
ranges which will provide further benchmarking activ-
ities.

Because of the transportation requirement, the
model consists of three separable parts: two wings and a
midsection. The midsection is 3D printed because of the
level of geometrically detail required for the inlet, outlet,
turntable insert, and the spars connecting to the wings.
This level of detail can also be obtained through milling,
but at a higher cost. Since the wings are large smooth
surfaces, they are milled from foam. A nickel paint is
applied to the full aircraft to ensure a PEC surface.

This design prompts the following research ques-
tions: (1) what are the appropriate locations for the RAM
patches to reduce the signature and (2) what are the res-
olution requirements for the 3D-printing process?

III. HOT SPOT ANALYSIS
To ascertain the radar signature of the untreated,

fully PEC, model, the monostatic RCS for both verti-
cal and horizontal polarization is computed. Computa-
tions are performed using RAPID [9], with the combined
field integral equation (CFIE) formulation and multi-
level fast-multipole (MLFMM) acceleration. Results are
shown in Fig. 2.

The HH polarization shows two spiky maxima at
φ = 53◦ and φ = 150◦. These azimuthal angles are the

(a)

(b)

Fig. 2. RCS at 10 GHz of the untreated Muldicon as a
function of azimuth angle φ in the zero elevation plane,
where φ = 0◦ corresponds to nose-on illumination: (a)
VV polarization and (b) HH polarization.

starboard leading edge and the trailing edges of the delta
wing. It is also obvious from the RCS characteristics for
both polarizations that a significant RCS increase accu-
mulates around the nose sector. As the future measure-
ments will be performed for frontal aspects, it is worthy
to investigate the RCS contributors of the illumination
angles φ = 0◦ and φ = 53◦.

In order to calculate the hot spots on the 3D sur-
face model for a given illumination angle, the currents
induced on the surface of the mesh model are post-
processed through a specific method [10]: the RCS
contribution of the induced currents within a certain
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neighborhood of each point on the surface of the mesh
model is calculated and this value is assigned to the asso-
ciated point. This yields a color map of RCS contribution
surfaces of the mesh model, namely, the hot spot areas on
the surface.

Results are shown in Fig. 3. It is clear that the lead-
ing edge of the wing and the inlet are the dominant RCS
contributors for φ = 53◦. The dominant RCS contribu-
tor for nose on is the inlet. These two regions will be
treated with a commercially available narrowband mag-
netic absorber which is effective at 10 GHz.

(a)

(b)

Fig. 3. Hot spot areas (in red) for horizontal polarization:
(a) hot spot analysis for φ = 53◦ and (b) hot spot analysis
for φ = 0◦ (nose on).

IV. 3D PRINTING
The midsection of the Muldicon will be 3D printed.

This process will not result in a smooth surface as the
filament is applied in layers. In order to assess the effect
of the surface roughness on the radar signature, four dif-
ferent 3D cone-spheres are fabricated with different fin-
ishes and conductivity, in addition to an aluminum cone-
sphere as reference. The dimensions are defined in Fig. 4
and the coordinate system is shown in Fig. 5.

The objective of this study is to assess the effect
of geometrical impurities on the radar signature. It is
expected that if the print resolution is high enough in
relation with the radar frequency, the surface can be

Fig. 4. Cone-sphere dimensions (in mm).

Fig. 5. Cone-sphere coordinate system.

considered to be smooth; and hence can be modeled as
a smooth surface in the validation simulations. There-
fore, radar signatures of the impure rough geometries
will be compared directly with the signature of a smooth
cone-sphere and no effort is made to quantify the surface
roughness. The interested reader is referred to [11, 12],
which measure and assess the surface roughness due to
3D-printing. The current study is performed at the same
frequency which will be used for the Muldicon measure-
ments. Since the cone-sphere has a low signature in the
cone section, it is reasonable to expect that the results
can be extrapolated to the Muldicon.
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A. Model definition
A conventional fused filament fabrication (FFF) [13]

3D-printer is used to manufacture the cones at FOI. A
thermoplastic material, in the form of a continuous fila-
ment, is fed from a large spool through a moving heated
extruder head and deposited layer by layer on a growing
object. The head is moved in two dimensions under com-
puter control depositing one layer at a time to define the
printed shape. The print head is then moved vertically by
a small amount to begin the next layer. Increased layer
thickness and/or larger nozzle diameter reduces the time
it takes to print the object, but it also increases the surface
roughness, potentially affecting the scattering of electro-
magnetic waves, or increasing the manual work needed
afterwards. Hence, print time and surface roughness tol-
erance must be balanced.

The cone-spheres are printed in two sections (see
Fig. 6) to avoid print support. The sections have a small
central hole where a peg is placed to align the cone and
sphere section during assembly. This peg also increases
the bond between the parts when glued together.

Fig. 6. Cone-sphere print sections.

To give the cone-spheres a PEC surface, the mod-
els are spray-painted with several layers of copper-based
paint (Kontakt Chemie EMI 35 [14]). The surfaces are
cleaned and degreased before painting to maintain the
surface imperfections resulting from the print process.

