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Abstract – As the in-depth study of uncertainty analy-
sis in electromagnetic compatibility (EMC) progresses,
the surrogate model-based uncertainty analysis method
has increasingly become a popular research topic. The
Kriging model is one of the classical surrogate models
and plays an important role in EMC uncertainty anal-
ysis. However, an in-depth study of the Kriging sam-
pling strategy is missing in the existing research on
uncertainty analysis. The traditional sampling strategy
employs Latin hypercube sampling (LHS) to select all
sampling points at once, which makes the computational
efficiency and accuracy of the surrogate model uncon-
trollable. This paper proposes a strategy that applies least
squares support vector machine regression (LSSVR) to
assist Kriging in sampling, significantly improving the
efficiency and accuracy of the Kriging surrogate model.

Index Terms – Electromagnetic compatibility (EMC),
Kriging, least squares support vector machine regression
(LSSVR), surrogate model, uncertainty analysis method.

I. INTRODUCTION
In recent years, uncertainty analysis has emerged as

a popular research topic in electromagnetic compatibil-
ity (EMC). By treating the input parameters in numer-
ical simulations as uncertain parameters (e.g. random
variables), the reliability and practicality of EMC sim-
ulation models can be significantly enhanced. Typically,
uncertainty in simulation inputs arises from various fac-
tors, including geometric positional uncertainty due to
motion or vibration, dimensional uncertainty due to man-
ufacturing tolerances, and cognitive uncertainty due to
researcher cognitive deficiencies.

The Monte Carlo method (MCM) is widely rec-
ognized as the most accurate method for uncertainty
analysis [1]. It describes the randomness of the simu-
lation inputs by exhaustively enumerating the sampling

points. Because MCM considers all possible scenarios, it
aligns well with the researcher’s understanding of uncer-
tainty. Therefore, MCM is suitable for use as a stan-
dard in theoretical studies to validate the accuracy of
other uncertainty analysis methods. While MCM offers
the advantages of high computational accuracy and ease
of implementation, its poor convergence leads to sig-
nificantly low computational efficiency, rendering it less
competitive in practical engineering applications [2].

In 2013, a research team at Politecnico di Torino in
Italy introduced the generalized polynomial chaos (GPC)
theory to EMC simulation and proposed the stochastic
Galerkin method (SGM) [3]. Another numerical analysis
method based on GPC theory is the stochastic colloca-
tion method (SCM) [4]. Both methods are computation-
ally accurate and efficient. SGM is an embedded uncer-
tainty analysis method, while SCM is a non-embedded
uncertainty analysis method. With the continuous adop-
tion of various new finite element simulation techniques
in computer science, EMC design increasingly relies on
commercial electromagnetic simulation software. This
trend has made non-embedded simulation modes a pri-
mary focus of uncertainty analysis research in the EMC
field. Consequently, the applicability of SCM exceeds
that of SGM. However, SCM suffers from the seri-
ous problem of the dimensional curse of dimensional-
ity [5] and is not applicable when dealing with a large
number of random variables. The Method of Moments
(MoM) [6] and the Stochastic Reduced Order Mod-
els (SROM) [7] are superior non-embedded uncertainty
analysis methods for addressing the dimensional curse
of dimensionality problem. However, MoM and SROM
are suitable for EMC simulation solvers with good lin-
earity. When the solver exhibits high nonlinearity, the
complexity of uncertainty analysis results increases sig-
nificantly, posing a risk of failure for both MoM and
SROM.

Submitted On: July 21, 2024
Accepted On: September 13, 2024

https://doi.org/10.13052/2024.ACES.J.390705
1054-4887 © ACES

https://doi.org/10.13052/2024.ACES.J.390705


615 ACES JOURNAL, Vol. 39, No. 07, July 2024

Since 2020, uncertainty analysis methods based on
surrogate models have been gradually proposed [8]. The
principle is to treat the surrogate model as a black
box and train it using deterministic simulation results
repeatedly. Subsequently, a large number of samples of
input randomness are taken to obtain the final results.
Uncertainty analysis methods based on surrogate mod-
els can be considered as highly effective non-embedded
uncertainty analysis methods. Among these, the Kriging
model is a typical surrogate model used for uncertainty
analysis [9,10]. It is suitable for solvers with high non-
linearity and does not encounter the issue of the dimen-
sional curse of dimensionality. The traditional Kriging
model employs a static Latin hypercube sampling (LHS)
to select sampling points all at once [11], lacking the
ability to actively adjust the sampling points accord-
ing to specific characteristics of different situations. To
enhance the accuracy and computational efficiency of
the Kriging model in EMC simulation uncertainty anal-
ysis, this paper proposes an active sampling strategy
that uses least squares support vector machine regression
(LSSVR) to assist Kriging sampling.

