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Abstract – Nowadays, in the field of electromagnetic
compatibility (EMC), numerical methods such as finite
element analysis are often used for simulation analysis.
These numerical methods take a long time to solve some
complex simulation problems, which is not conducive to
the optimal design of EMC. In particular, the intelligent
optimization algorithm that needs continuous iterative
calculation will not be realized because of the long opti-
mization time. This paper realizes the innovative appli-
cation of the uncertainty analysis method (Stochastic
Collocation Method) in EMC optimization design. Two
typical EMC optimization design problems, namely, the
prediction of cable crosstalk and the design of shielding
performance of metal boxes, are proposed to verify the
effectiveness of the optimization algorithm. Meanwhile,
its performance is compared with the classical intelligent
optimization algorithms such as genetic algorithms and
immune algorithms.

Index Terms – Efficient optimization design, elec-
tromagnetic compatibility, failure mechanism analysis,
intelligent optimization algorithms, stochastic colloca-
tion method.

I. INTRODUCTION
Since the existence of the subject of Electromag-

netic Compatibility (EMC), optimal design has been one
of its important research contents. Due to the widespread
randomness in the actual engineering environment, and
the strong nonlinearity of the electromagnetic process,
the optimization design of electromagnetic related per-
formance is very difficult. In the 1990s, the International
COMPUMAG Society presented the standard engineer-
ing problems, the Testing Electro-Magnetic Analysis
Methods (TEAM), which are used to verify the correct-
ness of electromagnetic field numerical analysis meth-
ods. Some of them involve optimization design about
electromagnetic calculation, for example, TEAM 22 cal-
culating example is the optimization design of supercon-
ducting magnetic energy storage systems, while TEAM

25 calculating example is the optimization design of
magnetic field alignment die for anisotropic bonded per-
manent magnets [1, 2].

Around 2008 till now, intelligent optimization
algorithms have been gradually introduced into EMC
optimization design and achieved great success, such
as particle swarm algorithm, genetic algorithm, immune
algorithm and so on [3–6]. When the analytical method is
used for forward prediction analysis or the single simula-
tion time is short, intelligent optimization algorithms can
get good optimization design results by virtue of their
superior search ability. However, when the forward sin-
gle simulation time is long, such as the complex EMC
problem with finite element analysis method, intelligent
optimization algorithms will lose competitiveness due to
the long simulation time. Nowadays, with the require-
ments of multi-physical field coupling, uncertainty anal-
ysis and so on, the complexity of finite element analysis
is increasing, which leads to the increase of various costs
of EMC simulation prediction. At this time, intelligent
optimization algorithms have no application.

Around 2014 till now, optimization algorithms
based on surrogate model is becoming more and more
popular in EMC simulation. The most representative
methods are the Kriging model [7–9] and the surface
response model based on radial basis function [10].
Their idea is to abstract the EMC prediction process into
a substitute model, and then use intelligent optimiza-
tion algorithms to optimize the agent model, so as to
obtain the optimal design results. However, these meth-
ods have a fatal defect, that is, there is no accurate con-
vergence judgment standard, which means the required
EMC deterministic simulation times can only depend
on the experience of the designers. When the number
of EMC simulations is too low, the accuracy of opti-
mal design is difficult to guarantee. When the number
of EMC simulations is too high, it will cause a serious
waste of computing resources.

Since 2013, uncertainty analysis is another hot
research direction in the EMC field, and many methods
have been successfully applied, such as the Monte Carlo
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Table 1: Comparison of performance of electromagnetic
optimization algorithms

Intelligent
Optimization
Algorithms

Surrogate
Models

SCM

Efficiency
calculation

Low High High

Convergence Poor Relatively
Poor

Good

Global
search

capability

Strong Weak Relatively
Strong

Suboptimal
search

capability

Weak Relatively
Strong

Strong

Method [11, 12], the Stochastic Reduced Order Mod-
els [13], and so on. There are many potential applica-
tions of uncertainty analysis methods, one of which is
the worst-case estimation. Its implementation process is
similar to the optimization process based on agent model.
Unlike intelligent optimization algorithm, the optimiza-
tion process based on uncertainty analysis method does
not need iteration, so it has higher computational effi-
ciency. Unlike the optimization process based on tradi-
tional agent model, uncertainty analysis has a strict con-
vergence judgment method [14, 15], so its calculation
efficiency and accuracy are guaranteed.

