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Abstract – This paper proposes an accelerated ray trac-
ing method utilizing the Embree3 ray tracing library for
targets with non-uniform thickness materials. In con-
trast to the traditional surface-based ray tracing, the
proposed approach performs ray tracing within the mate-
rials, since surface tracing is ineffective for materials
with non-uniform thickness. To ensure efficiency and
handle the overlapping grids between different materi-
als, the Embree3 ray tracing library is introduced to ray
intersection. Numerical results confirm that the proposed
method surpasses existing methods in terms of efficiency
and applicability while maintaining accuracy.

Index Terms – Accelerated ray tracing method, electro-
magnetic scattering, thick materials.

I. INTRODUCTION
In recent years, the scattering of targets with mate-

rials has become a research hotspot. Numerous electro-
magnetic algorithms have been developed, such as the
method of moments (MoM) [1], finite element method
(FEM) [2], and finite difference time domain (FDTD)
[3]. The common point of these numerical algorithms is
high accuracy but low efficiency. For electrically large
targets, a high-frequency algorithm is more suitable. The
existing high-frequency algorithms mainly include the
physical optics (PO) method and the shooting and bounc-
ing ray (SBR) method. Both algorithms can be used for
targets composed of uniformly thick materials. However,
considering the shape design, some targets have non-flat
surfaces, and the material is part of the structure rather
than being a coating. This results in non-uniform thick-
ness of the material. For non-uniform thickness mate-
rials, the PO method is not applicable, while the SBR
method can only be applied through tracing inside the
material, since it is impossible to determine the reflection
coefficient without knowing the thickness of the mate-
rial.

Ray tracing inside the material is the most suit-
able method for processing the electrically large target
with non-uniform thickness materials. Several studies
have been conducted on ray tracing inside materials,

like [4] and [5]. Compared with the traditional SBR
method, ray tracing inside the materials requires more
intersection, making acceleration algorithms more crit-
ical. Although the existing acceleration algorithms can
achieve a good acceleration ratio, they often have limi-
tations. For instance, constructing an accelerated model
using kd-tree [6] is computationally expensive and GPU
computing [7] has certain hardware requirements. Fur-
ther research is required to develop a more general and
efficient acceleration method.

Furthermore, in contrast to the traditional SBR
method with surface tracing, the overlapping grids at
the interface of different materials cause issues. Figure 1
shows that it is difficult to identify the material on which
the intersection occurs without processing the overlap-
ping grids.
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To address the above-mentioned problems, an effi-
cient and universal method is presented in this paper.
Ray tracing is performed inside the material to obtain the
radar cross-section (RCS) of targets with non-uniform
thickness materials. Unlike the existing acceleration
algorithms, the proposed approach employs the Embree3
ray tracing library, an open-source library specifically
designed for image rendering, to realize model building
and ray intersection. For overlapping grids at the inter-
face, the intersection information is determined by trac-
ing twice in multiple scenes, which avoids complex over-
lapping grid processing.

This paper successfully combines Embree3 with
the SBR method. The introduction of Embree3 signifi-
cantly improves the efficiency of ray tracing. Moreover,
the problem of overlapping grids is ingeniously solved
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through the multi-scene method. The proposed method
has much higher efficiency and stronger applicability
than the existing methods.

II. RAY TRACING INSIDE MATERIALS
BASED ON EMBREE3

The common SBR method mainly includes mod-
eling, ray tracing, field tracing, and far-field integra-
tion. The specific process of the SBR method based on
Embree3 is as follows.

A. Modeling
In contrast to the traditional SBR method with sur-

face tracing, internal ray tracing requires multiple sets of
grids to differentiate between various materials. Besides,
multiple scenes need to be created to solve the problem
of overlapping grids.