The structure of this paper is as follows. Two tradi-
tional methods of uncertainty analysis, MCM and Krig-
ing, are presented in section II. In section III, LSSVR is
introduced and applied to improve the Kriging model.
The improved uncertainty analysis method is applied
to the parallel cable crosstalk example in section IV.
Section V summarizes this paper.

II. TRADITIONAL METHODS OF
UNCERTAINTY ANALYSIS

In uncertainty analysis, the random variable model
is typically used to describe the uncertainty of random
events:

ζ =
{

ζ1,ζ2, ...,ζ j, ...,ζN
}
, (1)

where ζ j is a random variable, ζ is a vector of random
variables, and N is the number of random variables.

A. Monte Carlo method
MCM is grounded in the weak law of large num-

bers, which uses exhaustive sampling points S1 =
[X1,X2, · · · , Xn] to characterize a random variable ζ ,
encompassing all possible cases. Where the number of
sampling points is assumed to be n, and each sampling
point Xi consists of an N-dimensional vector:

Xi = {Xi(1),Xi(2), ...,Xi( j), ...,Xi(N)} , (2)
where Xi( j) are all determined constant values that cor-
respond to ζ j in equation (1).

Deterministic EMC simulation is performed at each
sampling point Xi:

Yi = EMC [Xi], (3)
where EMC [ ] represents the single deterministic EMC
simulation process and Yi is the EMC simulation result.

Y = [Y1,Y2, · · · ,Yn] is the set of EMC simulation results,
i.e., MCM-based simulation results.

The simulation results are analyzed statistically to
derive uncertainty analysis results such as expectation,
standard deviation, worst-case estimates, and probability
density curves. Algorithm 1 shows the process of writing
the code for the uncertainty analysis method based on
MCM. The uncertainty analysis results of MCM are used
as a reference standard in this paper.

Algorithm 1 MCM
1: Exhaustive sampling points S1 (n)
2: for (do i=1:n)
3: EMC simulation Yi = EMC [Xi]
4: end for
5: EMC simulation result set Y = [Y1,Y2, · · · ,Yn]
6: Results of uncertainty analysis

B. Traditional Kriging model
Surrogate models significantly enhance the compu-

tational efficiency of EMC uncertainty analysis. Among
these methods, the Kriging model, originating from geo-
statistics, is a prominent example. This section out-
lines the traditional Kriging-based uncertainty analysis
method.

The traditional Kriging model uses LHS to select
all sampling points S2 = [x1,x2, · · · , xL] simultaneously,
with the number of sampling points denoted as L,
which is significantly smaller than n. xi is also an
N-dimensional constant value vector data. Determinis-
tic EMC simulations are performed at each sampling
point xi:

yi = EMC [xi]. (4)

The training set {xi,yi}L
i=1 is obtained, which is

used to train the surrogate model. The Kriging model
is an interpolation model that computes the interpola-
tion result as a linear combination of the known sample
response values:

MKriging =
L

∑
i=1

wiyi, (5)

where w= [w1,w2 · · ·wL]
T represents the weighting coef-

ficient, and the response value at any point in the design
space can be obtained by specifying the value of the
weighting coefficient w. The detailed procedure for com-
puting the weighting factor w is provided in [12]. The
process of writing the code for the uncertainty anal-
ysis method based on traditional Kriging is shown in
Algorithm 2.
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Algorithm 2 Traditional Kriging
1: Exhaustive sampling points S1 (n)
2: Sampling points S2 (L) in LHS screening S1
3: for (do i=1:L)
4: EMC simulation yi = EMC [xi]
5: end for
6: Training set {xi,yi}L

i=1
7: Construction of MKriging
8: Bring S1 into MKriging
9: Results of uncertainty analysis

The Kriging-based uncertainty analysis method
requires only deterministic EMC simulation for L sam-
ples, which is obviously much more computationally
efficient than MCM.

The sampling strategy of the traditional Kriging
model is to select sample points at one time by using
LHS, which aims to make the sample points evenly dis-
tributed and cover the whole sampling space. However,
it uses random sampling for sampling, which is a pas-
sive sampling method. It lacks the initiative to accurately
select sample points that make the surrogate model more
accurate. It also wastes a lot of computational resources
when a single simulation takes a long time.