The five models are:

• Cone-sphere A: Nozzle size 0.4 mm, layer height
0.2 mm. Standard PLA-filament (PrimaCreator
EasyPrint PLA). Pieces glued together and then
PEC-coated, which gives a “seamless” cone-sphere.

• Cone-sphere B: Nozzle size 0.8 mm, layer height
0.4 mm. Standard PLA-filament (PrimaCreator

EasyPrint PLA). Pieces glued together and then
PEC-coated, which gives a “seamless” cone-sphere.

• Cone-sphere C: Nozzle size 0.4 mm, layer height
0.2 mm. Standard PLA-filament (PrimaCreator
EasyPrint PLA). Pieces PEC-coated and then glued
together to simulate wing-fuselage joint.

• Cone-sphere D: Nozzle size 0.4 mm, layer height
0.2 mm. Electric conducting PETG-filament [15]
(resistivity 106-109 ohm-cm). Pieces joined with a
central metal screw.

• Cone-sphere E: fully metallic with smooth surface.

Cone-spheres A and B were designed to investigate
the effect of surface roughness due to layer height but
also other minor print artifacts. Figures 7 and 8 show
a close-up of the surfaces after coating with electric
conducting copper paint. Cone-sphere C was designed
to investigate if there are any effect on the RCS due
to a non-perfect joint between two PEC surfaces, sim-
ilar to the joint between the wing and central fuselage
sections of the Muldicon. To simulate this kind of joint,
the spherical and cone section of the cone-sphere were

Fig. 7. Cone-sphere A.

Fig. 8. Cone-sphere B.
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coated with copper paint separately (including the join-
ing surface) and glued together afterwards. The purpose
of cone-sphere D is to investigate if PETG could be a
viable alternative to PLA coated with conductive paint.

B. Measurements
The measurements were carried out in the INTA

Compact Antenna Test Range (CATR) at 10 GHz,
the Muldicon frequency, and for cone-to-sphere aspects
(polar angle 0◦ < θ < 180o).

C. Simulation
With the aim of comparing in a better way the

measurements made, a smooth PEC cone-sphere is
also simulated with Methods of Moments CFIE using
FEKO [16].

D. Comparison and evaluation
Results will be shown for vertical (θθ ) polariza-

tion. The results for horizontal polarization are simi-
lar. Figure 9 (a) compares the measurement and simu-
lation for the smooth PEC cone-sphere. The agreement
is very good, except near the tip (θ = 0o). These dis-
crepancies could be explained by the fact that, in the
tip, the reflected field is very weak and the signal-to-
noise ratio at the receiver is low, limiting the accuracy of
the measurement results. Nevertheless, the overall agree-
ment provides confidence in the measurement setup.

Measurements at 10 GHz for vertical polarization
are shown in Fig. 9 (b). The objective is to see if different
manufacturing techniques have significant effects and if
the different specimens have comparable signature to the
perfect metallic specimen E.

Negligible differences between specimen A (nozzle
size 0.4 mm) and specimen B (nozzle size 0.8 mm) can
be seen, except for the tip (θ = 0o). It can be concluded
that the reduction in nozzle size is only relevant for very
small and sharp geometrical details. It is not expected
to find any effect on the fabricated Muldicon due to the
nozzle size.

Studying specimen B (nozzle size 0.8 mm, layer
height 0.4 mm) in detail and comparing with the metal-
lic specimen E, again only the tip of the cone-sphere dis-
plays higher RCS. Hence the layer height will not cause
any relevant effect on the final fabricated Muldicon.

Also, there are negligible differences between spec-
imen A (pieces glued together and then PEC-coated)
and specimen C (pieces PEC-coated and then glued
together). PEC paint seems to work fine in both cases.
It can be concluded that no effect on the Muldicon RCS
is expected due to the joint between the wing and central
fuselage sections when fabricated separately and joined
afterwards as planned.

Finally, specimen D (PETG material) shows a lower
RCS due to the low conductivity of the raw material.

(a)

(b)

Fig. 9. Comparison of simulation and measurement
results on the cone-sphere at 10 GHz for vertical polar-
ization: (a) results comparison of measurement and sim-
ulation for the PEC cone-sphere and (b) comparison of
the measurements.

Thus, this material is not an alternative for fabrication
purposes.

V. SIMULATION OF TREATED MULDICON
Figure 10 shows a closeup of the model, depicting

the areas where RAM is applied. Note that the leading
edge of the right wing is not treated. For the physical
model Laird SF-10 RAM [17] will be used. The tiles
have a thickness of 1.35 mm and material properties:
εr = 13.29-0.25 j and µr = 1.64-1.2 j. There is no taper-
ing of the tiles at their edges.