The Stochastic Collocation Method (SCM) is a non-
embedded uncertainty analysis method, which has the
characteristics of high calculation accuracy and high cal-
culation efficiency, so it is very suitable for the appli-
cation of optimum design [16–18]. Therefore, this paper
selects it as an extended application of uncertainty analy-
sis method in optimization design, and discusses its opti-
mum performance in detail.

Table 1 compares the electromagnetic optimum per-
formance of Intelligent optimization algorithms, Surro-
gate models and SCM, the SCM algorithm is shown to
be more innovative.

The structure of the paper is as follows: Principle
of the SCM applied to optimal design is presented in
Section II. Section III gives the limitation of the SCM
and its improvement scheme. Example of crosstalk pre-
diction in the cable cascade model is shown in Section
IV. Section V offers an example of shielding perfor-
mance design of metal box. Prospect of the proposed
optimization design method is discussed in Section VI.
Section VII summarizes this paper.

II. APPLICATION OF THE SCM IN
OPTIMIZATION PROCESS

For the uncertainty analysis methods, the inputs
of the EMC simulation are regarded as random

variables instead of deterministic constants. In
optimization process, the parameters to be optimized
also change within a certain range. If the range is treated
as a random variable with uniform distribution, the
optimization process can be equivalent to an uncertainty
analysis problem. The one-to-one correspondence
between the value range [Amin,Amax] and the random
variable ξi is shown as follows:

A(ξi) =
Amax +Amin

2
+

Amax −Amin

2
×ξi. (1)

Where ξi is the random variable obeying the uniform
distribution in the range of [−1,1].

According to the generalized polynomial chaos the-
ory, the SCM uses the Legendre polynomials to deal with
uncertainty analysis problems with random variables of
uniform distribution. The first terms of Legendre poly-
nomials in one dimension are as follows:

ϕ0 (ξi) = 1
ϕ1 (ξi) =

√
3ξi

ϕ2 (ξi) =
√

5
2

(
3ξ 2

i −1
)

ϕ3 (ξi) =
√

7
2

(
5ξ 3

i −3ξi
)
.

(2)

The principle formula of the SCM is as follows:
EMCSCM(ξ ) =
m1

∑
j1=1

· · ·
mn

∑
jn=1

EMC(a j1 , · · · ,a jn)Lag(a j1 , · · · ,a jn) .
(3)

Where
{

a j1 , · · · ,a jn
}

are collocation points, which
are the tensor product of zero points of chaotic polynomi-
als like formula (2). EMC(a j1 , · · · ,a jn) means the EMC
simulation result under the deterministic input parame-
ters

{
a j1 , · · · ,a jn

}
. Lag(a j1 , · · · ,a jn) is the calculation

results of Multi-dimensional Lagrange Interpolation on
collocation points, and EMCSCM(ξ ) is the final results
in the form of random variable polynomials . Finally,
the uncertainty analysis results are obtained by sam-
pling random variable polynomials EMCSCM(ξ ). The
results can be the expected values, the standard devia-
tion results, the probability density function results, the
worst-case estimation results and so on.

According to the above theory, the core idea of the
SCM is using the random variable polynomials to replace
the EMC simulation process, and then the agent model
EMCSCM(ξ ) can be sampled to obtain the uncertainty
analysis results. For the optimization problem, we can
also build a similar agent model, and then use the exhaus-
tive method to obtain the optimum results. As the SCM
has excellent computational efficiency, the establishment
of the agent model only requires several forward EMC
simulations, and the number of simulations is the number
of collocation points. Unlike the traditional intelligent
optimization algorithm, which requires repeated itera-
tions, the efficiency of the proposed optimization algo-
rithm is obviously better.
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In uncertainty analysis, how to judge the conver-
gence of the algorithm is an important topic, and the
Mean Equivalent Area Method (MEAM) is an effective
method to solve this problem [14, 15]. Back to this paper,
our question is how to judge the order of chaotic poly-
nomials in the SCM. In reference [14], there is a clear
solution for the SCM: By increasing the order of poly-
nomials, the MEAM is used to quantitatively calculate
the similarity between adjacent order uncertainty anal-
ysis results, and then determine the convergence order
of the SCM. This similarity must be in the “Excellent”
level, namely, the MEAM value is larger than 0.95 at this
time.

It is worth noting that the explicit convergence judg-
ment basis is the unique advantage of the uncertainty
analysis method different from the traditional agent
model optimum design method, which is an important
guarantee for the accuracy of optimum design and calcu-
lation efficiency.