There are three types of objects in Embree3, includ-
ing device object (do), scene object (so), and geome-
try object (GO). Each object has an independent ID. As
shown in Fig. 2, GO is the first level. Each GO corre-
sponds to an independent set of grids, like GO 1, GO 2,
and GO 3. The SOs are the second level, corresponding
to different scenes. Each SO can include multiple GOs,
like SO 1, SO 2, SO 3, and SO 4. DO is the third level.
Each DO can include multiple SOs, like DO 1. Normally,
the traditional SBR method with surface tracing requires
only one scene (SO 1). However, tracing inside the mate-
rials requires multiple scenes (SO 1, SO 2, SO 3, and SO
4) to deal with the overlapping grids. The usage of mul-
tiple scenes will be described in Section IID.
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B. Ray tracing
Ray tracing is the key to the accuracy and efficiency

of the SBR method. The process of ray tracing based on
Embree3 is described in detail below.

The first step is to determine the initial ray tube on
the face of the bounding box, which is obtained through
the function “RtcGetSceneBounds” defined in Embree3.
The incident direction of the initial ray tube changes with
coordinate rotation.

The second step is to find the intersections. Embree3
provides an efficient function “RtcIntersect” to obtain the
intersection. The function “RtcIntersect” is based on the

bounding volume hierarchy (BVH) algorithm [8] and the
Möller-Trumbore algorithm [9].

Figure 3 shows that the BVH is a binary tree,
where each node represents a bounding box contain-
ing grids. The root node represents the bounding box
of the whole scene, and the other nodes represent the
sub-bounding box. Intersection detection begins at the
root node, checking if the ray overlaps with the bound-
ing box. This process recursively continues until reach-
ing the bounding box of the leaf node. In contrast to kd-
tree, which divides regions based on space before inter-
section, BVH divides bounding boxes based on grids in
the process of intersection. The Möller-Trumbore algo-
rithm is a fast method to find the intersection of rays and
triangles in space. It is used to obtain the actual inter-
section between the ray and the grids in the minimum
bounding box.
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The combination of the BVH algorithm and the
Möller-Trumbore algorithm significantly enhances the
efficiency of ray intersection. Besides, Embree3 defines
a structure “RTCRayHit” for storing incident and inter-
section information. As shown in Fig. 4, the structure
“RTCRayHit” with incident information is passed as
input to the function “RtcIntersect”, and the intersection
information is returned to the structure.
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The third step is to determine the reflection and
transmission information. Figure 5 shows that the inter-
section information in “RTCRayHit” is used to obtain
reflection and transmission information employing equa-
tions (1)-(6).

As shown in Fig. 6, when a ray hits the inter-
face between the free space (Region 0) and the material
(Region 1), a transmitted wave and a reflected wave will
be generated at the intersection. The incident wave vector
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where TER , TMR , TET , and TMT  are the reflection and 

transmission coefficients of TE and TM waves, 
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After performing ray tracing and field tracing for all 

ray tubes, the effective ray tubes are selected for far-field 

integration. Gordon’s method is adopted in this paper for 

integration [12]. The RCS of the target can be obtained 

by superimposing the scattering field of all effective ray 

tubes. 
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The transmission angle θ t can be calculated after
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v by solving equations (3) and (4) with the
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According to the Snell’s law, the reflection angle θ r

is equal to the incident angle θ i:
θ

r = θ
i. (6)

The fourth step is to determine whether to continue
tracing. The maximum tracing times and the minimum
energy limit are set as the end conditions. Moreover, ray
tracing will also stop when there is no intersection. If the
end condition is not met, the operation in the second step
will be repeated by treating the reflected or transmitted
ray as the new incident ray.