III. IMPROVED KRIGING BASED ON
LSSVR

LSSVR is a widely used surrogate model in EMC
uncertainty analysis, offering fast training speed, good
generalization performance, and a strong ability to fit
nonlinear functions [13]. This section presents the appli-
cation of LSSVR to assist Kriging in selecting sampling
points, introducing a highly proactive sequential sam-
pling strategy that significantly enhances the accuracy
and efficiency of the Kriging-based uncertainty analy-
sis method. This combined approach is referred to as
Kriging-LSSVR.

Figure 1 illustrates the structure of LSSVR, which
maps the input space to a high-dimensional feature space
through a nonlinear mapping φ (•). The optimal linear
function is then identified in this feature space.

Fig. 1. Structure of the LSSVR.

The dimension of the high-dimensional feature
space may be infinite, and the specific expression of
the nonlinear mapping φ (•) is usually unknown. Thus,
the kernel function technique in equation (6) is used to
simplify the computation significantly by replacing the
direct computation of the nonlinear mapping with the
inner product of the nonlinear mapping:

K(xi,x j) = φ(xi)•φ(x j), (6)
where K(xi,x j) is the kernel function.

According to [13], LSSVR based on the Gaussian
kernel function K(xi,x j) = exp(− ∥ xi − x j ∥2 /ρ2) per-
forms best in uncertainty analysis. Therefore, the Gaus-
sian kernel function is chosen in this paper.

In this paper, LSSVR also selects sample points
using LHS, and Kriging-LSSVR requires the same initial
sample space for both Kriging and LSSVR. So LSSVR
is trained with the training set {xi,yi}L

i=1 obtained in the
previous section to obtain the LSSVR model of equa-
tion (7) [14]:

MLSSV R = µ
T

φ (x)+b =
L

∑
i=1

αiK (xi,x)+b, (7)

where µ = ∑
L
i=1 αiφ(xi), αi are scalar coefficients, and b

is the bias term.
The flowchart for applying LSSVR to improve Krig-

ing for uncertainty analysis is shown in Fig. 2. The code
writing process is described in Algorithm 3. First, the
initial sample space S0 = [x1,x2, · · · , xq] is obtained by
LHS, and it is worth noting that q is very small, even less
than one-fourth of L mentioned in the previous section.
The deterministic EMC simulation described in equa-
tion (3) is performed on the initial sample space S0 to
obtain the deterministic simulation result yi, which then
produces the training set {xi,yi}q

i=1. Then, the Kriging
model MKriging and the LSSVR model MLSSV R are con-
structed based on the training set. YKriging is the response
value estimated by MKriging on the exhaustive sample
space S1 and is a vector of length n. YLSSV R is the
response value estimated by MLSSV R.

Statistics are performed on YKriging and YLSSV R to
obtain the probability density curves. These curves are
then transformed into cumulative distribution function
(CDF) curves, and the K-S distance D between the CDF
curves of Kriging and LSSVR is calculated. The K-S dis-
tance is the test statistic of the Kolmogorov-Smirnov test
[15]. The statistic D is determined by the maximum ver-
tical deviation between the two curves of the CDF of the
data set:

D = max(|CDF1(x)−CDF2(x)|) , (8)
where CDF1(x) is the proportion of values in the Kriging
dataset that are less than or equal to x, and CDF2(x) is
the proportion of values in the LSSVR dataset that are
less than or equal to x. The larger the D, the greater the
difference between the two CDF curves.
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Fig. 2. Flowchart of Kriging-LSSVR.

In this paper, the K-S distance D is used as a crite-
rion to select sampling points actively. If the K-S dis-
tance exceeds 0.05, the difference between the CDF
curves is considered large, indicating that the current
sample space does not meet the accuracy requirements
of the Kriging-LSSVR model. Find the sample point xi
corresponding to the value with the largest difference
between YKriging and YLSSV R, and add it to the initial sam-
ple space S0. The purpose of this sequential sampling
strategy is to identify the point with the greatest differ-
ence between the two surrogate models, achieve uniform
coverage of the sampling points in the sample space with
maximum efficiency, and thereby enhance the accuracy
and efficiency of the uncertainty analysis. As the sample
space S0 expands, the K-S distance D decreases. When
D is less than or equal to 0.05, the final sample space S is
output. The EMC simulation result of sample space S is
the training set. The final Kriging model MKriging is con-
structed based on the training set. Finally, the response
value YKriging is statistically analyzed to obtain the uncer-
tainty analysis results based on Kriging-LSSVR, such as
expectation, standard deviation, worst-case estimate, and
probability density curve.