The following is a typical multi-peak functional
problem to preliminarily verify the accuracy of the pro-
posed algorithm. Our goal is to identify its maximum
value:

f (x1,x2) = e− e
cos(2πx1)+cos(2πx2)

2 +2π

−2πe−0.2×
√

x2
1+x2

2

2 .

(4)

The value range of parameter x1 to be identified is
the range [4,8], and that of parameter x2 is the range
[8,10].

Zero points of the 5-th order Legendre polynomials
are applied, and the selection of the collocation points in
the form of tensor product is completed as follows:{

a j1 ,a j2

}
= {9.91,9.54,9.00,8.46,8.09}
⊗{7.81,7.08,6.00,4.92,4.19}.

(5)

The result of parameter identification calculated by
the SCM is {9.5453, 7.5097}. Substituting the result into
formula (4), the maximum predicted value is 7.4980.
The preliminary verification of the optimization effect is
shown in Fig. 1. There are 3000 blue points, which are
brought into formula (4) by the exhaustive method to ver-
ify the effect of parameter identification. The red star is
the optimization result given by the SCM, which is obvi-
ously in the region where the optimal value is located.

Sorting 3000 sampling results, the results of the top
10 maximum values are shown in Table 2. Obviously, it
verifies the effectiveness of the SCM in this optimization
example. In this example, the SCM only needs to per-
form 25 times forward calculations of the formula (4).
High computational efficiency of this proposed optimiza-
tion algorithm is due to high convergence of the general-
ized polynomial chaos theory.

Fig. 1. Preliminary verification of the SCM in optimiza-
tion effect.The red star is the maximum value position
identified by SCM, and the blue dots represent the func-
tion value position of all grid points. It can be seen
that the maximum value identified is consistent with the
actual situation.

Table 2: Top 10 maximum values given by the exhaustive
method

Order Result
1 f (9.5073,7.5437)=7.4972
2 f (9.5589,7.5444)=7.4908
3 f (9.5463,7.4601)=7.4873
4 f (9.5975,7.5079)=7.4769
5 f (9.5975,7.5047)=7.4767
6 f (9.5534,7.5886)=7.4745
7 f (9.4821,7.4179)=7.4627
8 f (9.4154,7.5513)=7.4571
9 f (9.4169,7.5576)=7.4561

10 f (9.4466,7.4286)=7.4556

III. LIMITATION OF THE SCM AND ITS
IMPROVEMENT SCHEME

In Section II, the effectiveness of the SCM in the
optimization process has been preliminarily verified,
especially its advantage of high computational efficiency.

However, choosing the collocation points in the
form of tensor products will seriously affect the com-
putational efficiency of the proposed optimization algo-
rithm. The number of the collocation points is exponen-
tial with the number of random variables, which leads to
the “curse of dimensionality”. In this case, when there
are many parameters to be identified, the times of the
required forward simulations will increase explosively,
and the SCM will lose its high computational efficiency.
This is the limitation of the SCM, which suggests that
the proposed optimization method is only applicable to a
small number of parameters to be identified.

In uncertainty analysis, the sensitivity of differ-
ent random variables can be predicted in advance in
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the pretreatment stage. The random variables with low
sensitivity can be replaced by the mean values to achieve
the purpose of dimension reduction. With dimensional-
ity the help of this idea, this section puts forward the
improvement scheme of the SCM into the optimization
process.

Firstly, the sensitivity calculation formula is as fol-
lows, which is proposed in reference [19]. It is a numer-
ical approximate calculation method based on Richard-
son extrapolation method under the difference scheme,
and has good nonlinear processing ability:

Si = 2×
yEMC

(
ξ1, · · ·ξi +

δi
2 · · · ,ξn

)
δi
2

−2×
yEMC

(
ξ1, · · ·ξi · · · ,ξn

)
δi
2

−
yEMC

(
ξ1, · · · ξ̄i +δi · · · ,ξn

)
δi

−
yEMC

(
ξ1 · · ·ξi · · · ,ξn

)
δi

,

(6)

where ξi is the mean value of the random variable ξi,
yEMC() indicates forward EMC simulation at the specific
collocation point. δi is a small perturbation, and its value
can be assumed to be max(ξi)−min(ξi)

2 .
The improvement scheme of the SCM in the opti-

mization process is as follows, and it divides the sensi-
tivity into different levels before SCM calculation.

Step 1, according to formula (1), all parameters to be
identified are transformed into random variables obeying
the uniform distribution.