Two common meshes have been generated (but not
used by all authors). Mesh A: a single layer mesh with a
mesh width of λ0/10 (where λ0 is the wave length in vac-
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Fig. 10. Computational model of the treated Muldicon.
The green and blue areas are treated with a narrowband
RAM. The orange, purple and grey areas are PEC.

uum) when impedance boundary conditions (IBC) are
used. Mesh B: a standard double layer mesh with a mesh
width of λ0/10 when the RAM is modeled as a dielectric.
A brief overview of the simulation settings is given in
Table 1, all (but one) using integral equation solvers with
MLFMM acceleration. The impedance η in the IBC is
computed as η = j

√
µr
εr

tan(k0d
√

(εrµr)), where εr, µr,
d, and k0 are the relative permittivity of the dielectric,
its relative permeability, the thickness of the dielectric
layer, and the free-space wave number. The motivation
for using different meshes is, on the one hand, that the
mesh structure is dictated by the method (IBC does not
require a double layer; the finite-element boundary inte-
gral method requires a volume mesh in the RAM). On
the other hand, the experience from different partners
with their method of choice leads to different meshing
strategies which produce the best results for the method
considered.

The simulation results at elevation zero are shown
in Fig. 11. It is clear from the difference between the left
and right wing aspects that the treatment of the leading

Table 1: Overview of simulation settings
Partner Method Mesh
Airbus in-house tool; both IBC and full

dielectric [18]
A & B

Altair FEKO [16]; IBC A
Aselsan in-house tool [9]; both IBC and

full dielectric; JMCFIE
formulation of [19]

own

FHR in-house tool [20]: coupled
boundary integral with finite

element for dielectric

own

FOI FEKO; IBC A
INTA FEKO; IBC own
NLR in-house tool [21]: full dielectric

(Müller formulation)
B

(a)

(b)

Fig. 11. Comparison of simulations of the treated model
at zero elevation. RCS in dB m2: (a) horizontal polariza-
tion and (b) vertical polarization.

edge reduces the RCS by 20 dB around φ = 53o. Also,
and more importantly, the nose-on RCS is reduced sig-
nificantly, even without treatment of the rim of the inlet.
Scatter in the simulation results only occurs at low RCS
levels, below −30dBm2. It is precisely for this reason
that the validation model is developed. Despite the large
range of methods and meshes, the computational results
compare very well even at very low RCS levels.

Figure 12 shows a close-up of the RCS in the nose-
on region at higher aspect resolution of 0.2 degrees. At
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(a)

(b)

Fig. 12. Comparison of simulations of the treated model.
Detail for nose-on aspects: (a) horizontal polarization
and (b) vertical polarization.

these low RCS levels, differences of up to 5 dB can be
observed. A more consistent cross-comparison of meth-
ods and meshes will be executed in the future.

VI. CONCLUSION
A design of a measurement model of an unmanned

aerial vehicle which is geometrically complex, applies
radar-absorbing material and has a low radar signature
has been presented. Numerical simulations have demon-
strated that the measurement model is low observable at
the center frequency of 10 GHz. Experiments on a vari-
ety of cone-sphere specimens have shown that it is rea-
sonable to expect that the surface of the measurement

model can be modeled as smooth and contiguous, even
though the measurement model consists of three parts
and the midsection is 3D printed. Hence, it is expected
that the measurement model, once built, will satisfy the
design requirements.
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Jesús Álvarez González was born
in Leon, Spain. He received the
Ph.D. degree from the University of
Granada, Granada, Spain, in 2013.
Since 2006, he has been working as
an RCS, Antenna and EMC Engi-
neer with Airbus Defense and Space,
Getafe, Spain. His research interests

include computational electrodynamics in time domain,
the method of moments and fast algorithms for integral
equations in frequency domain and computational elec-
tromagnetics applied to electromagnetic compatibility,
antenna, and radar cross section.

https://en.wikipedia.org/wiki/Fused_filament_fabrication
https://en.wikipedia.org/wiki/Fused_filament_fabrication
https://en.wikipedia.org/wiki/Fused_filament_fabrication
http://www.kontaktchemie.com/KOC/KOCproductdetailV2.csp? product=EMI%2035
http://www.kontaktchemie.com/KOC/KOCproductdetailV2.csp? product=EMI%2035
http://www.kontaktchemie.com/KOC/KOCproductdetailV2.csp? product=EMI%2035
https://addnorth.com/product/ESD%20PETG/ESD%20PETG%20-%201.75mm%20-%20750g%20-%20Black
https://addnorth.com/product/ESD%20PETG/ESD%20PETG%20-%201.75mm%20-%20750g%20-%20Black
https://addnorth.com/product/ESD%20PETG/ESD%20PETG%20-%201.75mm%20-%20750g%20-%20Black
https://addnorth.com/product/ESD%20PETG/ESD%20PETG%20-%201.75mm%20-%20750g%20-%20Black
https:// www.altair.com/feko
https:// www.altair.com/feko
https:// www.laird.com/products/microwave-absorbers/ microwave-absorbing-elastomers-and-films/ eccosorb-fgm/21191167
https:// www.laird.com/products/microwave-absorbers/ microwave-absorbing-elastomers-and-films/ eccosorb-fgm/21191167
https:// www.laird.com/products/microwave-absorbers/ microwave-absorbing-elastomers-and-films/ eccosorb-fgm/21191167


487 ACES JOURNAL, Vol. 39, No. 06, June 2024
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