Algorithm 3 Kriging-LSSVR
1: Exhaustive sampling points S1 (n)
2: LHS selects the initial sample space S0 (q)
3: for (do i=1:q)
4: EMC simulation yi = EMC [xi]
5: end for
6: Initial training set {xi,yi}q

i=1
7: Construction of MKriging and MLSSV R

8: Bring S1 into MKriging and MLSSV R
9: Statistical YKriging and YLSSV R
10: Generate PDF curves
11: PDF ⇒ CDF
12: Calculate the K-S distance D
13: while D > 0.05 do
14: Find xi and add it to S0
15: yi = EMC [xi]
16: Construction of MKriging and MLSSV R
17: Bring S1 into MKriging and MLSSV R
18: Statistical YKriging and YLSSV R
19: Generate PDF curves
20: PDF ⇒ CDF
21: Calculate the K-S distance D
22: end while
23: Output the final sample space S
24: Determining the final Kriging model MKriging
25: Bring S1 into MKriging
26: Results of uncertainty analysis

IV. EXAMPLE OF APPLICATION
The Kriging-LSSVR method proposed in section

III is applied to the parallel cable crosstalk example
shown in Fig. 3 to verify its advantages over conventional
Kriging. In practical engineering, uncertainties in cables
include geometric positional uncertainties due to motion
or vibration, and dimensional uncertainties due to manu-
facturing tolerances. Predicting crosstalk between cables
considering these uncertainties is a typical EMC prob-
lem. Parallel cables are the most fundamental example
of this, as discussed in [1, 16].
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Fig. 3. Parallel cable crosstalk example schematic.

Two cables are parallel to each other and both have a
length of 1 m. The horizontal distance between them is s.
One of them serves as the receptor wire and is grounded
to a 50 Ω load at each end. The other wire, the generator
wire, needs to be connected not only to a 50 Ω load, but
also to an excitation source Em with an amplitude of 1 V.
The height of the generator wire is h1 and the diameter is
da. The height of the receptor wire is h2 and the diameter
is db.

A. The proposed method is applied to the example
with two random variables

In classical uncertainty analysis based on parallel
cable crosstalk example, h1 and h2 are considered as two
uncertain factors [1]. Here, they are assumed to follow a
uniform distribution, and the results of applying random
variable modeling are shown below.{

h1 = 0.045+0.005×ζ1 [m]
h2 = 0.035+0.005×ζ2 [m]

, (9)

where ζ1 and ζ2 are uniformly distributed random vari-
ables in the interval [-1,1].

The partial parameters of the two cables are as fol-
lows: s = 0.05 m, da = 0.7 mm, db = 0.7 mm.

The MCM is applied to perform 10,000 determin-
istic simulations at exhaustive sampling points, and the
results of its uncertainty analysis are used as standard
data. The initial sample space S0 of Kriging-LSSVR has
five sampling points, i.e., q = 5. The number of sampling
points in the final sample space S obtained by the sequen-
tial sampling strategy is 26. In order to compare the per-
formance of traditional Kriging and the Kriging-LSSVR
proposed in this paper more objectively, the number of
sampling points chosen at one time for the traditional
Kriging application of LHS is also 26, i.e. L = 26. Deter-
ministic simulation is performed on the sampling points
to obtain the training set, which is used to construct the
surrogate model. Subsequently, the uncertainty analysis
results are obtained. Figures 4 and 5 show the probability

Fig. 4. Probability density of crosstalk voltage values at
2 MHz.

Fig. 5. Probability density of crosstalk voltage values at
50 MHz.

density curves for MCM, Kriging and Kriging-LSSVR at
frequencies of 2 MHz and 50 MHz, respectively.
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Table 1: Results of MEAM evaluation
Method 2 MHz 50 MHz
Kriging 0.9573 0.9792

Kriging-LSSVR 0.9724 0.9866

As can be seen from the figure, the Kriging-LSSVR
seems to be more accurate than Kriging, but it is not
obvious. Therefore, this paper applies the mean equiv-
alent area method (MEAM) proposed in [17] for fur-
ther validation. The evaluation results of MEAM are
shown in Table 1. The closer the MEAM value is to 1,
the higher the accuracy of the tested method. As seen
in Table 1, the accuracy of Kriging-LSSVR is higher
than Kriging. However, since Kriging is already very
accurate, this means the improvement in the accuracy of
Kriging-LSSVR is not obvious. In order to further vali-
date the performance of Kriging-LSSVR, the number of
random variables in the parallel cable crosstalk example
is expanded in this paper.

B. The proposed method is applied to the example
with multiple random variables

In the parallel cable crosstalk example, in addition to
the heights h1 and h2 of the two cables, the cable diam-
eter and the horizontal distance between the two cables
also impact the simulation results. Consider these five
parameters as uniform random variables, as shown in
Table 2.