Step 2, according to formula (6), the sensitivity of
every random variable is calculated, and it is used to clas-
sify random variables.

Step 3, random variables with low sensitivity are
replaced by their mean values, and the SCM is used to
carry out the optimization process on high sensitive ran-
dom variables.

Step 4, random variables with high sensitivity are
replaced by their optimal values calculated in the Step 3,
and the SCM is used to carry out the optimization pro-
cess a second time on low sensitivity random variables.

Step 5, the final results are the combination of all
optimization parameters in the Step 3 and the Step 4.

Obviously, in this improvement scheme, the SCM
optimizations are carried out twice for high sensitivity
parameters and low sensitivity parameters respectively,
so as to achieve the purpose of mitigating the “curse
of dimensionality”. For example, suppose that the num-
ber of parameters to be optimized is six, and the num-
ber of forward EMC simulations required for the normal

SCM optimization is 56 = 15625. Using the improve-
ment scheme, this number is reduced to 2× 53 = 250.
In the process of sensitivity calculation, some forward
EMC simulation times are added. Each random vari-
able corresponds to the simulation of two perturbation
quantities δi and δi

2 , plus the simulation at the mean

value
(

ξ1, · · ·ξi · · ·ξn

)
, so the number of increases times

is thirteen. The number of forward EMC simulations
required for the improvement scheme is 263.

It is worth noting that the sensitivity of random vari-
ables can be divided into several levels, not just high
level and low level, in order to improve the computa-
tional efficiency of the optimization process.

To sum up, the improvement scheme can effectively
avoid the impact of the “curse of dimensionality” limita-
tion of the SCM on the calculated efficiency of the opti-
mization algorithm, which broadens the scope of appli-
cation of the optimization algorithm proposed in this
paper.

IV. EXAMPLE OF CROSSTALK
PREDICTION IN THE CABLE CASCADE

MODEL
In order to describe the geometric randomness

caused by bundling or other factors, the cascaded trans-
mission line model is usually used to model the cables
[17]. According to the electromagnetic field theory, the
closer the distance between cables, the stronger the elec-
tromagnetic coupling effect, and the greater the crosstalk
between lines. According to this theorem, an optimiza-
tion problem with known optimization results can be
constructed through a cascade model, in order to ver-
ify the effectiveness of the proposed algorithm in this
paper.

The schematic diagram of the cable cascade model
is shown in Fig. 2. Two cables are laid flat on the ground
aluminum plate, which are cascaded by six uniform
transmission line models. The pink line is an interference
emission line with a diameter of 0.07 m. The green line is
the interference receiving line with a diameter of 0.09 m.
According to the coordinate axis direction in Fig. 2, in

Fig. 2. Schematic diagram of the cable cascade model.
The pink cable has electromagnetic interference, while
the green one is the disturbed cable.
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this example, the geometric position of the cable can be
changed only in the x-axis direction.

Figure 3 shows the circuit schematic diagram of
the crosstalk prediction problem. Both cables are 1m
long and all load impedances are 50 Ω. The electromag-
netic interference source is a sinusoidal excitation source
with the amplitude of 1V and the frequency of 40 MHz.
Ucrosstalk refers to the voltage crosstalk amplitude at the
load end of the interference receiving line. The forward
EMC simulation solver is the Finite Difference Time
Domain method. The electrical parameters in the trans-
mission line model are given by the image method and
the electric axis method. Obviously, the ground heights
of the two cables are their radius, namely 0.045 m and
0.035 m. Assume that the x-axis coordinates of the six
transmission lines of the interference emission line are
fixed, which are {2.5 m, 5.5 m, 5.7 m, 8.2 m, 6.9 m,
2.8 m}. The x-axis coordinates of the six transmission
lines of the interference receiving line are parameters to
be optimized. The optimization objective is to maximize
the crosstalk value Ucrosstalk . More information about
crosstalk calculation is consistent with reference [17].

Fig. 3. Schematic diagram of the cable cascade model.
The pink cable has electromagnetic interference, while
the green one is the disturbed cable.

The value range of parameters to be optimized is
from 1 m to 10 m. Obviously, the answer to this opti-
mization problem is known. That is, when the two cables
coincide, the crosstalk value is the largest, so the answer
to the optimal design is {2.5 m, 5.5 m, 5.7 m, 8.2 m,
6.9 m, 2.8 m}. At this time, the crosstalk value is
0.0163 V. Since the cables in the example are solid (with
radius), they cannot be completely coincident. There-
fore, when calculating the distance between cables in the
image method, when it is less than the sum of the radius
of two cables 0.045 + 0.035 = 0.08 m, the distance is
directly equal to 0.08 m.