C. Field tracing and far-field integration
Field tracing and ray tracing are performed simul-

taneously. The attenuation coefficient ᾱ t of the material

can be calculated using equations (3) and (4). The calcu-
lation method of the reflection and transmission coeffi-
cients is provided in [11] and listed as follows:

RT E =
µ0ki

v −µ1kt
v

µ0ki
v +µ1kt

v
,TT E =

2µ1ki
v

µ0ki
v +µ1kt

v

RT M =
ε0ki

v − ε1kt
v

ε0ki
v + ε1kt

v
,TT M =

2ε1kt
z

ε0ki
v + ε1kt

v
(7)

where RT E , RT M , TT E , and TT M are the reflection and
transmission coefficients of TE and TM waves, respec-
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ĒT E
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ĒT E
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ĒT E
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After performing ray tracing and field tracing for all
ray tubes, the effective ray tubes are selected for far-field
integration. Gordon’s method is adopted in this paper for
integration [12]. The RCS of the target can be obtained
by superimposing the scattering field of all effective ray
tubes.

D. Ray tracing in multiple scenes
Overlapping grids make it challenging to accurately

and directly determine the correct material parameters
required for reflection and transmission calculations. As
shown in Fig. 7, there are four different intersections for
a ray tube. Due to the overlapping grids at Point 2 and
Point 3, all four intersections are located on the grid of
GO 2, which affects the acquisition of correct material
parameters. To ensure accurate and efficient ray tracing,
the multiple scenes as shown in Fig. 2 are used to deter-
mine the precise GO where the intersection occurs. The
specific process is as follows.
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where TER , TMR , TET , and TMT  are the reflection and 

transmission coefficients of TE and TM waves, 

respectively. The reflected and transmitted electric fields 

at the intersection can be calculated as: 
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After performing ray tracing and field tracing for all 

ray tubes, the effective ray tubes are selected for far-field 

integration. Gordon’s method is adopted in this paper for 

integration [12]. The RCS of the target can be obtained 

by superimposing the scattering field of all effective ray 
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In this multi-scene method, each ray tracing needs
to be carried out twice in different SOs. As shown in
Fig. 8, the intersection of the first tracing is on GO 2.
Thus, the second tracing is made in SO 2, which does not
contain GO 2. The distance d between the two intersec-
tions is calculated when both tracings have an intersec-
tion. According to the position of the second intersection
and the distance d, the actual position of the intersection
can be determined.
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where TER , TMR , TET , and TMT  are the reflection and 

transmission coefficients of TE and TM waves, 

respectively. The reflected and transmitted electric fields 

at the intersection can be calculated as: 
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After performing ray tracing and field tracing for all 

ray tubes, the effective ray tubes are selected for far-field 

integration. Gordon’s method is adopted in this paper for 

integration [12]. The RCS of the target can be obtained 

by superimposing the scattering field of all effective ray 

tubes. 
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a ray tube. Due to the overlapping grids at Point 2 and 

Point 3, all four intersections are located on the grid of 

GO 2, which affects the acquisition of correct material 

parameters. To ensure accurate and efficient ray tracing, 

the multiple scenes as shown in Fig. 2 are used to 

determine the precise GO where the intersection occurs. 
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The multi-scene method effectively solves the prob-
lem of overlapping grids. Despite a significant increase
in intersection points, the overall method remains effi-
cient due to the powerful performance of Embree3 and
the avoidance of overlapping grid processing. Further-
more, this multi-scene method is not limited by model
shape and mesh quality.

III. SIMULATIONS AND DISCUSSION
The accuracy and efficiency of the proposed ray

tracing method were investigated through the following
four examples. All the simulations were performed on
a workstation with two Intel (R) Xeon (R) CPU Gold-
6248R.

A. SLICY model
A conductor SLICY model as shown in Fig. 9 was

simulated first. The RCS from the SBR method in CST
was compared with the proposed SBR method. The inci-
dent angle varied in the range of θ = 0◦−90◦ for ϕ = 0◦,
θθ polarization. The frequency was 10 GHz, and the

remains efficient due to the powerful performance of 

Embree3 and the avoidance of overlapping grid 

processing. Furthermore, this multi-scene method is not 

limited by model shape and mesh quality. 
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Fig. 9. Dimensions of the SLICY model. 
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Fig. 10. RCS of the SLICY model. 