Table 2: Uncertainty parameters for parallel cables
Uniform Random Variables Unit U [min, max]
Height of generator wire h1 m U [0.04, 0.05]
Height of receptor wire h2 m U [0.03, 0.04]

Diameter of generator wire da mm U [0.6, 0.8]
Diameter of receptor wire db mm U [0.6, 0.8]
Distance between two wires s m U [0.04, 0.06]

MCM is applied for 10,000 simulations to obtain the
standard data. Due to the increase in the number of ran-
dom variables, the number of sampling points must be
increased to ensure the accuracy of the surrogate model.
Assume that the initial sample space S0 of Kriging-
LSSVR has 20 sampling points, i.e. q = 20. The num-
ber of sampling points in the final sample space obtained
by the sequential sampling strategy is 97. The number of
sampling points chosen once for the traditional Kriging
application of Latin hypercube sampling is also 97, i.e.
L = 97.

Figures 6 and 7 show the probability density curves
at frequencies of 2 MHz and 50 MHz, respectively, and
Table 3 shows the evaluation results of MEAM. As can
be seen from Table 3, the accuracy of Kriging-LSSVR

Fig. 6. Probability density of crosstalk voltage values at
2 MHz.

Fig. 7. Probability density of crosstalk voltage values at
50 MHz.

at 2 MHz is much higher than Kriging. The accuracy of
Kriging-LSSVR at 50 MHz is also higher than Kriging,
but not as much as at 2 MHz.

Table 3: Results of MEAM evaluation
Method 2 MHz 50 MHz
Kriging 0.8678 0.8813

Kriging-LSSVR 0.9873 0.9485

To further investigate the performance of Kriging-
LSSVR, the frequency range is extended to 1-100 MHz.
As shown in Figs. 8 and 9, the expectation and stan-
dard deviation information, rather than the probability
density function information, are presented. The global
difference metric (GDM) values between the results to
be measured and the MCM are calculated using FSV, as
shown in Table 4. FSV has been successfully applied to
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Fig. 8. Far-end crosstalk voltage expectation for fre-
quency range 1 MHz to 100 MHz.

Fig. 9. Standard deviation of far-end crosstalk voltage in
the frequency range 1 MHz to 100 MHz.

the credibility assessment of uncertainty in EMC simu-
lation results [1].

According to Table 4, the evaluation results of the
expectation value of the simulation results for both sur-
rogate models are “Excellent”. The standard deviation of
Kriging is evaluated as “Very Good”, while the standard
deviation of Kriging-LSSVR is rated as “Excellent”. The
standard deviation evaluation result of Kriging-LSSVR
is one level higher than that of Kriging, further proving
that Kriging-LSSVR has higher accuracy than Kriging.

Table 4: FSV value results
Kriging Kriging-LSSVR

Expectation 0.0097 0.0051
Standard deviation 0.1369 0.0155

In terms of computational efficiency, it takes 28.9
seconds to perform one crosstalk computation. MCM
performs a total of 10,000 simulations, taking 80 hours.
Kriging and Kriging-LSSVR require only 97 computa-
tions, taking 46.7 minutes. The model prediction time
of the surrogate model is negligible in comparison. The
simulation time for each specific method is shown in
Table 5. The model prediction time tmodle for Kriging-
LSSVR is slightly longer than that of Kriging and is
negligible compared to the total time tcost. If the time
for a single simulation is measured in hours, then MCM
does not work. The efficiency of the surrogate model is
demonstrated.

Table 5: Comparison of simulation time
Method tcrosstalk tmodle tcost
MCM 80 h / 80 h

Kriging 46.7 min 8.3 s 46.8 min
Kriging-LSSVR 46.7 min 6.7 min 53.4 min

V. CONCLUSION
In this paper, LSSVR is applied to enhance the

Kriging model, combining the strengths of both surro-
gate models to develop a more accurate and efficient
EMC uncertainty analysis method, namely Kriging-
LSSVR. This method enhances the proactivity of the
sampling process, significantly improving the efficiency
of uncertainty analysis. At high levels of simula-
tion complexity, Kriging-LSSVR demonstrates notable
advantages in accuracy and efficiency. In the parallel
cable crosstalk example with multiple random variables,
Kriging-LSSVR demonstrates one level higher accuracy
compared to conventional Kriging. The method pro-
posed in this paper can be applied to large-scale com-
plex electromagnetic simulations in the future to ensure
the feasibility and accuracy of large-scale simulations.
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