This article primarily aims to identify the optimal
value of the simulation model, which is independent of
the actual test results; therefore, no corresponding test
results are provided.

Using the improved optimization algorithm men-
tioned in Section III, the optimization result is
{2.5869 m, 5.5014 m, 5.6186 m, 8.0243 m, 7.4948 m,
2.7990 m}. The crosstalk value under this result is
0.0056 V.

The genetic algorithm and the immune algorithm
are compared to verify the performance of the pro-
posed algorithm. In the immune algorithm, 40 chromo-
some individuals are used for three generations of evo-
lution, and the total number of forward EMC simula-
tions required is 883. The final optimization result of the
immune algorithm is {9.4595 m, 3.8242 m, 5.6702 m,
8.2771 m, 6.9049 m, 2.7770 m}, and its crosstalk value
is 0.0037 V. The number of forward EMC simulation
required by the SCM is only 263, less than one-third of
883, but its optimization result is better than that of the
immune algorithm.

For the genetic algorithm, 60 chromosomes are used
for 20 iterations, and the results are shown in Table 3.
The final identification result of the SCM is better than
that of the first 14 generations of the genetic algo-
rithm. Similarly, the number of forward EMC simula-
tions required is less than one-third of that of the genetic
algorithm.

The intelligent optimization algorithm needs
to obtain the optimal solution through repeated
iterative evolution, while the SCM only completes

Table 3: Optimization results of genetic algorithm in
crosstalk prediction example

Iteration
Times

Simulation
Times

Crosstalk Value

1 120 0.0011V
2 180 0.0011V
3 240 0.0017V
4 300 0.0017V
5 360 0.0023V
6 420 0.0023V
7 480 0.0024V
8 540 0.0032V
9 600 0.0032V

10 660 0.0032V
11 720 0.0033V
12 780 0.0034V
13 840 0.0040V
14 900 0.0049V
15 960 0.0059V
16 1020 0.0062V
17 1080 0.0063V
18 1140 0.0063V
19 1200 0.0063V
20 1260 0.0063V
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the identification through a single operation without
an iterative process. Therefore, the SCM can quickly
obtain the local optimal solution because of its high
convergence, but its ability to obtain the global optimal
solution is obviously inferior to the intelligent optimiza-
tion algorithm. Table 3 shows the ability of the genetic
algorithm to seek the global optimal solution in the
process of continuous iteration. It means that the SCM is
more suitable for optimization problems where a single
forward EMC simulation takes too long. The reason is
that the intelligent optimization algorithm cannot be
used because of its low computational efficiency. When
the single EMC simulation time is short, the intelligent
optimization algorithm is still the first choice.

V. EXAMPLE OF SHIELDING
PERFORMANCE DESIGN OF METAL BOX

In order to verify the practicability of the proposed
algorithm, this chapter applies it to the electromagnetic
protection design example of metal box, and its design
details are shown in Fig. 4. The size of the anechoic
chamber is 3.9× 3.9× 3.3m3. The shielding material is
carbon-loaded foam with low conductivity. There is a
biconical antenna at the center of the darkroom, and this
position is also assumed to be the coordinate origin. The
details of the coordinate axis are also shown on the right
side of Fig. 4. The antenna emits the spherical wave at
the frequency of 10 MHz, other settings of the model are
consistent with those shown in reference [20].

Fig. 4. Schematic diagram of shielding performance
design. The green lines represent the strip cooling holes,
which are supposed to be facing away from the antenna
to achieve the best electromagnetic shielding effect.

There is an aluminum box 0.8 m away from the right
wall of the anechoic chamber, and this position is fixed.
The size of the box is 0.6×0.6×0.6m3 with a thickness
of 0.02 m. There is an electromagnetic-sensitive device

in the middle of the aluminum box. Therefore, the elec-
tric field strength at this location needs to be predicted,
and the value should be minimized in the design process.

Similarly, there are six parameters to be optimized
in this example. The first two parameters are the posi-
tion parameters of the aluminum box in the x-axis
and z-axis directions. Take the center point (pink test
point) of the aluminum box in Fig. 4 as the reference
point, and the value ranges of their coordinates are both
[−0.8 m, 0.8 m].