 

 

 

Table 1: Computation time of the SLICY model 

SLICY 

model 
SBR in this paper SBR in CST 

Time 19 s 24 s 

 

B. Trihedral coated with thick material 

A 20 20 20     trihedral coated by a material 

with a thickness of 1   was analyzed. The parameters 

were 3 3, 1r rj    . The incident angle varied in the 

range of 0 90     for 45   ,   polarization, and 

the frequency was 6 GHz. Figure 11 compares the results 

of the SBR method in this paper with the FEM in HFSS. 

The results are quite consistent, demonstrating the 

accuracy of the SBR method in this paper when there is 

material in the target. 
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Fig. 11. RCS of coated trihedral. 
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electrical size was about 92λ × 82λ × 56λ . The high
degree of consistency between the two results shown in
Fig. 10 validates the accuracy of the ray tracing method
in this paper. Table 1 presents the computation cost,
demonstrating the high efficiency of the proposed ray
tracing method.
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cost, demonstrating the high efficiency of the proposed 

ray tracing method. 
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Fig. 10. RCS of the SLICY model. 

 

 

 

Table 1: Computation time of the SLICY model 

SLICY 

model 
SBR in this paper SBR in CST 

Time 19 s 24 s 

 

B. Trihedral coated with thick material 

A 20 20 20     trihedral coated by a material 

with a thickness of 1   was analyzed. The parameters 

were 3 3, 1r rj    . The incident angle varied in the 

range of 0 90     for 45   ,   polarization, and 

the frequency was 6 GHz. Figure 11 compares the results 

of the SBR method in this paper with the FEM in HFSS. 

The results are quite consistent, demonstrating the 

accuracy of the SBR method in this paper when there is 

material in the target. 

 

0 15 30 45 60 75 90
-30

-20

-10

0

10

20  FEM

 SBR in this paper

R
C

S
（

d
B

sm
）


 

Fig. 11. RCS of coated trihedral. 

 

Table 2 compares the computation time of the SBR 

method in this paper with the SBR method in [5], which 

uses kd-tree for the same model. It can be seen that the 

efficiency of the proposed ray tracing is much higher 

than that of the traditional acceleration method. 

 

Table 2: Computation time of coated trihedral 

Coated 

trihedral 

SBR in 

this paper 
SBR in [5] FEM 

Time 16 s 2174 s 1.8 h 

 

C. Cube coated with thick materials 

The RCS of a cube coated with thick materials was 

calculated. The size of the cube was 10 10 10    . 

Two different cases were considered. In one case, the 

cube was coated with a single layer of material, and the 

thickness was 0.5 , 9.5 1,  1r rj    . In the other 

case, the cube was coated with two-layer material, and 

the thickness of each layer was 0.5 , 9.5 1,  1r rj     

for the inner layer, and 2 1, 1r rj     for the outer 

layer. For both cases, the incident angle varied in the 

range of 0 90     for 0   ,   polarization, and 

the frequency was 3 GHz. The RCS results of the two 

cases are shown in Fig. 12. The reference results are from 

Fig. 10. RCS of the SLICY model.

Table 1: Computation time of the SLICY model
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B. Trihedral coated with thick material
A 20λ × 20λ × 20λ trihedral coated by a material

with a thickness of 1 λ was analyzed. The parameters
were εr = 3− j3, µr = 1. The incident angle varied in
the range of θ = 0◦−90◦ for ϕ = 45◦, θθ polarization,
and the frequency was 6 GHz. Figure 11 compares the
results of the SBR method in this paper with the FEM
in HFSS. The results are quite consistent, demonstrating
the accuracy of the SBR method in this paper when there
is material in the target.