There are three cooling holes on the right side of
the metal box, and its enlarged view is shown in Fig. 5.
The lengths of the three holes are the parameters to be
identified, and their value ranges are [0.36 m,0.44 m].
The width of the holes is assumed to be 0.01 m. The
last parameter to be identified is the distance between the
hole at both ends and the hole in the middle. It is assumed
that the distance between the center and both ends is
the same, that is, h1 = h2. Its value range is [0.06 m,
0.1 m]. Similarly, this example exclusively presents the
optimization results derived from the simulation model.

Fig. 5. Enlarged view of position information of cooling
holes in the aluminum box. The length and relative posi-
tion of the cooling holes are parameters to be optimized.

Using the optimization algorithm proposed in
Section III, third order Legendre polynomials are
selected, so the number of forward EMC simulations is
2× 33 + 2× 6+ 1 = 67. The determination method of
the order will be discussed in the next section. The final
optimization result of the SCM is {-0.7991 m, 0.5456 m,
0.3970 m, 0.3600 m, 0.3609 m, 0.0609 m}, and the
electric field strength value at this time is 3.0765 ×
10−5 V/ m.

Table 4 shows the comparative optimization results
of the genetic algorithm. A total of 60 chromosomes
are used for 10 iterations. The SCM identification result
is better than the results of the first two generations.
In this case, the number of forward EMC simulations
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Table 4: Optimization results of genetic algorithm in
crosstalk prediction example

Iteration
Times

Simulation
Times

Crosstalk Value

1 120 3.5658×10−5 V/m
2 180 3.3418×10−5 V/m
3 240 2.4779×10−5 V/m
4 300 2.4779×10−5 V/m
5 360 2.4779×10−5 V/m
6 420 2.4779×10−5 V/m
7 480 2.4779×10−5 V/m
8 540 2.4779×10−5 V/m
9 600 2.4779×10−5 V/m
10 660 2.4779×10−5 V/m

required in the SCM is less than one-third of that of
the genetic algorithm. However, after three generations
of iteration, the genetic algorithm can quickly identify
the global optimal solution. Therefore, the conclusion
obtained through comparison is consistent with that in
Section IV, that is, the SCM is better at finding the sub-
optimal solution quickly, while the genetic algorithm is
inefficient but can find the global optimal solution.

It is worth noting that the genetic algorithm has con-
verged in the third generation, but it cannot be deter-
mined that it has converged until the tenth generation.
Therefore, in the practical application, the optimization
design method based on the SCM has greater advantages
in computational efficiency.

In order to further demonstrate the accuracy of the
SCM, the optimization results of the exhaustive method
are proposed for comparison. Sorting 500 sampling
results, the optimization results of the top five minimum
electric field strength values are shown in Table 5. Obvi-
ously, the optimization result given by the SCM is better

Table 5: Optimization results of genetic algorithm in
crosstalk prediction example
Order Parameters [m] Electric Field

Intensity
1 −0.7991, −0.3189,

0.3757, 0.3908, 0.4276,
0.0888

3.3811×10−5 V/m

2 0.7845, −0.2846, 0.3799,
0.3733, 0.3796, 0.0972

3.4548×10−5 V/m

3 0.7131, −0.0191, 0.3720,
0.4344, 0.3800, 0.0964

3.5168×10−5 V/m

4 0.7946, 0.5739, 0.4131,
0.3665, 0.3848, 0.0743

3.5791×10−5 V/m

5 0.6650, 0.5878, 0.4023,
0.4335, 0.4123, 0.0958

3.5996×10−5 V/m

than 500 sampling results in the exhaustive method. This
is enough to prove the accuracy of the SCM in the opti-
mization process.

VI. PROSPECT OF THE PROPOSED
OPTIMIZATION DESIGN METHOD

Prospect 1: Relationship between the number of sen-
sitivity categories and the performance of optimiza-
tion algorithm.

In this paper, sensitivity is only divided into high
level and low level, but it can be divided into many
categories. In the future work, especially in the multi-
parameter optimization design problem, how to select
the number of levels scientifically and reasonably will
be discussed. Among them, the relationship between the
number of the levels and the accuracy of the SCM, and
how to allocate this number to maximize the calculation
efficiency of the SCM are both worth discussing.

Prospect 2: Application of the proposed optimization
algorithm in robust optimal design.

Due to the existence of manufacturing error and ran-
domness in the actual engineering environment, the sub-
optimal solution with low sensitivity is sometimes more
practical than the optimal solution with high sensitiv-
ity. Therefore, the concept of robust optimal design has
been proposed in recent years [21, 22]. The optimiza-
tion algorithm proposed in this paper can quickly find the
suboptimal solution, so it is expected to be well applied
in robust optimization design, especially in some cases
where online identification is required.

VII. CONCLUSION
In this paper, the SCM, which is originally an uncer-

tainty analysis method, is creatively applied to EMC
optimization design to solve low computational effi-
ciency problems of traditional intelligent optimization
algorithms when single forward simulation takes a long
time. Combined with the sensitivity approximate calcu-
lation method based on the Richardson extrapolation, an
improved optimization scheme considering multiple sen-
sitivity levels is proposed to avoid the adverse impact of
the “curse of dimensionality” problem of the SCM with
the optimum performance. Based on professional back-
ground of the EMC, two typical examples are designed.
They are crosstalk prediction of cable cascade model and
shielding performance design of metal box. The optimal
design results of the SCM are quantitatively compared
with those of genetic algorithm and immune algorithm,
and the following conclusions are drawn. The SCM can
quickly find the sub optimal solution or locally optimal
solution. On the premise that it can only carry out finite
forward simulations, the optimum performance of the
SCM is better than that of the intelligent optimization
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algorithm. However, the search ability of the SCM is not
as good as that of intelligent optimization algorithm, so
when the time of single forward simulation is short or the
cost of single simulation is small, intelligent optimiza-
tion algorithm is still a better choice.

REFERENCES
[1] C. Salvatore, L. Antonino, and F. F. Riganti,

“TEAM problem 22 approached by a hybrid arti-
fificial life method,” COMPEL The International
Journal for Computation and Mathematics in Elec-
trical and Electronic Engineering, vol. 31, no. 3,
pp. 816-826, May 2012.

[2] R. Jauregui, M. Aragon, and F. Silva, “The role of
uncertainty in the feature selective validation (FSV)
method,” vol. 55, no. 1, pp. 217-220, Feb. 2013.

[3] K. R. Ali, Y. Shiyou, and K. Shafiullah, “A
multimodal improved particle swarm optimization
for high dimensional problems in electromagnetic
devices,” Energies, vol. 14, no. 24, p. 8575, Dec.
2021.

[4] O. U. Rehman and S. Yang, “A quantum particle
swarm optimizer with enhanced strategy for global
optimization of electromagnetic devices,” IEEE
Transactions on Magnetics, vol. 55, no. 8, pp. 1-4,
May 2019.

[5] T. Zheng and S. Yang, “A robust methodology for
design optimizations of electromagnetic devices
under uncertainties,” International Journal of
Applied Electromagnetics and Mechanics, vol. 59,
no. 1, pp. 71-78, Mar. 2019.

[6] S. An and L. Liu, “A preference-based physical
programming method for multi-objective designs
of electromagnetic devices,” EEE Transactions on
Magnetics, vol. 56, no. 3, pp. 1-4, Mar. 2020.

[7] A. Bingler, S. Bilicz, and M. Csörnyei, “Global
sensitivity analysis using a Kriging metamodel
for EM design problems with functional outputs,”
IEEE Transactions on Magnetics, vol. 58, no. 9,
pp. 1-4, Apr. 2022.

[8] Y. Li and S. Xiao, “A dual Kriging approach with
improved points selection algorithm for memory
efficient surrogate optimization in electromagnet-
ics,” IEEE Transactions on Magnetics, vol. 52,
no. 3, pp. 1-4, Mar. 2016.

[9] J. Bai, B. Hu, and Z. Xue, “EMC uncertainty
simulation method based on improved Kriging
model,” IEEE Letters on Electromagnetic Compat-
ibility Practice and Applications, vol. 5, no. 4, pp.
127-130, July 2023.

[10] T. Akhtar and C. A. Shoemaker, “Multi objec-
tive optimization of computationally expensive
multi-modal functions with RBF surrogates
and multi-rule selection,” Journal of Global
Optimization, vol. 64, no. 1, pp. 17-32, Jan. 2016.

[11] G. Spadacini and S. A. Pignari, “Numerical assess-
ment of radiated susceptibility of twisted-wire
pairs with random nonuniform twisting,” IEEE
Transactions on Electromagnetic Compatibility,
vol. 55, no. 5, pp. 956-964, Oct. 2013.

[12] C. Jullien and P. Besnier, “Advanced modeling of
crosstalk between an unshielded twisted pair cable
and an unshielded wire above a ground plane,”
IEEE Transactions on Electromagnetic Compati-
bility, vol. 55, no. 1, pp. 183-194, Feb. 2013.