Table 2 compares the computation time of the SBR
method in this paper with the SBR method in [5], which
uses kd-tree for the same model. It can be seen that the
efficiency of the proposed ray tracing is much higher
than that of the traditional acceleration method.

Table 2: Computation time of coated trihedral
Coated

trihedral
SBR in this

paper
SBR in

[5]
FEM

Time 16 s 2174 s 1.8 h
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remains efficient due to the powerful performance of 

Embree3 and the avoidance of overlapping grid 

processing. Furthermore, this multi-scene method is not 

limited by model shape and mesh quality. 
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C. Cube coated with thick materials
The RCS of a cube coated with thick materials was

calculated. The size of the cube was 10λ × 10λ × 10λ .
Two different cases were considered. In one case, the
cube was coated with a single layer of material, and the
thickness was 0.5λ , εr = 9.5− j1, µr = 1. In the other
case, the cube was coated with two-layer material, and
the thickness of each layer was 0.5λ , εr = 9.5− j1, µr =
1 for the inner layer, and εr = 2 − j1, µr = 1 for the
outer layer. For both cases, the incident angle varied in
the range of θ = 0◦− 90◦ for ϕ = 0◦, ϕϕ polarization,
and the frequency was 3 GHz. The RCS results of the
two cases are shown in Fig. 12. The reference results are
from the finite integration technique (FIT) in CST.

It can be seen from Fig. 12 that the results of the two
methods are consistent, indicating that the SBR method

the finite integration technique (FIT) in CST. 

It can be seen from Fig. 12 that the results of the two 

methods are consistent, indicating that the SBR method 

proposed in this paper is still accurate when dealing with 

multi-layer thick materials. Table 3 shows that the 

computation time of the proposed SBR method is 

significantly lower than that of the FIT. 
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Fig. 12. RCS of a coated cube. 
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Fig. 13. RCS of three-part combination. 

Fig. 13 shows the RCS results of the three-part 

combination. The reference results are from the SBR 

method in CST for case 1 and the FIT in CST for case 2. 

It can be observed that the results are quite consistent for 

both cases. The computation time is shown in Table 4. 

This example further illustrates the accuracy and high 

efficiency of the proposed SBR method when dealing 

with targets with non-uniform thickness materials since 

the SBR method in CST can only be used for conductor. 
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IV. CONCLUSION 
An accelerated ray tracing method is studied in this 

paper. The scattering of target with non-uniform 

thickness materials is calculated by ray tracing inside the 

materials. The Embree3 ray tracing library is introduced 

to improve the efficiency of ray tracing. Moreover, a 

multi-scene method is proposed to determine the 

intersection position, which avoids overlapping grid 

hidden processing. Experimental results demonstrate 

and validate that the proposed method has higher 

efficiency and stronger applicability than the existing 

algorithms. 
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D. Combination of conductor and materials
The fourth model was a combination of three parts.
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Fig. 13 shows the RCS results of the three-part 
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Figure 13 shows the RCS results of the three-part
combination. The reference results are from the SBR
method in CST for case 1 and the FIT in CST for case 2.
It can be observed that the results are quite consistent for
both cases. The computation time is shown in Table 4.
This example further illustrates the accuracy and high

Table 4: Computation time of combination model
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Case 1 Case 2

SBR SBR in
CST SBR FIT

Time 3 s 3 s 15 s 6.8 h
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efficiency of the proposed SBR method when dealing
with targets with non-uniform thickness materials since
the SBR method in CST can only be used for conductor.

IV. CONCLUSION
An accelerated ray tracing method is studied in this

paper. The scattering of target with non-uniform thick-
ness materials is calculated by ray tracing inside the
materials. The Embree3 ray tracing library is introduced
to improve the efficiency of ray tracing. Moreover, a
multi-scene method is proposed to determine the inter-
section position, which avoids overlapping grid hidden
processing. Experimental results demonstrate and vali-
date that the proposed method has higher efficiency and
stronger applicability than the existing algorithms.
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