[13] Z. Fei and Y. Huang, “Uncertainty quantification of
crosstalk using stochastic reduced order models,”
IEEE Transactions on Electromagnetic Compati-
bility, vol. 59, no. 1, pp. 228-239, Aug. 2017.

[14] J. Bai and L. Wang, “Validity evaluation of the
uncertain EMC simulation results,” IEEE Trans-
actions on Electromagnetic Compatibility, vol. 59,
no. 3, pp. 797-804, June 2017.

[15] J. Bai and J. Sun, “Convergence determination
of EMC uncertainty simulation based on the
improved mean equivalent area method,” Applied
Computational Electromagnetics Society (ACES)
Journal, vol. 36, no. 11, pp. 1446-1452, Dec. 2021.

[16] P. Manfredi and D. V. Ginste, “Stochastic transmis-
sion line analysis via Polynomial Chaos Methods:
An overview,” IEEE Electromagnetic Compatibil-
ity Magazine, vol. 6, no. 3, pp. 77-84, Nov. 2017.

[17] J. Bai and G. Zhang, “Performance comparison of
the SGM and the SCM in EMC simulation,” IEEE
Transactions on Electromagnetic Compatibility,
vol. 58, no. 6, pp. 1739-1746, Dec. 2016.

[18] J. Bai and G. Zhang, “Dimension-reduced sparse
grid strategy for a stochastic collocation method
in EMC software,” IEEE Transactions on Elec-
tromagnetic Compatibility, vol. 60, no. 1, pp.
218-224, Feb. 2018.

[19] J. Bai and G. Zhang, “Uncertainty analysis in
EMC simulation based on improved Method of
Moments,” IEEE Transactions on Electromagnetic
Compatibility, vol. 31, no. 1, pp. 66-71, Dec. 2021.

[20] COMSOL. (2023, Oct.) Anechoic electromagnetic
wave absorption [Online]. Available: http://cn.
comsol.com/model/anechoicchamber-absorbing-
electromagnetic-waves-38681

[21] Z. Ren and J. Ma, “Managing uncertainties of
permanent magnet synchronous machine by
adaptive Kriging assisted weight index Monte
Carlo simulation method,” IEEE Transactions on
Electromagnetic Compatibility, vol. 35, no. 4, pp.
2162-2169, Dec. 2020.

[22] M. Xia and D. Sun, “A novel methodology for
robust topology optimization considering manu-
facturing errors and topology deviations,” IEEE
Transactions on Electromagnetic Compatibility,
vol. 58, no. 9, pp. 1-4, Sep. 2022.

http://cn.comsol.com/model/anechoicchamber-absorbing
http://cn.comsol.com/model/anechoicchamber-absorbing


541 ACES JOURNAL, Vol. 39, No. 06, June 2024

Xiaobing Niu received the B.S.
degree in electrical engineering and
the M.E. degree in electrical drive
and its automation from Dalian Mar-
itime University, Dalian, China, in
1991 and 1998, respectively. He
is currently an Associate Professor
with the School of Marine Electri-

cal Engineering, Dalian Maritime University. His current
research interests include motor control theory and its
applications, energy transformation and its EMC prob-
lem.

Shenglin Liu received the B.S.
degree in marine electronic and
electrical engineering from Dalian
Maritime University, Dalian, China,
in 2015. He is currently working
toward the M.E. degree in Dalian
Maritime University. His current
research interests include modular

multilevel converters control theory with applications to
high voltage direct current and design of power elec-
tronic interfaces.

Runze Qiu received the B.S.
degree in electrical engineering and
automation from Hohai Univer-
sity, Nanjing, China, in 2022.He
is currently pursuing the master’s
degree in electrical engineering at
Dalian Maritime University, Dalian,
China.His current research interests

include modular multilevel converters in marine electri-
cal systems, and transmission systems for offshore wind
power.


	INTRODUCTION
	APPLICATION OF THE SCM IN OPTIMIZATION PROCESS
	LIMITATION OF THE SCM AND ITS IMPROVEMENT SCHEME
	EXAMPLE OF CROSSTALK PREDICTION IN THE CABLE CASCADE MODEL
	EXAMPLE OF SHIELDING PERFORMANCE DESIGN OF METAL BOX
	PROSPECT OF THE PROPOSED OPTIMIZATION DESIGN METHOD
	CONCLUSION

